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1 Introduction

The dominant topics in general philosophy of science during the second half
of the 20th century were surely the nature of scientific theory, realism and
explanation. The discussion of the nature of theory today is still very much
in the same terms as that of 50 years ago although the central paradigm has
changed. The standard view, to which I will return below, used to be that a
theory is a deductive system formulated in a formal language.1 Nowadays it is
probably the ‘semantic view’ that dominates: theory is a set of models and any
language will do for describing exactly what the models are like.2 Nevertheless
the basic presumptions are the same. We ask the same question, and in asking
it we presume both that it is a worthwhile question and that it has an answer
– that there is some form shared across the sciences that a good theory should
take. The methods of adjudication remain the same too: internal coherence and
goodness of fit with what we deem to be our best scientific theories, with the
principal cases now, as then, drawn from physics.

The nature of realism debates has shifted more. Under the influence of the
Logical Positivists, for a long time Anglophone philosophy of science eschewed
metaphysics. We did not talk about the truth of scientific theories nor about
the reality of scientific entities but rather about scientific progress or the accu-
mulation of scientific knowledge. The presumption was that whatever it is we
are looking for when we evaluate a scientific theory, the characterisation must
be internal to our own activities; it should not depend on reference to relations
between theory and the world. So we discussed how effective theories are at
problem solving3, or whether they produce from within themselves, relying on
their own heuristics, corrections that yield new predictions and applications.4

Nowadays we have forsaken our Positivist prohibitions and talk wantonly
of truth, near truth, resemblance to the truth, aiming for the truth, getting
the structure right, getting the theoretical content right, true predictions and,
within the semantic view of theories, of resemblances or isomorphisms between
models and the world. Recent versions of the semantic view may seem more
guarded.5 They talk not of isomorphisms or resemblances between models and
reality but instead, between models and other models, usually data models or
models of the phenomena. Nevertheless there is the tacit assumption that these
latter are themselves supposed to be accurate, true, true enough or what have
you. The language and the issues of the debates of the 1960’s and 70’s have
been entirely replaced.

Still, it is in the third area, that of explanation, that discussion has shifted
most, for here the topic itself has changed. We no longer talk about explanation;
its place has been taken by causation. We do of course still discuss explanation

1The most extensive and sophisticated treatment can be found in Carnap 1956.
2Early references include Suppes 1967. Classical References include: Suppe 1989 and Giere

1988.
3Laudan 1996, Part 3
4Lakatos 1970
5van Fraassen 1980
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itself, but it is not at the core of the field. Probably it appears most centrally
as a tool in the realism debates. We are entitled, many suppose, to regard
as true, the best explanation of a given body of phenomena; this behooves us
to provide an account of what a good explanation is. This situation is a real
change. For three decades every undergraduate course in philosophy of science
started out from the Deductive-Nomological account of explanation. Nowadays,
large numbers of philosophers of science do not engage with the topic at all.

This essay will be concerned with this dramatic shift. I shall trace the
gradual transformation of explanation into causation and outline where I think
we are now and where we could profitably be heading.

2 From causation to explanation

Carl Gustav Hempel’s Deductive-nomological account of explanation6 domi-
nated work in philosophy of science for thirty years, and it still influences a
number of related issues today. We should begin with a puzzle. Why was ex-
planation thought to be such an important matter? Explaining is after all only
one of a great many activities that the sciences engage in. Theories are used to
explain, but they are also very importantly used to effect changes in the world.
Yet theory application and use has never been a central topic. We also expect
our theories to be well-confirmed if we are to rely on them, but during the last
half century confirmation has certainly taken a backseat to explanation. Scien-
tists also approximate, they classify, they build models, they borrow methods
and ideas and techniques from elsewhere, they measure and they experiment.
Each of these activities needs a philosophical treatment – when is it done well,
when badly and how can we tell; and each has its own philosophical problems.
Why did explanation stand out?

I want to focus on one particular function that explanation served that gave it
a special status. For decades explanation stood in lieu of causation – causation,
which is critical if we are to account for how science can change the world. This
role is particularly notable because the situation is now reversed; for better or
for worse we now tackle questions about both the methods and the metaphysics
of causation directly.

