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Abstract

There is a collection of exogenously given socially-feasible sets, and, for each
one of them, each individual in a group chooses from an individually-feasible
set. The fact that the product of the individually-feasible sets is larger than
the socially-feasible set notwithstanding, there arises no conflict between in-
dividual choices. Assuming that individual preferences are random, I char-
acterize rationalizable collective choices.
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Suppose that a menu of meal choices, say “beef or chicken,” is offered

to the passengers in an airplane. It seems reasonable to assume that each

passenger makes her own choice based only on what she feels like eating,

without giving any consideration as to whether there will be enough of both

choices to attend the demands of all the passengers in the flight. Quite likely,

if all the passengers chose to order the same meal, there would not be enough

to serve all of them.1 However, it is also likely that in many occasions the

choices of the passengers are such that everyone can be served her own choice.

Three features of this situation are important:

1. a group of individuals face a collective choice problem where the deci-

sion corresponds to a vector of multiple dimensions;

2. each individual chooses some of the dimensions of the vector, consid-

ering only an individual feasibility constraint;

3. the set that is collectively feasible is smaller than the Cartesian product

of the individually-feasible sets.

Indeed, as Debreu (1952, p. 886) has pointed out,

“[i]n a wide class of social systems each agent has a range of

actions among which he selects one. His choice is not, however,

entirely free and the actions of all the other agents determine the

subset to which his selection is restricted. . . and each [agent] tries

by choosing his action in his restricting subset to bring about the

best outcome according to his own preferences.”

In the example, suppose that there are I passengers in the plane who

want to eat. Denote by 0 the decision to order beef and by 1 the decision

to order chicken. Then, for each individual the feasible set is {0, 1} and the

collective choice is a vector x = (xi)
I
i=1 ∈ {0, 1}I . However, if the numbers of

meals available are XC of chicken and XB of beef, then the socially-feasible
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set is just {x ∈ {0, 1}I : I −XB ≤
∑

i xi ≤ XC}, which may very well be a

proper subset of {0, 1}I .

If one observes a choice situation like this, and the collective choice is

socially feasible, one can argue at least two explanations. The first one is

that sufficiently many members of the group did actually take into account

the collective constraints and were able to accommodate them by their own

choices. An alternative explanation, however, does not require dropping the

assumption of individual rationality: if individual preferences are such that

the profile of individually-rational choices lies within the feasible set, then no

individual needs to consider the collective constraints when making her own

choice.

This paper considers a situation in which there is a family of collectively-

feasible sets (collective budgets), and in which each individual chooses from

their projections into her own choice set. The paper studies the joint dis-

tribution of random preferences that can explain, via individual rationality,

probabilistic distributions of collective choices over collective budgets. It is

motivated by the observation, by Mathematical Psychologists, that a correct

explanation of human choice has to take into account the random nature

of individual preferences. The problem of collective choice, studied in this

setting, stresses the fact that individual preferences need not be independent.

The results are based on McFadden and Richter (1990), where the fi-

nite, individual random choice problem is characterized. As McFadden and

Richter claim, their result is more general than the application they are

explicit about. I consider the more general case of collective choice over not-

necessarily-finite domains, and impose the assumptions that are necessary

to make this case compatible with the condition derived by them. When

this more general setting is considered, however, an unpleasant feature of

the McFadden-Richter solution makes itself evident: their result requires the

analyst to specify the finite family of (profiles of) preferences that will be

allowed to have a positive probability in the rationalization of the observed
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data. Although this may be acceptable when dealing with finite domains,

when one can use the family of all possible orders, it is quite restrictive in

the infinite case, as it narrows the concept of rationality: the fact that a

data set appears at odds with rationality may be due solely to the family of

preferences allowed, and need not mean that there do not exist families of

preferences (and distributions over them) that are able to explain the data

via rationality. I overcome this difficulty by combining standard revealed

preference theory and the McFadden-Richter condition, so as to weaken the

rationalizability requirement to just the existence of a family of preferences

(controlling only its cardinality) and a probability distribution that are able

to exactly explain the data. I also show that, regardless of the cardinal-

ity allowed, there exist data sets which cannot be explained by individual

rationality under random preferences.

1 Stochastic collective choices

Suppose that there is a finite set of decision makers, denoted by I = {1, . . . , I}.
Each decision maker chooses from an individual choice set: individual i

chooses from the nonempty set Xi. The result of individual choices is a

collective choice; the collective choice set is the Cartesian product of all the

individual choice sets, X = ×i∈IXi.

