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Abstract

This paper contains the fourth chapter of my upcoming book Com-
binatorial Geometry of Formal Proofs. This explains the basic mate-
rial in Sections 1 and 2 and Theorem 3. It was written during my stay
at Courant Institute in the spring 2001.

We establish a connection between the geometric methods devel-
oped in the combinatorial theory of small cancellation and the propo-
sitional resolution calculus. We define a precise correspondence be-
tween resolution proofs in logic and diagrams in small cancellation
theory, and as a consequence, we derive that a resolution proof is a 2-
dimensional process. The isoperimetric function defined on diagrams
corresponds to the length of resolution proofs.

1 The resolution calculus

The language: literals and clauses. Let py,...,p, be propositional variables.
A literal is either a propositional variable p; or a negation of a propositional
variable —=p;. A clause is a disjunction of literals, i.e. a formula of the form
1V q V...V q, where the ¢;’s are literals. The disjunction can contain one
single literal, or may be none. In the latter case we say that the clause is
empty and we denote it with the symbol L.

Normal forms. Any propositional formula built out of propositional variables
and logical symbols A, V,— can be put in a conjunctive normal form, i.e. it
can be rewritten as a conjunction of disjunction of literals. Once a formula



is written in its normal form, we can think of it, with no ambiguity, as being
a set of clauses. For instance, the formula (ma A b) V (¢ V a) is equivalent to
its normal form (—a VecVa) A (bVcVa) and can be seen as the set of two
clauses {—a V¢V a,bVcVa}. In what follows, a formula is intended to be
its associated set of clauses.

Tacit assumptions. When we speak of a clause, we usually have in mind any
clause equivalent to a given one which can be obtained by permutating the
literals. For instance, if bV ¢V a is the given clause then, in practice, one
thinks of the clause itself and of any of its permutations cVaV b, aVbVc
and a V ¢V b as being the same clause. (Notice that the first two clauses are
circular permutations and the third is not.)

Another implicit assumption is that any multiple occurrence of a literal
in a clause can be identified. For instance, consider the clause a V ¢V a V b.
It is tacitly thought to be the clause a V ¢V b.

Resolution rule, resolution calculus and resolution proofs. The rule of resolu-
tion takes two clauses containing a literal and its negation respectively, and
combines them into a new clause which merges all the other literals belonging
to the clauses into a larger clause. It is schematized as follows

byv...vb,Va —-aVec V...V
bl\/...\/bn\/cl\/...\/ck (].)

where we say that the rule resolves the literal a. We call resolution calcu-
lus the calculus defined by the resolution rule. A resolution proof is a binary
tree of clauses, where the root of the theorem is labelled by the empty clause,
i.e. L, the leaves are labelled by starting clauses, and the internal nodes are
labelled by clauses derived by applying the resolution rule to the clauses la-
beling the antecedents of the node in question. A derivation in the resolution
calculus is a tree of clauses as above, which does not necessarily end with the
empty clause. It can be shown that the resolution calculus is complete and
valid: any true formula can be derived from the calculus and any formula
derived from the calculus is true. A formula A is proved by resolution if the
empty clause L is derived from the set of clauses associated to —A.

Example. We want to derive b from the set of clauses bV a, maVceVd, =dVb
and —c¢ V b. To do this, we add the clause =b to the set of original clauses,
and we try to derive the contradiction, i.e. L. This is a resolution proof



bVa —-aVeVd
bvevd -dVb
bVe -cVb
b —b
1 (2)

that combines the first two clauses by merging the literals a, —a, then com-
bines the resulting clause with a third one by merging the literals d, =d, then
a fourth one by merging ¢, —c and finally merges the result with the clause —b
to obtain the empty clause. Implicitly, some other identification of literals
have been performed by the applications of the rule. Namely, at the second
application of the resolution rule the double occurrence of the literal b in the
resulting clause has been reduced to one, and the same happened at the third
application of the rule.

The size of a derivation in the resolution calculus. 1t is the number of clauses
in the derivation tree.