David Hume taught that talk of causation was metaphysics and should be
consigned to the flames. The Logical Positivists similarly scorned metaphysics,
and for the most part for them too this included causation. But Rudolf Carnap
had a way to salvage some important metaphysical concepts.7 He urged that
there are many concepts that appear to be in the ‘material mode’ but that
would in fact be more perspicuously expressed in the ‘formal mode’; that is,
there are many concepts that seem to be directly about the world but that are
really instead about our own theories and descriptions of it.

Various concepts of causation came to be treated in just this way. Kepler’s
laws hold on account of Newton’s. This fact is a central part of the argument for

6See Hempel and Oppenheim 1948 and Hempel 1966.
7Carnap 1928
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believing in Newton’s laws. But how can one law be responsible for the obtaining
of a second? We also regularly cite one event as the cause of another. Hempel’s
well-known example is the drop in temperature that caused the radiator to
crack.8 But, following Hume, what can this amount to over and above spatio-
temporal connection and regular association between the two event types?

Explanation is the answer. Newton’s laws explain Kepler’s and the drop in
temperature explains the cracking of the radiator. In both cases it is the same
notion of explanation that does the job, and it is a notion that refers entirely to
relations within language. The fact to be explained is deducible from a set of
well-confirmed law claims and initial conditions, where the specific factors cited
in explanation are factors that we find particularly salient among these. That
is the famous Deductive-Nomological (D-N) account of explanation I mentioned
above. It is important to bear in mind here that for the Positivists and their
followers, explanation was not a mark in language of a relation that holds in the
world but rather that the explanatory relation in language is the relation that
holds; we only mistakenly project it onto the world.

3 From explanation to causation

The Deductive-Nomological model was recognised from the start as too restric-
tive. Insistence on deduction from strict laws would rule out a large number
of explanations that we have high confidence in. Hempel added the Inductive-
Statistical (I-S) model:9 explanations may cite law claims and individual fea-
tures from which it follows that the facts to be explained are highly probable
even if they do not follow deductively. The underlying idea in both cases is that
the factors offered in explanation (the explanans) should provide good reason to
expect that facts to be explained should occur (the explanandum). This harkens
back to Hume’s account10 in which the idea of causation is a copy, not of an
impression of a relation in the external world, but rather a copy of an impression
of our own feeling of expectation that the effect will occur when we observe the
cause. For Hume this feeling of expectation results from our repeated experi-
ence of the cause being followed by the effect. For advocates of the D-N and
I-S models, the expectation must be rational, not habitual – it must be justified
under well-confirmed law claims.

The natural response in this case is to amend the requirements for I-S expla-
nation. The explanans need not render the explanandum probable; it need only
raise the probability. But that will not do either, as Wesley Salmon’s example
of probability-lowering explanations makes clear.11 Salmon considered a case in
which exactly one of two radioactive elements is randomly inserted into a box.
Imagine that the strongly-radioactive element has a probability of .9 of disin-
tegrating; the weak element disintegrates with probability .1. The probability

8Hempel 1942
9Hempel 1962

10Hume 1997/1748, Sections 4-7
11Salmon 1971, pp. 62-65
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of decay when the weak element is in the box is thus far lower than that when
it is not (since when the weak element is not in the box, the strong one is).
Yet if decay occurs when the weak element is in the box, it is undoubtedly the
presence of the weak element that explains it, and this despite the fact that the
weak element lowers rather than raises the probability of decay.

Salmon’s proposal was that the explanans should be statistically relevant to
the explanandum – the probability of the explanandum should be different when
the explanans obtains from when it does not. But that does not work either,
as we can see by amending Salmon’s set-up slightly: use two structurally differ-
ent radioactive elements that are equally strong in disintegrating. Whichever
element is in the box when a decay product occurs will explain that occurrence
even though the probability of decay is the same with both elements.

Why does the cause – a genuine positive cause – counter-intuitively lower the
probability of the effect in Salmon’s set-up? Because the presence of the weak
cause is correlated with the absence of an even stronger cause. This suggests
following the strategy common in the social sciences: stratify the background
population. That is, divide the population of trials into subgroups one contains
all the trials on which the strong element is presented; the other, those in which
it is absent. In a population of trials in which in every case the strong element
is present, introducing the weak element will increase the probability of decay,
and the same is true in a population in which the stronger element is universally
absent. Following this line of thought, the natural proposal is to insist that the
explanans increase the probability of the explanandum in any population that
is homogeneous with respect to all ‘other’ possible causes of the explanandum.
Formally, demand an increase in the partial conditional probability.