In individual-choice theory, a budget is a nonempty subset of a choice set.

Here, a collective budget is a nonempty subset of the collective choice set,

B ⊆ X.

Suppose that one observes a nonempty family of collective budgets B.2

Endow each budget B ∈ B with a σ-algebra ΣB, and suppose that a proba-

bility measure γB : ΣB → [0, 1] has been observed for each B.

A stochastic collective choice is {I, (Xi)i∈I ,B, (ΣB, γB)B∈B}. All this

information is assumed to be observed data. For a budget B, the σ-algebra

ΣB is determined by how fine the observation of collective choices is; if C ∈

3



ΣB, then C is measurable at budget B, and γB(C) is understood as the

observed probability that the collective choice made from budget B lies in

C.

Throughout the paper, I maintain the assumption that the following con-

dition holds:

Assumption 1. B is finite, and for each B ∈ B, ΣB is finite.

2 Strong rationalizability

For any set Z ⊆ X, denote by Zi the projection of Z into Xi.

If one assumes that decision makers act noncooperatively, then for each

budget B and each measurable subset C ∈ ΣB, observed probability γB(C)

is understood as the probability that if each player i chooses xi from her

individually-feasible set, Bi, then the collective choice (xi)i∈I lies in C.

Individuals are assumed to care only about their own decisions, so a

preference relation for individual i is a binary relation over Xi. For each

individual i, let Ri = (Ri,1, Ri,2, . . . , Ri,S) be a finite sequence of preference

relations.

Let R be the set that contains the profiles of preferences conformed by

the individual sequences:

R = {(R1,1, . . . , RI,1), . . . , (R1,S, . . . , RI,S)}.

It is convenient that individually-rational choices be uniquely defined for

all observations in the data, and for all the preferences relations under con-

sideration, so the following condition is assumed in this section:

Assumption 2. For every individual i and every s ∈ {1, . . . , S}, relation

Ri,s is a weak order over Xi such that, for every observed budget B ∈ B,

{x ∈ Bi : xRi,sx
′ for all x′ ∈ Bi} is a singleton set.
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Under the previous condition, one can further denote by arg maxBi
Ri,s

the (unique) maximizer of preferences Ri,s, when restricted to Bi.

The concept of collective rationality, for a given family of profile prefer-

ences R, can now be stated:

Definition 1. A stochastic collective choice is R-rationalizable if there

exists a probability measure over the set preferences R, that explains the

observed data via individually-rational, noncooperative choices: there exists

δ : P(R) → [0, 1], a probability measure, such that

δ({R ∈ R : (arg max
Bi

Ri)i∈I ∈ C}) = γB(C),

for every observed budget B ∈ B, and every measurable subset C ∈ ΣB.

Collective rationalizability cannot always be studied by immediate appli-

cation of tools of individual choice theory. To see this, consider the following

example:

Example 1. Suppose that there are two individuals, with choice sets X1 =

X2 = {0, 1}. Suppose that only one collective budget, B = {(0, 1), (1, 0)}, has

been observed (so B = {B}). Let the observed probabilities be γB((0, 1)) =

γB((1, 0)) = 1/2.

If one considers the information available for one individual only, the ob-

servation is that she chooses each available alternative with equal probability,

which can be rationalized by (and only by) assuming that, for her, the two

possible orders over {0, 1} occur with equal probability, 1/2. This individ-

ual analysis, however, does not suffice to explain the collective data: when

collectively choosing from B, the product of individual probabilities would

place probability 1/4 on each of the choices (0, 0) and (1, 1), contradicting

the data.

The following characterization of R-rationalizability is derived from Mc-

Fadden and Richter (1990).3 Define the binary function α : R×
⋃

B∈B({B}×
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ΣB) → {0, 1} as follows:

α(R,B,C) =

{
1, if (arg maxBi

Ri)i∈I ∈ C;

0, otherwise.

Theorem 1. A stochastic collective choice is R-rationalizable if, and only

if, for every finite sequence of pairs of (observed) budgets and associated

measurable subsets, (Bk, Ck)
K
k=1 such that Ck ∈ ΣBk

for all k, there exists a

postulated profile of preferences, R ∈ R, such that

K∑
k=1

γBk
(Ck) ≤

K∑
k=1

α(R,Bk, Ck).