2 Diagrams

Let G be a group and < X, R > its presentation. Let I’ be the free group on
X and let N be the normal closure of R in F. Clearly, G = F/N and also
an element w € G represents the identity iff w € N. In particular, w € N
iff, in the free group F, w is a product of conjugates of elements of R**

n
w = H wiritug (3)
i=1

with u; € F and r; in R, for all 7.

Reduced words. A word w in G (and in F') is said to be reduced if no subword
of the form ss~! or s71s, with s € X occurs in w. We say that w is cyclically
reduced if all cyclic permutations of w are reduced.

Cyclically reduced relators and symmetrization. We think of relators of G
as finite words over an alphabet X U X!, Also, we shall think of a relator
r € R as being cyclically reduced. With the symbol R* we denote the set of
all distinct cyclic permutations of the defining relators » € R and of their
inverses r~!. This set is called symmetrization.



Figure 1: A 2-dimensional complex M, i.e. a tassellated multidisc.

To a product of conjugates, as in (3), we associate a diagram in the Eu-
clidean plane which contains all the essential information about the product
itself. Diagrams are used as a tool to study membership in N of F' and
equality in G. We start with some terminology and some basic concept.

Let E? denote the Euclidean plane. If S C 2, then §S will denote the
boundary of S, and S will denote the topological closure of S. A vertez is a
point of E2. An edge is a bounded subset of E? homeomorphic to the open
unit interval. A region is a bounded set homeomorphic to the open unit disc.

2-dimensional complexes. A 2-dimensional complex M is a finite collection
of vertices, edges and regions which are pairwise disjoint and satisfy the
following properties:

1. if e is an edge of M, there are vertices a and b (not necessarily distinct)
in M such that e = e U {a} U {b}, and

2. the boundary 6D of each region D of M is connected and there is a set
of edges ey, ...,e, in M such that 0D =¢é; U...Ug,.



We consider 2-dimensional complexes with oriented edges. The boundary
of M is denoted 0 M. If M is constituted by several regions, then M is called
a multidisc. See Fig. 1.

Oriented edges. If e is an edge with e = eU{a} U {b}, then a and b are called
endpoints of e. A closed edge is an edge e together with its endpoints. An
edge might be traversed in either of the two directions. If e is an oriented
edge running from a point v to a point w, the vertex v is the initial vertex
and the vertex w is the final vertez. The oppositely oriented edge, or inverse
of e, is denoted by e ! and it runs from w to v.

Paths. A path is a sequence of oriented closed edges eq, ..., e, such that the
initial vertex of e;,; is the initial vertex of e;, for 1 <17 < n — 1. A closed
path or a cycle is a path such that the initial vertex of e; is the final vertex
of e,. A path is reduced if it does not contain a subsequent pair of edges of
the form ee . A path is simple if all edges have distinct endpoints.

Diagrams. A diagram over < X, R > with boundary P is a triple (M, f, P),
where M is a 2-dimensional complex, f is a labelling map and P is a boundary
path of M which starts and ends in a given basepoint, such that the following
conditions are satisfied:

1. the space underlying M is homeomorphic to a simply connected closed
subset, of the plane;

2. f associates to each edge x of M a letter from X U X~'; moreover
flz™) = f(x)~!, for all oriented edges of M;

3. the label of every simple boundary path of a 2-cell of M is an element
of R*;

4. the boundary path P starts and ends at the basepoint.

A diagram is reduced if all its paths are reduced, i.e. there are no succes-
sive pairs of edges labelled za~! or 27!z, where z € X.

Example of a diagram. The 2-dimensional complex in Fig. 1, where for
simplicity the edges have not being labelled, is a diagram. The boundary
path P is read by going from left to right along the edges of the multidisc,
starting from the basepoint vy and following the dotted line indicated in the
figure until the basepoint is reached again and no more edges have to be read.



Figure 2: The representation of a trivial word as a product of conjugates.