This move is also suggested by what is called Simpson’s paradox.12 Take
any fact about the conditional probability of one factor, say A, on another,
B. B may increase the probability of A or decrease it or leave it unchanged.
Consider a third factor, C, which is probabilistically dependent on both. Then,
depending on how the numbers work out, if we stratify on ±C, the original
relations between A and B can be shifted in any way at all: B may increase the
probability of A in both subpopulations, or decrease it, or leave it unchanged.
A standard example is the Berkeley graduate school, which appeared prima
facie to be discriminating against women: the probability of admission given
one was a woman was lower than the probability of admission if one was a man.
But, department by department, this turned out not to be the case. What was
happening was that women were applying to the departments that were more
difficult to get into. The ‘true’ relation between admission and sex is revealed
by stratifying on departments.

The move to demand increase in probability conditional on a fixed arrange-
ment of all other possible causal factors was widely adopted.13 This brought the
standard account of explanation into parallel with Patrick Suppes’s probabilistic
theory of causality14, which was published one year before Salmon’s influential

12Cartwright 1979
13Skyrms 1980, Eells 1991, Cartwright 1979
14Suppes 1970
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paper on probability-lowering explanations. Suppes’s probabilistic theory pro-
ceeded by two steps. One factor, C, is a prima facie cause of a second, E, if
C raises the probability of E. A prima facie cause is a real cause if and only
if C continues to raise the conditional probability of E in subpopulations that
are homogeneous with respect to all potential confounding factors of E (later
authors to these to be all ‘other’ causes).

One problem for Suppes’s account is a problem shared by all accounts that
rely on stratification: it cannot deal adequately with cases of purely probabilistic
causes where the causes produce their effects in tandem. Consider a purely
probabilistic cause that produces a side effect in correlation with an intended
effect. In the population that is homogeneous with respect to the presence of
the joint cause, the side effect will increase the probability of the effect even
though it does not cause it. (This does not happen for deterministic causes
because, in the presence of the cause, both the effect and the side effect will
have probability one.) Increase in the conditional probability of one factor on
another thus cannot be a sufficient condition for the one factor to cause the
other in cases where causes may produce their effects probabilistically.

Other problems arise for Suppes from the fact that he takes the two steps
separately. Causes may not raise the probability of their effects in a given
population for at least two kinds of reasons. First, background correlations may
conceal the expected increase in probability, as we can see from the amended
version of Salmon’s set-up in which the two radioactive elements are equally
strong, so the conditional probability of a decay is the same no matter which
element is in the box.

Second, a single cause may itself have different capacities with respect to the
same effect and these capacities may balance out. Gerhard Hesslow’s case of
birth control pills and thrombosis is the standard example here.15 Birth control
pills do have a positive capacity to produce thrombosis. They also of course
can inhibit pregnancy, and pregnancy can also cause thrombosis. Depending on
the strengths of these various capacities, birth control pills may have no overall
effect at all on the rate of thrombosis: thrombosis may be equally probable both
with and without birth control pills. Cases like this are likely to be common in
the social and medical sciences. Consider a cause that produces a deleterious
effect. If we want the cause for some other reason, or the cause is difficult
or expensive to eliminate, we often try hard to enhance the cause’s opposite
operations in order to cancel out the unwanted effect. For these kinds of reasons
there was a tendency not to adopt Suppes’s two-stage definition but rather to
move directly to partial conditional probabilities: C explains E just in case C
raises the partial conditional probability of E in populations homogeneous with
respect to all other factors that can cause E.

By this time the switch-over from explanation to causation was complete.
Not only was the account in terms of partial conditional probabilities often
explicitly offered as an account of probabilistic causality, but it is difficult to see
how it could be thought of in any other way. What after all could defend this

15Hesslow 1976, pp. 290-2
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particular, very peculiar, choice of probabilistic relation as a mark of explanation
other than the assumption that the explanations at stake involve causal factors?