Proof. Define the ternary relation Γ on the set R×B×
⋃

B∈B ΣB as follows:

say that Γ(R,B,C) if, and only if, C ∈ ΣB and (arg maxBi
Ri)i∈I ∈ C. By

construction, Γ(R,B,C) implies C ∈ ΣB and ¬Γ(R,B,B \ C). Also, the

collective choice is R-rationalizable if, and only if, there exists a probability

measure δ : P(R) → [0, 1] such that γB(C) = δ({R ∈ R : Γ(R,B,C)}) for all

B ∈ B and all C ∈ ΣB. And, by construction, α(R,B,C) = 1 if, and only if,

Γ(R,B,C). Although the choice sets Xi need not be finite, since B is finite

and each ΣB is finite, it then follows from McFadden and Richter (1990),

theorem 2 and footnote 30, that the collective choice is R-rationalizable if,

and only if, for every finite sequence (Bk, Ck)
K
k=1 in

⋃
B∈B({B} × ΣB), it is

true that
∑K

k=1 γBk
(Ck) ≤ maxR∈R

∑K
k=1 α(R,Bk, Ck).

The condition of this theorem is what McFadden and Richter have called

the “Axiom of Revealed Stochastic Preference.” Its intuition is that events

that are likely to happen should happen often. That is, consider the sit-

uation ‘for each k, if each individual chooses from Bi,k, then, collectively,

they choose an element of Ck,’ and suppose that such situation is ‘highly

likely,’ in the sense that the left-hand side of the condition of the theorem,∑
k γBk

(Ck) is ‘high;’ then, it should also be true that for at least one of

6



the preferences profiles, it happens that from ‘many’ of the budgets Bk, the

group would choose an element of Ck, which would make the right-hand side

of the condition ‘high’ as well.

For the case of individual choice problems over not-necessarily-finite choice

sets, Clark (1996) has shown that rationalizability is equivalent to DeFinetti’s

Coherence Axiom of Probability, and that this axiom is equivalent to the

Axiom of Revealed Stochastic Preference. In the finite case, an alterna-

tive characterization of rationalizability at the individual level was given by

Falmagne (1978), and refined by Barberá and Pattanaik (1996). McFadden

(2005) formalizes the equivalence between the latter condition and the Axiom

of Revealed Stochastic Preference.

3 Weak rationalizability

The previous section assumed that a finite family of individual preference

relations, and the way in which they form profiles of preferences, were given.

Suppose now that one only knows a nonempty, finite set of states of the

world, Ω, and that for each i ∈ I, one only fixes a class Ri of binary relations

over Xi. Here, I consider only the families defined by the following condition:

Assumption 3. For every i ∈ I, Ri is the family of all weak orders, Ri,

over the choice set Xi, such that for each observed budget B ∈ B, {x ∈ Bi :

xRix
′ for all x′ ∈ Bi} is a singleton set.

Weak rationalizability is obtained if one can assign to each state of the

world a profile of preferences and a probability which are able to explain the

observed probabilities via pure individual rationality:

Definition 2. A stochastic collective choice is Ω-rationalizable if there

exist a probability measure over the set of states of the world, and an assign-

ment of preferences to states of the world that explain the observed data via
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individually-rationality: there exist δ : P(Ω) → [0, 1], a probability measure,

and R : Ω → ×i∈IRi such that

δ({ω ∈ Ω : (arg max
Bi

Ri(ω))i∈I ∈ C}) = γB(C),

for every observed budget B ∈ B and every measurable subset C ∈ ΣB.

The following theorem is the characterization, analogous to theorem 1,

for this weaker definition of rationalizability. For every set Z ⊆ X, let

1Z : X → {0, 1} denote its indicator function.

Theorem 2. A stochastic collective choice is Ω-rationalizable if, and only

if, there exist individually-feasible choices, xi,B,ω ∈ Bi, for every individual

i ∈ I, every budget B ∈ B and every state of nature ω ∈ Ω, such that for

every finite sequence of pairs of observed budgets and associated measurable

subsets, (Bk, Ck)
K
k=1 such that Ck ∈ ΣBk

for all k, it is true that:

1. For every individual and every state, the Congruence Axiom is satisfied:

for every i ∈ I and every ω ∈ Ω, if xi,Bk+1,ω ∈ Bi,k for every k ≤ K−1,

then either xi,BK ,ω = xi,B1,ω or xi,B1,ω /∈ Bi,K.