2.1 Cancellation is a 2-dimensional process

van Kampen introduced an operation on diagrams that brings to light the
fact that cancellation is a 2-dimensional process. He noticed that to any
word w in the free group F' one can associate a diagram M whose boundary
P is w. Then, he showed that to any trivial word w in a group G, one can
associate a diagram where the space underlying M is homeomorphic to a
simply connected closed subset of the plane.

Diagrams and words over a free group: van Kampen procedure. To associate
a diagram to a word in the free group F' is simple. Any word w in F' can be
written in the form w = u~tsu, where s is a cyclically reduced word. In par-
ticular, any product w = wy ... w, can be written as a product of conjugates
of the form (3). To build a diagram for w, one starts with representing the
product w as a 2-dimensional complex as illustrated in Fig. 2: each conjugate
w; is represented by a path labelled u; followed by a disc associated to the
reduced word r;. A basepoint vy is common to all 2-dimensional complexes
associated to the conjugates and the order of the conjugates of the product
is respected.

The boundary of the 2-dimensional complex (as illustrated in Fig 1) reads
as w. To see this, one starts at the basepoint vy, reads first u; then goes
around the disc and reads 71, and finally goes back to vy by reading uj’.
Once one arrives to vy again, then will continue by reading the following
path us, and so on until no more paths are to be read.

If w is reduced, we have obtained the desired diagram. If not, we reduce
the label w of P by sewing-up subpaths xy of P which are products of two
consecutive oriented edges whose labels are inverses of each other. This
process needs to be iterated until no more sewing can be performed. At



Figure 3: Top: step of sewing-up; bottom: cancellation of a sphere in a
diagram.

b b b b

Figure 4: Diagram showing that the words " = ca are trivial, for n > 1, in
the group {a,b,c | ac = 1,ab = a}.

some step of this process it might happen that a 2-sphere could be formed,
i.e. a disc whose boundary is of the form ss~! or s !s, for some word s. In this
situation, the 2-sphere should be discarded, together with the superfluous tail
that might connect the sphere and the rest of the diagram. The outcome of
the process is a diagram whose boundary path F, has label wy. An example
of a sewing-up and of the cancellation of a sphere are given in Fig. 3.
Before we continue, let us mention that a 2-sphere is an higher dimen-
sional object that does not contribute any 1-dimensional information (i.e. it
does not carry any 1-boundary) and for this reason it can be discharged.

Ezample. Consider the finitely presented group {a,b,c | ac = 1,ab = a}.
The disc in Fig.4 shows that the words b = ca are trivial, for n > 1.
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Figure 5: The van Kampen’s procedure is applied to the three relations
r1, 19,73 and results in a disc with boundary aa.

Diagrams and words over a finitely presented group G. The process explained
for the free group F' can be used for finitely presented groups G =< X, R >.
In this case, one considers a word w in G that can be written as in (3). Then,
one builds the diagram of the product as in Fig. 2 by considering discs with
boundaries r;’s together with their tails as before (notice that r; is a relator
in R and that for a finitely presented group, simple discs are associated only
to relators ;). This multidisc can be reduced by following the steps of the
construction above. van Kampen shows that if the word is trivial, then one
ends-up with a disc which is homeomorphic to a simply connected closed
subset of the plane, i.e. a disc whose boundary is w. On the other hand, he
also shows that any diagram which is a disc with boundary w, implies that
w is trivial.

Ezample. Consider the group G =< X, R > where X = {a,b,c¢} and R =
{ri,ro, 73} with r; = @b, 79 = b ¢ ta and r3 = a'c. In Fig. 5 we show that
the word a? is trivial in G. The first step illustrated in the figure represents
two steps of the procedure: one cancels two edges labelled b which belong
to two distinct discs, and the other cancels two edges labelled a in a similar
manner. The second step in the picture, identifies consecutive edges labelled
c lying along the boundary. The resulting diagram is a disc with boundary
aa, and by van Kampen’s Theorem it follows that the word aa is trivial in

G.

