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JOHN VON NEUMANN'S ‘IMPOSSIBILITY PROOF’ 

IN A HISTORICAL PERSPECTIVE 

 

 

ABSTRACT 

 

John von Neumann's proof that quantum mechanics is logically incompatible with 

hidden varibales has been the object of extensive study both by physicists and by 

historians. The latter have concentrated mainly on the way the proof was interpreted, 

accepted and rejected between 1932, when it was published, and 1966, when J.S. Bell 

published the first explicit identification of the mistake it involved. What is proposed 

in this paper is an investigation into the origins of the proof rather than the aftermath. 

In the first section, a brief overview of the his personal life and his proof is given to 

set the scene. There follows a discussion on the merits of using here the historical 

method employed elsewhere by Andrew Warwick. It will be argued that a study of the 

origins of von Neumann's proof shows how there is an interaction between the 

following factors: the broad issues within a specific culture, the learning process of 

the theoretical physicist concerned, and the conceptual techniques available. In our 

case, the ‘conceptual technology’ employed by von Neumann is identified as the 

method of axiomatisation. 

 

 

1. INTRODUCTION 

 

 A full biography of John von Neumann is not yet available. Moreover, it 

seems that there is a lack of extended historical work on the origin of his contributions 

to quantum mechanics. This comes as a surprise when we realise that what was at 

stake, at least on the conceptual level, in his proof that hidden variables are impossible 

in quantum mechanics were major issues in both philosophy and physics: for 

example, the question of the necessity of causality and the question whether quantum 

mechanics is so novel in nature that it is fundamentally different from classical 

physics. In Reichenbach's terminology, a historical study like the one proposed here 
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may focus either on the context of discovery or on the context of justification.1 When 

it comes to von Neumann's proof, the latter context, which includes the historical 

analysis of the repercussions of the ‘impossibility proof’ and the way the physics 

community reacted to it, has been successfully accomplished by Max Jammer.2 It is 

the origin of the proof which will be our focus of attention. In other words, what is 

proposed here is an answer to the following question: given that this ‘impossibility 

proof’, in a sense, turned out to be false about 32 years after its publication, what 

significant factors in its context of discovery would throw light on the way the physics 

community responded to it? 

 

 The first section will offer a brief historical overview of both the man and his 

‘impossibility proof’. Since this poof was presented by von Neumann in the context of 

the intimate relationship between mathematics and physics, it is in our interest to 

employ a historiographic method appropriate for discussing theoretical physics. It will 

be recalled how such a method, especially the one employed by Andrew Warwick, 

can be considered a development of the methods used in discussing experimental 

physics. To arrive at some understanding of what lies at the origin of von Neumann's 

proof, we will therefore be investigating in the first place the question of causality as 

something inherent in the culture at the time. This is classified as a significant broad 

issue influencing the way von Neumann approached the subject. In the second place, 

some attention will be directed towards von Neumann's background: his learning 

process. In the third place, we will identify the theoretical techniques avaibable given 

the previously mentioned factors. An argument will be put forward to show that, in 

working out and publishing his proof, von Neumann was doing physics in a particular 

way dependent upon the mathematical ‘style’ available at the time, namely 

axiomatisation. This technique of axiomatisation can be traced back to the style of 

doing physics in Germany in the 1920's.  
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2.  A BRIEF OVERVIEW OF VON NEUMANN'S PROOF 

 

 

 John von Neumann was the eldest of three boys. He was born on December 

28, 1903, in Budapest Hungary, at that time part of the Austro-Hungarian empire. His 

family was well-to-do, and John was educated privately as a small child. In 1927, 

after spending some time at the University of Göttingen, he became Privatdozent at 

the University of Berlin. He held this position for three years. During this time he 

became well known for his publications in set theory, algebra and Quantum 

Mechanics. This is when he started his two year work on the book which contained 

the ‘impossibility proof’. In 1929, he transferred to the University of Hamburg, and 

the next year, 1930, he accepted a visiting professorship at Princeton University, 

lecturing for part of the academic year and returning to Europe in the summers. This 

is when he married Marietta Kovesi.  

 

 In 1931, he became a permanent professor at Princeton, and the next year he 

published his important book Mathematische Grundlagen der Quantenmechanik.3 

This contains the republishing of previous work in a greatly expanded form, but it was 

here that he devoted some attention to the ‘impossibility proof’, which had not been 

discussed in the previous papers and which was later the subject of much controversy. 