I have explained that under the influence of Hume and the Positivists philoso-
phers and scientists alike have often been eager to rid science of the concept of
causality. One standard strategy has been to ‘reduce it away’; that is, to elim-
inate all use of causal notions and define causation purely in terms of regular
association plus, perhaps, some other non-causal concepts, like temporal suc-
cession and spatio-temporal contiguity. Nowadays the demand for absolutely
regular association has given way. In a move that parallels Hempel’s intro-
duction of the I-S model for explanation, purely probabilistic associations are
allowed as well. Could we then turn the account I have just described into a
reductive definition of causation? The answer is ‘No’. The formula involving
partial conditional probability cannot serve as a reductive account of causal
relevance in terms of probabilistic association because, as it stands, we must
condition on other causal factors. If we leave out any factors that are causal,
we can certainly get mistaken results, as in the example of the Berkeley graduate
school. Exactly the same is true if we include too many. Consider a population
that is homogeneous with respect to a given disease. We might, for instance, be
studying such a population unintentionally, perhaps even without recognizing
it, if we are using records from a given hospital. Imagine the disease has two
causes, A and B. In that population the absence of A will increase the proba-
bility of B, even though not-A does not cause B; and this will be the case even
if we focus on a subpopulation that is homogeneous with respect to all the real
causes of B.

So, what of the Humean programme of reducing causation away? The for-
mula in terms of partial conditional probabilities has real problems. Many come
out immediately when we try to explain what is meant by the expression ‘all
other causes’. (For instance, in testing C causes E, we must not for any par-
ticular individual case include any cause of E, say D, that occurs in the causal
‘chain’ between C and E. That is because, once D is given, information about
whether C obtains or not will no longer make any difference to the probability
of E. On the other hand, if we do not insist that the test population be homo-
geneous with respect to D in individual cases where D occurs on its own, not as
a part of the process by which C produces E, then Simpson’s paradox problems
may readily arise.) Despite these real problems, this formula is the best on offer
so far if we are looking for some one probabilistic relation between causation
and probabilistic association. For Humeans then the question for future work
is clear: How do we improve on this formula and make explicit what it means
without invoking causal notions?

The admission that we are after all looking for a theory of causal explanation
provides some progress on another of the central difficulties that the D-N and
I-S models were thought to face – the problem of explanatory symmetry. The
problem is especially visible for law claims expressed in functional form, where
we can rewrite the equations to make any one of the variables appear as the
dependent, or explanandum, variable. The canonical example is due to Sylvain
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Bromberger.16 When the line of sight of the sun across the top of a flagpole
is at an angle θ with the ground, the height of the flagpole (h) and the length
of the shadow it casts are related thus: l = h sinθ. Under the D-N model, we
can thus explain why the length takes a given value, l, by citing this law and
the height of the pole. That sounds fine. But we can equally use the equation
and the length of the flagpole to explain the height of the flagpole, which seems
entirely inappropriate in all but the most special of historical situations.

If we turn away from the D-N model, however, and call not for mere deliber-
ately from law, but rather demand that explanations in science cite factors that
are causally relevant, the problem does not appear. Causal-law claims come
with the asymmetry between cause and effect built in. When the causal-law
claims are expressed in the form of equations or, following John Stuart Mill
or John Mackie17 as logical equivalences, the asymmetry is often expressed by
writing the effect on the left-hand side and the cause on the right. Nowadays
sometimes even a special symbol is inserted to signify both functional equality
and causality from right to left.18

The identification of explanatory relevance with causal relevance opens a
line of attack alternative to the probabilistic accounts growing out of the D-N
and I-S models. As a rule of thumb it is fair to say that a controlled experiment
is the best way to test a causal claim. Perhaps we can read off a characterisa-
tion of causal relevance from an appropriate account of exactly how a controlled
experiment should be constructed. This is, for instance, the strategy for char-
acterizing causal/explanatory relevance championed by James Woodward19 as
well as by a number of social scientists. Accounts of this kind are often called
manipulation or agency accounts.20

Sometimes manipulation accounts make the strong claim that a causal con-
nection exists only where we can manipulate the cause to bring about the effect.
This echoes one of Hume’s suggestions that our idea of causation could come
from our own experience of making things happen in ourselves. As a reductive
account of causation, this is a non-starter: the relevant sense of ‘manipulation’
is that we make the cause vary; but ‘making’ is itself a causal concept.