Operations of identification. van Kampen’s procedure does not allow iden-
tifications between non-consecutive edges which belong to the boundary of
the multidisc, or between adjacent vertices which are oriented in the same
way. In particular, the sewing-up and the discard of a sphere, are very special
kinds of cancellation. These restrictions ensure that the only constructible
3-dimensional object is the sphere. Arbitrary combinatorial operations of
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a

Figure 6: The basic pattern that forms a torus after identification of the
edges labelled a and of the edges labelled b.

b

Figure 7: After identification of the edges labelled b and —b in the boundary
of a disc, a disconnection of the boundary takes place.

cancellation would bring into the picture more complicated surfaces, some
embedded in higher dimensional spaces. A classical example is the torus
which results from the identification of opposite sides of the square illus-
trated in Fig. 6. In Fig. 7, cancellation implies the disconnection of the
boundary.

3 Resolution is a 2-dimensional process

The cancellation process for groups resembles the resolution process for pro-
positional formulas described in Section 1. We modify the logical hypothesis
of van Kampen’s construction to capture the geometry of a derivation in
resolution. The purpose is to show that logical proofs are high dimensional
objects, even in the simple case of the resolution calculus. We define a combi-
natorial object, called resolution diagram, associated to a clause p; V...V pg.
It is a 2-dimensional complex whose boundary is a sequence of oriented edges
which starts and ends in a basepoint. Each edge of the boundary is labelled
with a literal p;, and the order of the edges (starting at a basepoint and



following a clockwise direction) follows the presentation of the clause from
right to left. The boundary reads p; - ps - ... - pg.

Notation. To be coherent with the notation used in Section 2, we denote a
negative literal —p with the symbol p—!. Similarly, we talk about composi-
tion of literals instead of disjunction of literals. The interpretation remains
unchanged.

Reduced words and reduced clauses. Similarly to groups, where diagrams are
defined from cyclically reduced relators, we consider resolution proofs where
clauses do not contain the literals p,p~!, for some p. We shall call such
clauses reduced. From a logical point of view, this assumption is not re-
strictive since derivations based on resolution attempt to show that a set of
clauses is contradictory, and reduced clauses are not obviously true. Also,
if a resolution proof Il contains some true clause, then one can transform it
into a resolution proof of smaller size which is free of true clauses. To do
this is easy. Given II, there is a true clause p,p !, ai,...,a, and a clause
p 1 by, ..., b, that resolves the literal p (this is because II is a proof and the
last clause is empty, therefore all literals have to be resolved) by producing
the clause p~',aq,...,a,,b1,...,by. One can eliminate this application of
the resolution rule by directly considering the clause p=t,by,..., b, instead
of p~™tai,...,an, b1,...,by,. Eventually, one should eliminate from the proof
also those steps that resolve the literals aq, ..., a,. By performing this trans-
formation on all true clauses in II, we end-up with the desired proof. Based
on these considerations, we assume that derivations also contain reduced
clauses only.

Basic regions and structural regions. To a starting clause p; V ...V pp we

associate a relation p; - ... pr = 1 called basic relation, and a region with
boundary p; - ... - pg, called basic region. Besides basic relations, we allow
pwpw'p~t =1 (4)

with regions of boundary pwpw=tp~!, where p is a literal and w is a com-
position of literals. These relations come from the tacit assumption that, in
resolution, any disjunction of the form pVwV p is equivalent to pVw, where p
is a literal and w is any disjunction (maybe an empty disjunction) of literals.
There is a second implicit relation that is considered in resolution proofs

pwp twt=1 (5)
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and it corresponds to the fact that any disjunction w V p is equivalent to
pV w. We allow regions associated to this relation as well. The regions for
(4) and (5) are called structural regions.

Symmeltrization. Let R be a set of reduced basic relations and structural
relations of the form (4) and (5). The symbol R* denotes the set of all
distinct cyclic permutations of relations » € R and of their inverses. The set
R* is called symmetrization of R.