His brilliant contributions to mathematics continued to appear. In 1933, he was 

invited to join the Institute for Advanced Studies as a professor. His personal life at 

this time was marked by the birth of his daughter Marina in 1935, by his divorce in 

1937, and by his remarriage to Klara Dan in 1938. In 1954, he was named by 

presidential appointment as a member of the US Atomic Energy commission, holding 

the chairmanship of the ICBM Committee, but shortly afterwards, his health declined. 

He died in Washington in 1957. 
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 The ‘impossibility proof’ employes the notion of hidden varibales. To 

understand the significance of hidden variables we have to refer to the role of 

statistics in physics. Now, even in classical mechanics, where causality is not 

challenged, statistics can play a significant role. We can see this if we consider a 

system with k degrees of freedom. The state of this system is known exactly if we 

know the 2k numbers that are necessary: the k space co-ordinates q1, .., qk and their k 

time derivatives, or in the place of these, the k momenta. We can then give the value 

of each physical quantity uniquely and with numerical exactness. A statistical method, 

however, can also be applied to such a case, because averaging over gives at least 

some information when we do not have all the data, but, as von Neumann puts it, 

«this is, as it were, a luxury or extra addition.»4 A completely different situation is 

met in quantum mechanics. Here, for k degrees of freedom, the state is described by 

the wave function (q1, .., qk), or in other words by a vector in the Hilbert space. 

Even when  is taken to define the state completely, nevertheless, only statistical 

statements can be made on the values of the physical quantities involved.5 

 

 Now, in classical physics, the notion of reduction has been very useful in 

transforming many statistical relations to the causally connected propositions of 

mechanics. An example of this is the kinetic theory of gases:  pressure and 

temperature can be ‘reduced’ to average values of the independent variables of the 6 × 

1023  molecules in 32 grams of oxygen. This is what, in classical physics, explanation 

by means of the hidden parameters means. A similar procedure may be envisaged for 

quantum mechanics. If we want to explain the non-causal character of the connection 

between  and the values of the physical quantities following the pattern of classical 

mechanics, then we have to say that in reality  does not determine the state exactly. 

If we manage to obtain a hidden variable theory, then in the words of von Neumann, 

this fact would «brand the present form of the theory as provisional, since the 

description of the states would be essentially incomplete.»6 
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 Statistical considerations in quantum mechanics employ the two notions of 

ensemble and dispersion, which must now be briefly discussed to enable a minimal 

understanding of the ‘impossibility proof’. An ensemble is a group of systems. There 

is a difference between a system as such, and a system in a certain state. An example 

of a system is a hydrogen atom: an electron and a proton with the known forces acting 

between them, for which a Hamiltonian function can be written. A state is then 

determined by additional data. In classical mechanics, this is done by the assigning of 

numerical values for position and momentum. In quantum mechanics it is done by 

specifying the wave function (q1, .., q6). If both system and state are known, then the 

theory gives unambiguous directions for answering all questions by calculation. The 

investigation of the physical quantities related to a single object or system, S, is not 

fruitful if doubts exist relative to the simultaneous measurability of several quantities. 

In such cases, it is desirable to observe great statistical ensembles which consist of 

many systems S1, ..., SN (in other words, N models of S, N is large). Such ensembles 

are in general necessary for establishing probability theory as the theory of 

frequencies.  

 

 For ensembles, it is not surprising that a physical quantity R does not have a 

sharp value. This is where the notion of dispersion comes in. The distribution function 

does not consist of a singe value ao, but several values or intervals of values are 

possible: this means that a positive dispersion exists. The question of hidden variables 

arises because we may try to account for the dispersions of the ensembles 

characterised by the wave functions  by claiming that the ensembles are only 

mixtures of several states. This in fact entails that, for the knowledge of the actual 

state, additional data, besides the data of the wave function , would be necessary. 

Everything will then be determined causally and, as in the classical case of, for 

example, gas pressure, the statistics of the homogeneous ensemble would then have 

resulted from the averaging over all the actual states of which it was composed.  
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 Having said something about the main concepts employed by von Neumann, 

we may now turn to the ‘impossibility proof’ itself. Although it will not be possible to 

give an overview of the entire detailed argument, it is very important to indicate its 

general form, which is essentially deductive. Everyone agrees that the proof is based 

on well defined postulates, but since von Neumann did not produce a clear list of 

these postulates, there still seems to be some minor disagreement as to which of his 

propositions should be considered the axioms. According to Jammer, the proof is 

based on the following four:  

 

P1: If a quantity (observable) is represented by the operator R, then a function f of this 

quantity is represented by the operator f(R). 

 

P2: If quantities are represented by the operators R, S, ..., then the sum of these 

quantities is represented by the operator R + S + ..., regardless of whether the 

operators commute or not. 