But what if we do not add the additional demand that manipulation be
done by us? What if we leave out all mention of what makes the cause vary
and insist only that it vary in the way necessary for a good experiment? Again,
as a reductive account of causation, this is a non-starter. The basic idea of
the controlled experiment is to look for variation in the effect as the cause
varies by itself; that is, while all other sources of variation in the effect remain
constant. Usually, of course, we do not know what all these other possible
sources are. The standard strategy in that case is to randomise. We assign

16According to Wesley Salmon (e.g. 1998, ch. 19), Bromberger never published this example
himself. It is, however, widely discussed by philosophers (see e.g. van Fraassen 1980, pp. 104-
5).

17Mackie 1972. For instance, E= (C1+ A1) v (C2 + A2) . . . v (Cn + An), where Ci is a
salient factor we would normally cite as a cause and Ai is an auxiliary often left unmentioned.

18Hoover 2001, Cartwright 2001
19Woodward 1997. See also Hausman 1998, Holland 1986, Cartwright forthcoming.
20Cf. Menzies and Price 1993.
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individuals randomly to different values. This makes things even worse for the
hopes to read off a reductive account of causality from our best experimental
procedures. What makes a good experiment, an experiment able to deliver
sound conclusions? In the first place, all the other causes of variation in the
effect must have the same distribution in each experimental group. In the
second, the value that the cause under test takes for each individual in the
experiment must not be caused by any other factors that can influence the effect.
Again, it is difficult to see any way to express these two italicised clauses without
the use of causal concepts. Also like the probabilistic account, characterisations
in terms of controlled experiments are limited to the kinds of causal systems
they can cover and the kinds of causal questions they can answer, as I shall
discuss in Section 6. Nevertheless, probabilistic and manipulation accounts are
the two primary strategies employed in philosophy of science at this time to
characterize general explanatory relevance.

4 The narrowing of the project

The original concern in providing a model of explanation was about explana-
tory relevance of one kind of factor for another. This was clear from Hempel’s
presentation in his universally used text, The Philosophy of the Natural Sci-
ences. As an example, Hempel cites a historical episode.21 The astronomer
Francesco Sizi claimed, against his contemporary Galileo, that there could not
be satellites circling around Jupiter and offered the following argument: ‘There
are seven windows in the head, two nostrils, two ears, two eyes and a mouth; so
in the heavens there are two favourable stars, two unpropitious, two luminaries,
and Mercury alone undecided and indifferent. From which [. . . ] we gather that
the number of planets is necessarily seven’. These features, Hempel complains,
do not have the right kind of relation to the planets; they are not the kind of
features that could explain their arrangement. This echoes the earlier concerns
of many of the Positivists about pseudo-sciences. Factors cited in, say, Freudian
theory or Marx’s theory of history do not have the right kind of internal devel-
opment nor the right kind of relation to the facts to be explained to count as
genuinely explanatory.

This underlying assumption about the point of the project can be seen at
each step in the development just described, and it is still there in the proba-
bilistic theory of causality that we now have. The theory is a theory of what
kinds of factors can cause what other kinds, not a theory of what actually causes
what on any single occasion. That is, it is not a theory of singular causation,
theory of what among all possible causes actually brought about the effect in
any given case. This becomes especially apparent in cases of overdetermination.
Two factors occur, each of a kind that is causally relevant to the effect. On any
such occasion there may be a fact of the matter about which factor produced
the effect; but the criteria for determining this are not provided in any of the
accounts of explanation described in Section 3.

21Hempel 1966, p. 48
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This situation is odd because one of the original exemplars of scientific ex-
planantion that Hempel offered was of a case of singular causation: the drop in
temperature explains the cracked radiator. Once causation has been readmit-
ted as a legitimate object of study, however, questions about singular causation
can be addressed directly in philosophy of science. There are currently a num-
ber of tools available for doing so: counterfactuals22, causal processes23, agency
accounts24 and single-case probabilities25.

The gap between explanatory relevance and actual explanation in a single
case raises a number of challenges that we must now face:

1. Each of the accounts of singular causation on offer has its own internal
problems, as do the accounts of explanatory relevance.

2. There is currently no clear fit between the general accounts of explanatory
or causal relevance and accounts of singular causation. For example, must
all factors cited in a singular explanation be factors that meet some ap-
propriate criterion for general explanatory or causal relevance in science?
Donald Davidson has insisted that the answer is ‘yes’.26 But there are no
accounts that have worked out explicit links between the two levels based
on either this answer or any other.