Resolution diagrams. A resolution diagram with boundary w is a triple
(M, f,w) where M is a 2-dimensional complex, f is a labelling map, and
w is the boundary path of M which starts and ends in a given basepoint,
such that the following properties are satisfied

1. the space underlying M is homeomorphic to a simply connected closed
subset of the plane;

2. f associates to each edge x in M a positive literal; moreover, f(z~1) =
f(x)~!, for all oriented edges of M;

3. the label of every simple boundary path of a region of M is an element
of R*,

4. the boundary path w starts and ends at the basepoint.

Resolution diagrams and resolution proofs. The construction of a resolution
diagram associated to a resolution proof goes as follows. We start with a
sequence of basic and structural regions which are all connected to a base-
point. Basic regions correspond to the starting clauses of the proof. At each
intermediate stage of the construction, two adjacent discs (possibly consti-
tuted by several regions, and built in some previous step of the construction)
are merged by identifying (parts of) their boundaries. The boundaries of the
discs correspond either to the two clauses which have to be resolved at the
current stage, or to structural rearrangements of the literals in the clause.
The last step of the procedure is applied to two discs with opposite bound-
aries, and the result is a 3-dimensional sphere. As for group cancellation,
we allow the discard of the sphere, and as a result, the resolution diagram
vanishes.

As for group cancellation, we identify two edges in the boundary of the
2-dimensional complex when they are adjacent and directed towards opposite
directions.

11



Figure 8: The structure of a resolution diagram for a proof. The stems with
a disc on their top describe structural relations (4) and (5) which appear
between words s, s7!, for some s. These relations are tacitly applied along
the derivation. The symbol * labels the basepoint.

Theorem 1 Let Il be a resolution proof derived from the set of clauses S.
There is a 2-dimensional complex M, constituted by basic regions from S and
by structural regions connected through a basepoint, which vanishes.

Proof. By induction on the height of the resolution proof, we construct
a 2-dimensional complex M, and a disc D (corresponding to the derivation)
obtained from M by identifying its edges. The boundary of D corresponds
to the clause resulting from the derivation. At the last step of the procedure
the disc vanishes.

For each starting clause p; V...V p, in the resolution proof, we let M
and D be the region with boundary p;y - ... p,.

Suppose that two clauses composed through the resolution rule have the
formp;V...Vp,Vpand -pV g V...V q, By induction they are associated
to two complexes My, My and two discs Dy, Dy. We identify the basepoints
of My, My and call M’ the resulting complex. The boundaries of Dy, Dy are
Pre...pn-pand p~teoqp-...-qs, where the edges labelled p and p~! have the
basepoint in common. We identify p and p~! and we obtain a disc D’ with
boundary p; - ... pp-qr-...-q. fC =pV...Vp, Vg1 V...Vq,is the
resulting clause C” of the resolution proof then we let M to be M’ and D’
to be D (notice that D is obtained from M by identification of edges). If C
in not C” (this possibility is discussed in Section 1), then C"' =7 V...V 1y,
must be identical to C' up to commutation of literals and cancellation of
multiple copies of the p;’s and ¢;’s. Hence, to obtain a disc D with boundary
r1-...- T, we need to use structural regions in the obvious way. That is, for
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any implicit application of the relation pwp = pw (pw = wp) for instance, the
structural region R (associated to pwp = pw) should interact with D’. For
this, we define M to be the complex constructed by identifying the basepoints
of M" and R. We identify D’ and R along the sequence of edges pwp (pw)
in the boundary. If the boundary of D' is spwps’ (spws’), where s, are
words, then we consider the 2-complex R with boundary s'~'p~tw='p~tpws’
instead, and after the identification of the boundaries, we end-up with a disc
D of boundary spws’ (swps’). Several structural relations might have to be
applied to D', and we define accordingly the complex M associated to them.
See Fig. 8.