2. There exists some state of the world ω ∈ Ω such that

K∑
k=1

γBk
(Ck) ≤

K∑
k=1

1Ck
((xi,Bk,ω)i∈I).

Proof. Suppose that a choice is Ω-rationalized by the probability measure

δ : P(Ω) → [0, 1] and the function R : Ω → ×i∈IRi. Define, for each i,

each B and each ω, xi,B,ω = arg maxBi
Ri(ω). By construction, xi,B,ω ∈ Bi.

Since the (deterministic) individual choice (xi,B,ω, Bi)B∈B is regular-rational,

it follows from Richter (1966), theorem 1, that it must satisfy condition 1 of

the theorem. Moreover, let R = R(Ω) and define δ̃ = P(R) → [0, 1];Q 7→
δ(R−1(Q)). Function δ̃ is a probability measure over R, and satisfies that
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δ̃({R ∈ R : (arg maxBi
Ri)i∈I ∈ C}) = γB(C), for all B ∈ B and all C ∈ ΣB.

The latter means that function δ̃ R-rationalizes the collective choice. Since,

by construction, R is finite, it follows from theorem 1 that for every finite

sequence (Bk, Ck)
K
k=1 defined in

⋃
B∈B({B} × ΣB), there exists some R̃ ∈ R

such that
K∑

k=1

γBk
(Ck) ≤

K∑
k=1

α(R̃, Bk, Ck).

Let ω ∈ R−1(R̃) and notice that α(R(ω), B, C) = 1 is true if, and only if,

1C((xi,B,ω)i∈I) = 1, which proves condition 2.

For sufficiency, first fix an individual, i, and a state of the world, ω. Since

(xi,B,ω, Bi)B∈B satisfies the condition 1 of the theorem, it follows from Richter

(1966), theorem 1, that there exists Ri,ω ∈ Ri such that for all B ∈ B, it

is true that arg maxBi
Ri,ω = xi,B,ω. Now, define R = {(Ri,ω)i∈I : ω ∈ Ω}.

Take a finite sequence (Bk, Ck)
K
k=1 defined in

⋃
B∈B({B}×ΣB). By condition

2, there exists a state ω ∈ Ω such that

K∑
k=1

γBk
(Ck) ≤

K∑
k=1

1Ck
((xi,Bk,ω)i∈I) =

K∑
k=1

α((Ri,ω)i∈I , Bk, Ck).

Since R is finite, the latter implies, by theorem 1, that there exists a prob-

ability measure δ̃ : P(R) → [0, 1] that R-rationalizes the collective choice.

Define the functions R : Ω → ×i∈IRi; ω 7→ (Ri,ω)i∈I , and δ : P(Ω) →
[0, 1]; Φ 7→ δ̃({(Ri,ω)i∈I ∈ R : ω ∈ Φ}). Function δ is a probability measure

over Ω. Also, for any B ∈ B and any C ∈ ΣB,

δ({ω ∈ Ω : (arg max
Bi

Ri(ω))i∈I ∈ C}) = δ̃({R ∈ R : (arg max
Bi

Ri)i∈I ∈ C})

= γB(C),

so functions δ and R Ω-rationalize the collective choice.
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4 Nonrationalizable data sets

The previous subsections characterize stochastic, collective rationalizability.

I now show examples of collective choices that are not weakly (and therefore

not strongly) rationalizable.

4.1 Regularity

Consider the following data:

Example 2. There are two individuals, I = {1, 2}. Suppose that their choice

sets are X1 = X2 = {1, 2, 3, 4, 5}, and let there be two observed collective bud-

gets, B = {B̂, B̃}, where B̂ = {1, 2}×X2 and B̃ = {1, 2, 3, 4}×X2. Suppose

that the measurable subsets include {(1, 1), (1, 2)} ∈ ΣB̂, {(1, 3), (1, 4), (1, 5)} ∈
ΣB̂, {1} ×X2 ∈ ΣB̃, and the observed probabilities are γB̂({(1, 1), (1, 2)}) =

1/6, γB̂({(1, 3), (1, 4), (1, 5)}) = 1/6, and γB̃({1} ×X2) = 1/2.