3. We have no criteria for adjudicating among the various accounts, either of
singular explanation or of general explanatory relevance. Which is best?
In Section 6 I will return to this question and offer some proposals about
promising directions for future work.

Surprisingly the second major exemplar from Hempel has also been left
behind in the developments surrounding explanatory relevance over the last
half century. In the original we looked for a model of explanation that could
account for how one set of laws can be explained by another more general, more
encompassing set; for instance, how Newton’s laws explain Kepler’s. Accounts
that equate explanatory relevance to causal relevance will clearly not do this
job. But it is a job that we still want to be able to do. After all, one of
the justifications often cited for accepting Newton’s laws is that they explain
more concrete laws such as Kepler’s.27 This is often called inference to the
best explanation: we infer that Newton’s laws are (probably) true because they
provide the best way to explain why Kepler’s laws obtain.28 Is the original D-N
model sufficient to handle these kinds of explanations or must better models

22Lewis 1973, 1986, 2000
23Salmon 1984, Dowe 1992a, 1992b
24Woodward 1997, Menzies and Price 1993
25Eells 1991, Humphreys 1989
26Davidson 1967
27Perhaps we should not altogether abandon the idea that explanation even in these cases

has something to do with causation since, at least from the time of Copernicus, explanation
of laws has often had a causal connotation.

28For discussions of how inference to the best explanation works and whether – and why –
it is a reasonable form of inference, see Lipton 1991 and references therein.
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now be developed? The question becomes especially pressing if we wish to use
inference to the best explanation as a reason to believe in the more general,
more encompassing theory.

5 Whence explanation: understanding

One might think that explanation had to do with answering questions, relieving
puzzles, supplying missing information or providing understanding. This was
the point of Sylvain Bromberger’s well-known paper on explanations as answers
to why questions.29 But it was not the presumption of the work described in
Section 2. Explanation in the tradition described there is an objective matter
independent of what we know, what we can grasp, or what helps us to under-
stand. This odd feature of the tradition is part of the reason for the claim that
the models of explanation on offer served as formal mode surrogates for the
material mode concept of causation.

Bas van Fraassen famously rejected the idea that that there is any such
objective notion of causation.30 He stressed instead that explanation is a prag-
matic matter, and in particular a correct explanation will be highly sensitive
to the form of the question asked. Following the work of Bromberger and van
Fraassen there has been a spate of work on why questions and the pragmatics
of explanation.31

But little of this work is of help with a problem about understanding that
still plagues the philosophy of science. Scientists across both the natural and
the social sciences regularly construct models that are highly artificial, seriously
oversimplified or blatantly false to the situation being modelled. Nevertheless,
they claim, the models provide understanding of the target phenomena. James
Clerk Maxwell provided mechanical models that could account for various elec-
tromagnetic properties of the ether. He could not persuade himself fully that
any one of these models might literally describe the inner working of the ether.
Still he thought that such mechanical models were essential to a proper under-
standing of electromagnetism.32 George Fitzgerald did the same, and he even
constructed real physical models, not just paper and pencil ones, ensuring that
the gears worked properly and the strings would not get tangled up.33

Economists regularly produce models that describe not real economies but
small ‘analogue’ economies that bear little resemblance to the real economy of
interest. Then they study the analogue economies of their models, they ma-
nipulate them, they derive results about them. The results are not accurate
predictions about the real economy, even if we restrict attention to a narrow
range of intended or targeted results. What is gained from these models? Un-
derstanding, we are told.

29Bromberger 1966
30van Fraassen 1980
31See for instance Achinstein 1984, Gardenfors 1980, Richardson 1995 and Sintonen 1984.
32Cat 2001
33Hunt 1991
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A different kind of case is in the models of game theory, for instance models
that suppose that individuals are playing the prisoner’s dilemma game. A lot of
theoretical effort has gone into modelling the possible constellations of this one
game – one-shot, finitely iterated, indefinitely iterated, with two or N players,
rational, boundedly rational, with common knowledge of rationality or not etc.34

Some of these set ups have even been ‘tested’ empirically.35 But little detailed
work has been done on what social situations these models could plausibly
represent.

Also consider, in evolutionary game theory, the model of choice of neigh-
bourhood in which Thomas Schelling assumes that people have a preference to
live in a neighbourhood in which the majority of the dwellers are of the same
kind as themselves, but without having a preference for a totally segregated
environment.36 However, if everybody chooses the neighbourhood in this way
we end up with totally segregated neighbourhoods in the model. The model
is supposed to help us understand how segregation is possible without overt
discrimination. But how does it do that since what it describes is not a real
process that goes on in the way described in any of the real populations for
which we might wish to understand neighbourhood segregation?