By repeatedly performing the operation of identification of pairs of literals
p,p~! with the help of structural regions, we construct a complex made out
of two discs with opposite boundaries, i.e. one of them has a boundary p and
the other p~!, for some literal p. We identify the two discs and form a sphere
with no boundary. By discarding the sphere, the diagram vanishes and this
corresponds to the fact that the empty clause is proved.

O

Corollary 2 Let II be a derivation involving at most k distinct literals.
There is a resolution diagram M associated to 11 which is reducible to a
disc D such that |0D| < k. If n is the number of resolution steps in Il then
D has at most 2 - k - n regions.

Proof. The bounds follow directly from the construction in the proof of
Theorem 1.

The clauses in the derivation have length < k. This means that after a
step of resolution, we obtain a disc with boundary length < 2. (k —1). This
means that resolution performs implicitly a reduction of at most k— 1 literals
through tacit identifications. After such identifications, reducing the length
of the clause down to k, one might need to apply commutative operations
to exchange the order of the edges along the boundary. The number of
commutative operations might be reduced to 1 (since identification in II is
done on exactly one literal, which needs to reside either on the left or on
the right of a resolving clause), but in general one might want to apply
commutativity at most £ times.

To conclude, the construction requires at most 2 - £ implicit operations
for each step of resolution, and each operation corresponds to the presence
of a structural region in the resolution diagram associated to the resolution

13



Figure 9: The resolution diagram for the proof displayed in (2). The symbol
x labels the basepoint.

proof. This means that D has at most 2 - k - n regions.
O

Example of a resolution diagram. Fig. 9 illustrates the resolution diagram
associated to the resolution proof (2). In Fig. 10, we reduce the diagram to
a point. In the first step, the discs corresponding to the basic relations ba
and a 'ed are glued together through the cancellation of the literals a, —a.
In the second step we identify d and —d, and apply relation r5 to identify
two occurrences of b along the boundary. The last step illustrated in the
figure represents the identification of ¢, =¢ followed by the identification of
two occurrences of b in the boundary. The resulting multidisc is composed by
two discs with opposite boundary b, b 1. The very last step of the procedure
cancels the literals b, =0 along the boundaries of the discs by forcing the
creation of a 3-sphere with no 1-boundary. The vanishing of the diagram
corresponds to the derivation of the empty clause.

3.1 Resolution proofs as products of words

Given a word p;-...-p, labeling the boundary of some resolution diagram, we
can write down p; -...-p, as a product of conjugates uirilu;l, fori=1...n,
as in (3), where the r;’s are either basic relations or structural relations, and

14



b

Figure 10: The sequence of interactions between discs during the reduction
of the resolution diagram in Fig. 9. For convenience, at each step of identi-
fication, only the relevant discs are illustrated.
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Figure 11: A disc with boundary abedc and combinatorial area 3.

where the u;’s might be non-trivial words only if the corresponding r; is a
structural relation. (See legend of Fig. 8 and proof of Theorem 1.) To do this
is rather straightforward: one reads the boundary of the regions of the disc,
from left to right, starting from the basepoint 1, and makes the free product
of these words. (Notice that these words are conjugates.) For instance, the
diagram in Fig 11 gives the words abe, abcdb'd ‘c™'b~'a=! and e ledbe
associated to its three regions. The free product of the three words (read
from left to right) is the word abedb™'d~'c™*b~ta~tabee™ edbe, which after
simplification is reduced to abcde, i.e. the boundary of the disc.

Theorem 3 (Bounding length) Let D be a resolution diagram homeomor-
phic to a disc with boundary w. The word w is expressed as a free product
of n conjugates of basic and structural relations as in 3, and we can rewrite
the product so that each u; has length at most (|w| + 2k)2™, where k is the
mazimum length of the relators.