These data are not Ω-rationalizable, for any Ω, since rationalizability

would require functions δ and R such that

1/3 = γB̂({(1, 1), (1, 2)}) + γB̂({(1, 3), (1, 4), (1, 5)})

= δ({ω ∈ Ω : (arg max
B̂i

Ri(ω))i∈I ∈ {(1, 1), (1, 2)}})

+δ({ω ∈ Ω : (arg max
B̂i

Ri(ω))i∈I ∈ {(1, 3), (1, 4), (1, 5)}})

= δ({ω ∈ Ω : (arg max
B̂i

Ri(ω))i∈I ∈ {1} ×X2})

= δ({ω ∈ Ω : arg max
{1,2}

R1(ω) = 1})

≥ δ({ω ∈ Ω : arg max
{1,2,3,4}

R1(ω) = 1})

= δ({ω ∈ Ω : (arg max
B̃i

Ri(ω))i∈I ∈ {1} ×X2})

= γB̃({1} ×X2)

= 1/2.
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Indeed, the way in which the collective budgets is given here implies that

the restrictions of individual stochastic choice theory apply, and the example

violates the Regularity Principle of Block and Marshak (1960).

4.2 Co-variation

By its construction, the previous example did not exploit any co-variation in

individual preferences. Consider now the following data:

Example 3. There are two individuals, I = {1, 2}. Suppose that the choice

sets are X1 = {1, 2, 3, 4, 5} and X2 = [1, 5], and let there be two collective

budgets, so B = {B̂, B̃}, where

B̂ = ({1} × [1, 5]) ∪ ({2} × [1, 4]) ∪ ({3} × [1, 3]) ∪ ({4} × [1, 2]) ∪ {(5, 1)}

B̃ = {(1, 5)} ∪ ({2} × [4, 5]) ∪ ({3} × [3, 5]) ∪ ({4} × [2, 5]) ∪ ({5} × [1, 5]).

Define Ĉ = ({1} × [4, 5]) ∪ {(2, 4)} and C̃ = X1 × {5}, and suppose that

these sets are measurable: Ĉ ∈ ΣB̂ and C̃ ∈ ΣB̃. Finally, suppose that the

observed probabilities are γB̂(Ĉ) = 1/3 and γB̃(C̃) = 1/2.

Since B̂1 = B̃1 = X1 and B̂2 = B̃2 = X2, if functions δ and R Ω-

rationalize the data for some Ω, then, for every observed budget, B, and

every state of the world with positive probability, ω ∈ Ω such that δ(ω) > 0,

it must be true that

arg max
B1

R1(ω) + arg max
B2

R2(ω) = 6.
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But this implies that

1/3 = γB̂(Ĉ)

= δ({ω ∈ Ω : (arg max
Xi

Ri(ω))i∈I ∈ {(2, 4), (1, 5)}})

≥ δ({ω ∈ Ω : (arg max
Xi

Ri(ω))i∈I = (1, 5)})

= γB̃(C̃)

= 1/2.

This shows that these data are not weakly rationalizable and, therefore,

cannot be strongly rationalized. This example illustrates the need for co-

variation in the joint distribution of individual preferences, which was also

observed in example 1. Example 1, however, was collectively rationalizable,

while example 3 is not individually rationalizable. An example of data that

are individually rationalizable, but not collectively rationalizable is given

next:

Example 4. As before, there are two individuals, I = {1, 2}. Their choice

sets are X1 = X2 = {0, 1, 2}, and two collective budgets are observed,

B̂ = {(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 0)},

and

B̃ = {(0, 0), (1, 0), (1, 1), (2, 1), (2, 2), (0, 2)},

so B = {B̂, B̃}. There is perfect measurability, and observed probabilities are

γB̂({x}) = 1/6 for all x ∈ B̂, and γB̃({x}) = 1/6 for all x ∈ B̃.

These individual choices can be Ω-rationalized for any Ω with at least

three states of nature. To see this, suppose that one wants to explain the

behavior of individual i only. Since B̂i = B̃i = Xi, one only needs to con-

centrate on the (common) marginal distribution of observed choices over the
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whole choice set:

γi({0}) = γi({1}) = γi({2}) = 1/3.

Let Ωi = {1, 2, 3}, let δi be the uniform probability measure over Ωi, and

define the following (individual) strict preference assignment: Ri(1) orders

Xi as 0 � 1 � 2, Ri(2) as 1 � 2 � 0, and Ri(3) as 2 � 0 � 1. Then, for

every x ∈ Xi,

δi({ω ∈ Ωi : arg max
Xi

Ri(ω) = x}) =
1

3
= γi({x}).