The social contract is an example from political theory. The story is of peo-
ple living in a ‘state of nature’, a state without government. Because of this, it
is supposed, each person prey to each other. To avoid the terrible dangers, they
all agree to submit to and obey a governing authority that will police them and
provide safe social institutions. This is supposed to help us understand some-
thing. Presumably not how we actually came to have governments. Perhaps it
helps explain the normative force of government – why we ought to obey it. But
we never started in a state of nature and agreed to a social contract. So how
does the fable of the social contract help us either to understand or to legitimise
government and its restrictions?

These are all different cases, and only a tiny sample. Perhaps they will each
require a different account of understanding; perhaps we can find a single ac-
count that will cover them all. Perhaps many of the claims to understanding
are misplaced. But the need for a philosophical treatment is pressing. When
does a false model provide understanding? What kind of understanding is in-
volved? And what practically are we able to do with the understanding that
we acquire from a blatantly false model? These are crucial questions about an
important and widespread scientific practice – and a practice that frequently
informs policy – for which we currently have no good answers.

We should recognise that work on these questions may also improve our
accounts in other areas. For instance, the standard account of how we use models
to understand the world is that we do so by deriving predictions from the models
about the target situations in the world; and we do that by looking at all the
deductive consequences of the assumptions of the models, where some accounts
allow for some corrections or emendations to the deductive consequences based

34Kreps et al. 1982
35Roth 1988, Cooper et al. 1996
36Schelling 1971
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on facts about the specific situation modelled.37 Mary Morgan, for instance,
argues that we gain understanding from doing things with models.38 In a simple
economics model we leave the demand curve fixed and we move the supply curve.
What happens to the price? Predictions from our simple model about the kinds
of effects that result from this kind of change may be relatively accurate even
if no prediction about the level of the price itself will be.

How do we know what we should and should not do to a model? Morgan
argues that an essential ingredient in a model besides the formal structure we
usually talk about is a story. The story of the model suggests and constrains how
we can manipulate the model and what we can conclude from our manipulations.
Even in the case where we intend to do nothing more than look at the deductive
consequences of a model, something like the story will be necessary – we do not
after all expect all the deductive consequences of a simple or blatantly false
model to be of use or we would be immediately stopped in our tracks. But
exactly what is a story and how are we to judge which stories are acceptable;
and what relation does the story have to existing theory? Following up Morgan’s
ideas will require new work both on the structure of models and on the nature
and use of theory.

6 Whence explanation: causation

We have seen a number of accounts of causal-explanatory relevance, and I noted
that there are also a variety of different accounts of singular causal explanation
on offer. Which is the correct one? I shall suggest that probably they all are –
each for a different kind of causal relation.

Begin with Suppes’s theory of probabilistic causality. Suppes’s definitions
form the basis for powerful new methods for causal inference, developed by
Wolfgang Spohn39, by Judea Pearl40 and by Peter Spirtes, Clark Glymour and
Richard Scheines41, called Bayes-nets methods. These methods suppose, as does
Suppes, that all causes are prima facie causes – i.e., a cause always increases
the probability of its effects. Real causes are those that continue to increase the
probability of their effects in populations that are homogeneous with respect to
an appropriately chosen set of other causes. The methods also assume a mini-
mality condition, which asserts that no more causal structure obtains relative to
a given probability distribution than what is necessary to guarantee that causes
increase the probability of their effects in the two ways presupposed.

The methods provide a way of making causal inferences from facts about
probabilities and any antecedent causal knowledge available by exploiting these
three constraints. Imagine, for example, a single effect E with two possible
causes, C1 and C2. There are four possibilities: C1 is a cause of E and so

37Giere 1999
38Morgan 1999
39Spohn 1980
40Pearl 2000
41Spirtes et al. 1993
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is C2; C1is and C2 is not; C2 is and C1 is not; and neither are causes. C1

is a genuine cause just in case it raises the probability of E and it continues
to do so conditioning on C2, if C2 is a genuine cause. C2 is a genuine cause
if it raises the probability of E and continues to do so conditioning on C1,
if C 1 is a genuine cause. Bayes-nets programs compute all the possible causal
arrangements consistent with these assumptions and they do so entirely reliably.
Supposing that the three basic assumptions about causation are satisfied, it can
be proven that the methods will never yield a false causal conclusion, although in
many cases no conclusion at all will be available or, more usually, a disjunction
of causal conclusions.