Proof. Suppose that w is expressed as a product of conjugates u;ru;?,

for i = 1...n. We have seen above how to do it. To show the statement,
we make use of the dual of a van Kampen diagram whose construction is
described as follows (see top left of Fig. 12). We start by drawing the conju-
gates of relators in clockwise order around a point, each uir;tlui_ ! appearing
as a path (representing u;) terminated by a loop (representing r:='). We call
this a bouquet. Reducing the product of conjugates in the free group means
pairing off adjacent edges with inverse labels. We mark by pairing off with

16



Figure 12: Top left: the construction of the dual of the van Kampen diagram
in Fig. 11. The bouquet of conjugates is drawn with thicker lines. Each arrow
between two nodes represents a literal in the relator. Top right: the outer
circle, the inner circles and the connecting curves represent the dual of the
van Kampen diagram. Bottom: the cutting of the diagram. The point X,
represents the basepoint of the dual diagram.
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edges connecting the midpoints of the edges (dotted lines in the figure). Af-
ter edges can no longer be paired off, the remaining edges spell out w. We
draw w as a circle surrounding the diagram, and pair off the remaining edges
of the bouquet with the edges of w.

We interpret the region between the outer and the inner relator loops
as a disk with holes, and the identifications as edges running between the
various boundary components (top right of Fig. 12). Edges might also join
to make a closed loop, but this corresponds to a total cancellation of the
relators contained in the interior of the loop, so we could have omitted these
terms from the product in the first place.

Observe that, given a dual diagram for w we can reconstruct a product of
conjugates by drawing non-intersecting paths from the basepoint to each of
the holes, and reading off the path labels from the edges intersected, keeping
track of orientation. This concludes the construction of the dual of a van
Kampen diagram.

Let us go back to the proof of our statement (see bottom of Fig. 12). The
basepoint X, of w can be connected to a point of one of the loops in the dual
of D by a path u that crosses at most £ (Jw| + k) edges. To see this, cut the
disc with holes along all edges that begin or end at a loop, and look at the
connected component P containing X,. The only remaining edges are those
running from w to itself, and there are at most 3|w| of them. To connect X
with some hole, we need to cross at most these many edges. Also, we might
need to cross another %k edges to get to a suitable point of the relator.

We now cut the diagram open along the path u, getting a disc with one
fewer holes. The boundary of the new disc is w’ = wurw !, where r is some
relator or its inverse and  has length at most 3 (Jw|+ k). Thus w’ has length
at most 2(|w|+k). Since w' can be written as the product of n—1 conjugates
of relators and w = w'uru=!, the result follows by induction on n.

O

There are many ways to write down a word w as a product of conjugates
based on basic and structural relations. This corresponds to the fact that
there are many discs with boundary w and to the fact that there are many
proofs of the same theorem.

Combinatorial area of a diagram, a word and a sphere. Following the termi-
nology used in combinatorial group theory, we say that a resolution diagram
D has combinatorial area, denoted area(D), n if n is the number of regions
that compose the disc. The disc in Fig 11 has combinatorial area 3, with
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two regions associated to basic relations and one to structural relations. The
combinatorial area of a word w, denoted area(w), is the minimal combina-
torial area of a disc spanning w. If a set of basic relations S allows for the
construction of a resolution diagram that vanishes after the formation of a
sphere, then we say that the combinatorial area of S, denoted area(S), is
the minimal combinatorial area of the spheres that can be built from S (and
possibly from structural relations), where the combinatorial area of a sphere
is the sum of the combinatorial areas of the two discs forming the sphere.

Isoperimetric function. Suppose that S = {5;}5°, is a family of sets of basic
relations S; defined on the literals X;, where |X;| = i1, for all i > 1, such
that each S; allows for the construction of a resolution diagram that vanishes.
The isoperimetric function of S is defined by

o(i) = area(S;) (6)
Thinking the sets S; as being inconsistent sets of clauses, we have that the
isoperimetric function induces a complexity measure on resolution proofs.

Theorem 4 There is a family S = {5;}°, of relations S;, defined on the
literals X;, where | X;| = i°D, for all i > 1, such that each S; allows for a
vanishing resolution diagram. The isoperimetric function of S grows expo-
nentially.