Collective Ω-rationalizability, however, is impossible regardless of Ω, for if

functions δ and R Ω-rationalize the data for some Ω, then

1/6 = γB̂({(0, 1)})

= δ({ω ∈ Ω : (arg max
B̂i

Ri(ω))2
i=1 = (0, 1)}

= δ({ω ∈ Ω : (arg max
Xi

Ri(ω))2
i=1 = (0, 1)}

= δ({ω ∈ Ω : (arg max
B̃i

Ri(ω))2
i=1 = (0, 1)}

≤ δ({ω ∈ Ω : (arg max
B̃i

Ri(ω))2
i=1 /∈ B̂}

= 1− δ({ω ∈ Ω : (arg max
B̃i

Ri(ω))2
i=1 ∈ B̂}

= 1− γB̃(B̃)

= 0.

4.3 Consumers

In economics, a prominent decision problem is the choice of consumption

bundles, at exogenous prices, under a budget constraint. For the individual

demand problem under random preferences, Bandyopadhyay et Al. (1999)

extend the weak axiom of revealed preference. Earlier, Hildenbrand (1971)
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derived properties on the expected demand of an individual consumer with

random preferences, and, for collective problems, obtained asymptotic prop-

erties as the number of consumers increases, under independence assump-

tions. Here, I apply the results above to the case of consumers, and illustrate

the importance of preference co-variation.

Suppose that there are a finite number, L, of consumption goods, so

Xi = RL
+ for each individual i. Prices, p, are vectors of L positive numbers,

one price for each commodity. Individual i is endowed with a bundle of

commodities, ei, which, for simplicity, is assumed to contain positive amounts

of all commodities. Individual preferences are restricted to Ri = R, the

class of all relations representable by continuous, strictly monotone, strongly

quasiconcave utility functions.

There is finite a set of data, D ⊆ RL
++ × (RL

++)I , of prices, p, and pro-

files of individual endowments of commodities, e = (ei)i∈I . Individuals face

constraints in the usual form of individual budgets: given (p, e) ∈ D, each in-

dividual i chooses from the standard budget B(p, ei) = {x ∈ RL
+ : p·x ≤ p·ei}.

Social feasibility, however, must take into account the aggregate endowment

of commodities: given (p, e), the collective constraint is

B(p, e) =

{
(xi)i∈I ∈ ×i∈IB(p, ei) :

∑
i∈I

xi =
∑
i∈I

ei

}
.

For each (p, e) ∈ D, B(p, e) is endowed with a finite σ-algebra, Σp,e, and

a probability measure γp,e : Σp,e → [0, 1] is assumed to have been observed.

Suppose that Σp,e = Σp′,e′ and γp,e = γp′,e′ , whenever B(p, e) = B(p′, e′).

A stochastic collective demand is {I, D, (Σp,e, γp,e)(p,e)∈D}. It is Ω-

rationalizable if there exist a probability measure δ over Ω, and an assignment

of preferences to states of the world, R, that explain the observed data via

individually-rationality: for every observed collective budget (p, e) ∈ D, and
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every measurable subset C ∈ Σp,e,

δ({ω ∈ Ω : (arg max
B(p,ei)

Ri(ω))i∈I ∈ C}) = γp,e(C).

Since, in this case, individual budgets may be larger than the projection

of the collective budgets, theorem 2 does not apply immediately.

Theorem 3. A stochastic collective demand is Ω-rationalizable if, and only

if, there exist individual state-contingent demands, xi,(p,e),ω, and real numbers

λi,(p,e),ω > 0 and Vi,(p,e),ω, for each individual i, each observation (p, e) ∈ D,

and each state ω ∈ Ω, such that:

1. For every state of the world, aggregate feasibility is observed: for all

(p, e) ∈ D and all ω ∈ Ω, it is true that
∑

i∈I xi,(p,e),ω =
∑

i∈I ei.

2. For each individual and each state of the world, Walras’s law and Afriat

inequalities are satisfied: for all i ∈ I and all ω ∈ Ω, it is true that, for

all (p, e), (p′, e′) ∈ D, p · xi,(p,e),ω = p · ei and

Vi,(p′,e′),ω ≥ Vi,(p,e),ω + λi,(p,e),ωp · (xi,(p′,e′),ω − xi,(p,e),ω),

with strict inequality if xi,(p,e),ω 6= xi,(p′,e′),ω.

3. For every finite sequence of observed data and measurable sets, ((pk, ek), Ck)
K
k=1

such that Ck ∈ Σpk,ek
at all k, there exists a state of the world ω ∈ Ω

such that
K∑

k=1

γpk,ek
(Ck) ≤

K∑
k=1

1Ck
((xi,(pk,ek),ω)i∈I).