We have seen, however, that Suppes’s conditions are violated in a number
of cases. What then are we to make of Bayes-nets methods? Are they no good
after all? Clearly that conclusion would be a mistake, for the proof referred to
shows us exactly what kinds of causal systems the methods can be applied to:
those satisfying the three conditions specified.

What do we do when we have a different kind of system? Consider the
situation in which we hypothesise that a particular cause behaves like Hesslow’s
birth control pills – it does not increase the probability of its effect because
it operates in different ways both to produce the effect and to prevent it. In
this case we try to stop all the other ways the cause can operate and then
look for an increase in probability or an increase in level of the effect due to the
hypothesised mode of operation. Often we can do this by physically blocking the
causal process by which the other operations are carried; often by conditioning
on some factor that occurs in each alternative causal process. What about
situations in which we suspect that one factor, A, increases the probability of
another, B, not because A causes B but because B is a side effect of A from
some common probabilistic cause? One standard thing to do in this case is to
manipulate A while keeping fixed all the other causes of B. If B does not change
in the appropriate ways, we conclude that A is not a cause.

Turn next to manipulation accounts, which are currently our major alter-
native strategy for characterising causal/explanatory relevance. This strategy
is not universally applicable, however, anymore than our best attempts at a
probabilistic account. In vast numbers of causal systems, from the human cir-
culatory system to an automobile carburettor, causes are locked together by the
design of the system and cannot vary in the requisite ways. Very often a single
cause cannot be changed on its own without varying others as well and very
often it cannot be changed without interfering with the very process by which
it or some other cause produces its effect.

There are also a variety of specific causal hypotheses that we would not test
in this way even were the appropriate manipulations available. Consider a claim
of the form, “A is a standing condition, just awaiting a trigger to produce B”:
for example, “The run-down condition of famine victims is a standing condition
just awaiting a trigger to produce a fatal disease”; or, “The dryness arising from
the drought is a standing condition just awaiting a trigger to produce a forest
fire”. In this case we do not manipulate A and look for a variation in B. Rather,
we keep A fixed and vary the presence or absence of a variety of readily available
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appropriate triggers to see if the effect generally occurs when the trigger does.
The lesson to be learned from these brief considerations is that there are

different kinds of causal systems and different ways in which a cause can oper-
ate within them; and different methods for testing are appropriate for different
specific kinds of causal hypotheses relative to different sets of background as-
sumptions about the system in which the putative causal relation is imbedded.

This is the conclusion that we are beginning to draw. For instance, Laurie
Paul42, Judea Pearl43 and Christopher Hitchcock44 all describe a variety of
different kinds of singular causal relations that can obtain – such as hasteners,
delayers, sustainers, contributors. They offer different counterfactual tests for
each of the different kinds of relationship.

At the level of general causal relevance, I am a strong advocate of causal
diversity. We need, I believe, a background model of the kind of causal system
we are dealing with and of the way by which the putative cause is supposed to
operate before we can devise a test, or a characterisation, for it. This means that
settling matters of causal relevance requires either a lot of antecedent knowledge
or a reasonable success at bootstrapping. This makes causal testing difficult,
but not impossible. To proceed, however, we need far better accounts of the
kinds of causal systems we may encounter and the variety of ways that a cause
may operate within them.45

We are used to thinking of causation as a single monolithic concept: causal
relations all have one single feature in common that distinguishes them from
mere association; and there is one single canonical mark of that feature. But we
have a vast new project in philosophy of science once we recognize that there
are a great variety of causal relations and a great variety of causal systems, and
each may have its own way of testing. As Christopher Hitchcock advises, “The
goal of a philosophical account of causation should not be to capture the causal
relation, but rather to capture the many ways in which the events of the world
can be bound together”.46

42Paul 1988
43Pearl 2000
44Hitchcock 2003
45This need is the basis for the three-year project Causality: Metaphysics and Methods now

underway at LSE, funded by the British Arts and Humanities Research Board.
46Hitchcock 2003
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