Proof. From Haken’s exponential lower bound for resolution, we know
that the sets of clauses representing the negations of the pigeon-hole principle
-PHP,, for all n > 1, are inconsistent and that the proof of inconsistency
must be of exponential size in n. This means that the resolution discs asso-
ciated to the resolution proofs of PH P, for all n, should have exponential
combinatorial area.

O

4 Bibliographical remarks and others

Resolution calculus. The resolution calculus was introduced by Blake [Bla37].
Building on work of Herbrand [Her71], there was much activity in theorem
proving in the early ‘60 by Prawitz [Pra60], Davis and Putnam [DaPu60],
Gilmore [Gil60], Robinson [Rob65]. A proof of completeness for resolution
can be found in [DaPu60]. The introduction of logic programming, which
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uses resolution as an inference rule, is mainly due to Kowalski [Kow74| and
Colmerauer [Col73].

Lower bounds for resolution. In [Tse68], Tseitin showed a lower bound for
reqular resolution. A sub-exponential lower bound for resolution was shown
by Haken in [Hak85], for the pigeon-hole principle. An exponential lower
bound was found by Urquhart in [Ur87] for Tseitin’s tautologies (see below).
Haken’s lower bound was improved and generalized by Buss and Turan in
[BuT88|] for PHP", i.e. the pigeon-hole principle for m pigeons and n holes.

n2
They show that any resolution proof of PHP, has at least 2%0%) clauses. A
proof of this result can be also found in [Kra95].

Theory of small cancellation. The exposition follows closely the presentation
in [LS77] and [S90]. The reader can find there more information. Diagrams
have been introduced by van Kampen in 1933 [vKa33] even though he did
not make himself much use of them, and other authors did not consider
them until 1966, when they have been rediscovered by Lyndon who used
them to start a geometric study of cancellation in groups [Lyn66]. In these
same years, Weinbaum discovered van Kampen's paper and used diagrams to
prove results in small cancellation theory [Wei66]. van Kampen's diagrams
are, at times, called Dehn’s diagrams.

van Kampen’s Theorem. The intuitive description of the construction of
diagrams from products of conjugates seems to be the only type of proof of
van Kampen’s Theorem present in the literature. A formalized proof would
need to involve too many subcases: diagrams would need to be dismantled,
simplified and reassembled in the course of the construction.

The finitely presented group {a,b,c : a?b = 1,b"'c'a =1,a7'c = 1}
has been considered in [S90]. The proof of Theorem 3 is the same as in
Lemma 2.2.4 pp 42 of [EetAl].

Towards diagram groups? The role of van Kampen diagrams for groups is
similar to the role of semi-group diagrams in the study of semi-groups [LS77].
Recently Guba and Sapir looked at the structure governing operations ap-
plied to semi-group diagrams, monoid pictures, annular diagrams, braided
pictures and cylindric pictures, and developed the theory of diagram groups
[GSa96]. Their approach already inspired the work on proof structures for
LK in [Car99al, and is likely to be relevant in the comprehension of the
2-dimensional processes underlying proof structures of logical systems which
are structurally more complicated than resolution.
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Number of regions in a diagram and size of resolution proofs. Given a word
w, what is the number of relations that one might need to apply to get a
resolution diagram with boundary w? From the proof of Proposition 2, at any
given stage of the procedure one obtains a disc whose boundary has length
at most k. There are 2¥ many such words, and therefore the worse estimate
is exponential in the number of literals. Similarly, given any tautology, the
number of steps needed to prove it is, in the worse case, exponential in the
size of the tautology.

Linking proofs to groups, and other proof systems. This question has been
formulated in [CS97Db] for finitely presented groups based on a finite set of
generators:

Question. Let Ry, ..., R, be a finite set of relations. Suppose that all words
w; of length ¢ which are equivalent to the empty word, have combinatorial
area < (", for some constant C. Are there quantifier-free proofs of the
triviality of the words w;, which are of polynomial-size in 77

Here, we think of quantifier-free proofs as being proofs in a first order
language where no quantifiers are used. No assumptions on the form of the
(finite set of) axioms are made.
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