Proof. The argument is similar to the one given for theorem 2, invoking

Matzkin and Richter (1991), theorem 2, instead of Richter (1966).

Now, consider the following data:

15



Example 5. There are two consumers, I = {1, 2}, and two commodi-

ties, L = 2. There are two observations of prices and endowments: D =

{(p̃, ẽ), (p̂, ê)}, where p̃ = (1, 2), ẽ1 = (1, 2), ẽ2 = (5/3, 2/3), p̂ = (2, 1),

ê1 = (2, 1), and ê2 = (2/3, 5/3). Define the set Ĉ as

{(x1, x2) ∈ R4
+ : x1,1+2x1,2 ∈ [4.5, 5.5], 2x1,1+x1,2 = 5, and x1+x2 = (8/3, 8/3))}

and let C̃ = {((5/3, 5/3), (1, 1))}.4 Suppose further that these sets are mea-

surable, so that Ĉ ∈ Σp̂,ê and C̃ ∈ Σp̃,ẽ,
5 and assume that the observed

probabilities are γp̂,ê(Ĉ) = 1/3 and γp̃,ẽ(C̃) = 1/2.

Suppose that for some set Ω of states of nature, the data is Ω-rationalized

by the probability measure δ over Ω, and the preference assignment function

R, which maps into R2. Fix any state ω̄ with positive probability, and such

that

(arg max
B(p̃,ẽi)

Ri(ω̄))2
i=1 ∈ C̃,

and denote x̃i = arg maxB(p̃,ẽi) Ri(ω̄) and x̂i = arg maxB(p̂,êi) Ri(ω̄), for each

i. Since each Ri(ω̄) ∈ R, it follows from the Weak Axiom of Revealed

Preferences that x̂i,2 ≥ x̃i,2 for both individuals. But since x̃1,2 + x̃2,2 =

8/3 = ê1,2 + ê2,2, it follows that x̂i,2 = x̃i,2, and then, by Walras’s law, that

x̂i = x̃i for both individuals. Then,

(x̂i)
2
i=1 = (arg max

B(p̂,êi)
Ri(ω̄))2

i=1 ∈ Ĉ.
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The latter implies that

1/2 = γp̃,ẽ(C̃)

= δ({ω ∈ Ω : (arg max
B(p̃,ẽi)

Ri(ω))2
i=1 ∈ C̃})

≤ δ({ω ∈ Ω : (arg max
B(p̂,êi)

Ri(ω))2
i=1 ∈ Ĉ})

= γp̂,ê(Ĉ)

= 1/3,

an obvious contradiction.

5 Concluding remarks:

This paper studied situations in which individuals choose from their own

choice sets, subject only to their own constraints, and no conflict arises in

spite of the fact that the set of socially feasible choices may be smaller than

the product of the individually feasible sets. For this to occur, individual

preferences cannot be distributed across individuals in an arbitrary man-

ner. The problem is simple when only one collective choice situation is faced

or when individual preferences are assumed to be invariant. A more inter-

esting situation arises when there is a sequence of exogenously given social

constraints and individual preferences are allowed to change randomly. In

this case, if one has observed probabilistic distributions of collective choices

over the socially feasible sets, one can only maintain the hypothesis of indi-

vidual rationality under the assumption that preferences, however random,

are not independent across individuals. The alternative would be to assume

that some individuals take into account social feasibility, which amounts to

dropping the usual assumption of individual rationality.

Collective choices are characterized in terms of the way in which indi-

vidual preferences must co-vary in order to explain observed distributions
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of choices via individual rationality. Two definitions of rationalizability were

considered. The first one assumed that one is given the profiles of preferences

that are allowed in the rationalization, and the problem reduces to assigning

probabilities to those profiles. The main result here is that a condition defined

by McFadden and Richter (1990), called the Axiom of Revealed Stochastic

Preferences, characterizes rationalizability. This definition, however, appears

to be too strong in the sense that lack of rationalizability may be due to the

set of profiles of preferences and not to the observed stochastic choice. This

leads to the second, weaker definition of rationalizability, in which one is

given a set of states of the world, and the problem requires assigning to each

one of them a profile of preferences, within certain classes, and a probability.

Rationalizability in this case is characterized by a combination of the Axiom

of Stochastic Revealed Preferences and several instances of the Congruence

Axiom (or the Strong Axiom of Revealed Preferences) – as many as there

are states of the world. It is finally shown that there exist collective choices

that cannot be rationalized in either sense.

In terms of the introductory example, consider the case of an airline that

wants to test the hypothesis that its passengers on some particular route

are systematically rationed in their meal choices. Suppose that the airline

offers any two of a finite set of meal alternatives, and suppose, for simplicity,

that the number of passengers on this route is always the same I, and all of

them always eat.6 Suppose that, over a long number of flights, the airline

has estimated the probabilities of different feasible meal allocations, for ev-

ery possible combination of alternatives.7 Fix a set of demographic profiles

of passengers for this flight. The airline wants to test whether there exist

a probabilistic distribution over demographic profiles and an assignment of

preferences to demographic profiles such that all the observed distributions

of meal servings are explained by the theoretical probabilities.8 Theorem 2

provides a (strongest) test for this hypothesis: the hypothesis is not rejected

if, and only if, one can define a feasible allocation for every possible menu
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and every demographic profile, such that: (i) for every seat on the airplane,

and for every demographic profile, the postulated choice is rationalizable

using standard revealed preference arguments across menus; and (ii) along

any finite sequence of menus and feasible allocations, observed probabilities

should accumulate no more rapidly than the number of times that the allo-

cation given by the sequence coincides with the postulated allocation, for at

least one demographic profile.9
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Notes

1In fact, the in-flight menu of Cathay Pacific for June 2006 states that they “apologize
if, due to previous passenger selection, [the choice of a passenger] is not available.”

2For any set Z, denote by P(Z) its power set. Then, B ⊆ P(X) \ {∅}.
3If, for all observed budgets B ∈ B, it is true that B = ×i∈IBi, and if all the binary

relations Ri,s are representable, then theorem 1 follows directly from Theorem 2 in Mc-
Fadden and Richter (1990), since maximizing individual relations over individual domains
is then equivalent to maximizing their sum over the Cartesian product of those domains.

4In the case of two subindexes, the first denotes the consumer and the second the
commodity.

5By construction, Ĉ ⊆ B(p̂, ê) and C̃ ⊆ B(p̃, ẽ).
6I am not assuming that it is always the same people in the flight, as will be clear below.

Suppose that the number of passengers is I, and denote by X the set of meal alternatives
used by the airline. Suppose that for any (x̃, x̂) ∈ X 2, x̃ 6= x̂, the airline prepares Kx̃,x̂(x̃)
servings of meal x̃, and Kx̃,x̂(x̂) of meal x̂, satisfying that Kx̃,x̂(x̃) + Kx̃,x̂(x̂) ≥ I. For
consistency, Kx̃,x̂(x̂) = Kx̂,x̃(x̃).

7For each (x̃, x̂) ∈ X 2, and for each x ∈ {x̃, x̂}I such that ‖{i ∈ I : xi = x̃}‖ ≤ Kx̃,x̂(x̃)
and ‖{i ∈ I : xi = x̂}‖ ≤ Kx̃,x̂(x̂), the observed probability of allocation x of meals is
γx̃,x̂(x), when the menu (x̃, x̂) is available.

8Enumerate the seats on the airplane 1, . . . , I. Let Ω be a set of demographic profiles
of passengers for this flight. Let R be the set of orders over X . The hypothesis is that
there exist functions δ : P(Ω) → [0, 1] and R : Ω → RI such that, for all pairs of meals x̃

and x̂, δ({ω ∈ Ω : (arg max{x̃,x̂} Ri(ω))i∈I = x}) = γx̃,x̂(x).
9There must exist x(x̃,x̂),ω ∈ {x̃, x̂}I , feasible, for every menu (x̃, x̂) and every demo-

graphic profile ω, such that for every finite sequence (x̃k, x̂k, xk)K
k=1, such that xk and is

feasible for menu (x̃, x̂), one has that: (i) for every seat i and every demographic profile
ω, if xi,(x̃k,x̂k),ω ∈ {x̃k−1, x̂k−1} for every k ≤ K − 1, then either xi,(x̃K ,x̂K),ω = xi,(x̃1,x̂1),ω

or xi,(x̃1,x̂1),ω /∈ {x̃K , x̂K}; and (ii) there exists some demographic profile ω such that∑K
k=1 γ(x̃k,x̂k)(xk) ≤

∑K
k=1 1{xk}((x(x̃k,x̂k)},ω).
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