 

P3: If the quantity R is by nature non-negative, then its expectation value <R> is non-

negative. 

 

P4: If R, S, ..., are arbitrary quantities, and a, b, ..., real numbers, then <aR + bS +...> 

= a<R> + b<S> + ... 

 

Wigner gives five postulates: he includes one between P2 and P3 consisting of the 

claim that the correspondence between Hermitian operators and the observables is one 

to one.7 This disagreement concerning the number of postulates does not concern us 

much because what is important here is to realise that, given this system of axioms, 

von Neumann deduced, in a logically rigorous manner, the conclusion that hidden 

variables are impossible within quantum mechanics.  
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 The form of the argument starts with the statement: 

 

S1:  If there are hidden variables, then no dispersive ensemble is homogeneous. 

 

 To understand this we remind ourselves that an ensemble, which is a group of 

systems, is dispersive if the values of observables are not definite but conceivable 

only within a certain probability distribution. In von Neumann's mathematical 

terminology, an ensemble is dispersion-free if and only if, for all operators R, <R²> – 

<R>² = 0. 

 

 An ensemble is homogeneous if its statistical behaviour is the same as that of 

any of its sub-ensembles. In mathematical terms, for ensemble E whose sub-

ensembles are E1 and E2, 

 

if  <R>E = a<R>E1
 + b<R>E2

  where a>0 and b>0, a + b = 1 

 

then  <R>E  =  <R>E1
 = <R>E2

  

 

Now, statement S1 is the case because if we have dispersion and we have also the 

right hidden variables, then the dispersion is explained by some states, or sub-

ensembles of states, having different values for these variables. This entails that the 

ensemble cannot be such that all of its sub-ensembles are statistically alike. In other 

words, the ensemble will not be homogeneous. 

 

 von Neumann showed that 

(a) every ensemble is dispersive; and 

(b) homogenous ensembles do exist. 

(In fact, von Neumann showed that ordinary quantum mechanics states describe 

homogeneous states.) 
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 Hence, from S1, there can be no hidden variables.8 

 

 This proof, only briefly sketched here, engendered widespread admiration for 

von Neumann's method. Jammer's historical investigations into its aftermath show 

that: «[he] was hailed by his followers and credited even by his opponents as having 

succeeded in bringing the foremost methodological and interpretative problem of 

quantum mechanics down from the realm of speculation into the reach of 

mathematical analysis and empirical decision.»9 von Neumann provided what seemed 

to be a bulwark protecting the Copenhagen Interpretation against the claim that 

determinism could be recovered, and in doing so, he was satisfying the needs of the 

physics community. He legitimised mathematically what the great majority of 

physicists had quite peacefully accepted as the ‘constraint’ of the new very powerful 

theory. It should be remembered that this ‘impossibility proof’ was just one part of a 

book which puts the whole of quantum mechanics on a ‘proper’ mathematical and 

axiomatic base. 

 

 In spite of this initial acceptance, there came a time when serious doubts about 

the validity of the proof started to be publicly expressed. It is interesting to follow up 

this process historically. According to many writers, public recognition that somehow 

von Neumann's formulation cannot have the generality and exhaustiveness which he 

suggests goes back at least to Bohm.10 Belinfante claims that no physicist challenged 

von Neumann's proof before 1952, but in fact, the logical consistency of his postulates 

had been called into question as early as 1935 by George Temple of King's College, 

London, who showed that P1 could lead to serious contradictions.11 Before David 

Bohm, the validity of the proof was also challenged by philosophers: in 1935 by the 

philosopher Grete Hermann, whose criticism was unfortunately largely ignored; in 

1944 by Hans Reichenbach who challenged the proof  on logical grounds.  
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 The first to publicly identify the axiom by which von Neumann's formulation 

violated the elementary principles of any realistic hidden-variables theory was J.S. 

Bell. In 1964, Bell discovered that the proof of the theorem depended on the 

assumption that expectation values are additive — that is to say that the average value 

of a sum of observed quantities is equal to the sum of the averages of the individual 

quantities. This is true in quantum mechanics, but need not be true in some other 

theory.12 

 

     It is still astounding to realise that the proof enjoyed popularity and respect for 

such a long time. Belinfante makes the following reflection: «I have always been 

puzzled how people could have been convinced by von Neumann's arguments that 

hidden variables could not be introduced. The lack of validity of  

<aA + bB> = a<A> + b<B> 

in any decent hidden variables theory would have been obvious to anybody by 

inspection.»13 The fact is that it wasn't. The great upheaval in Europe during the 

Second World War could be one of the reasons. The prominent figures who were 

against the non-causality of quantum mechanics were von Laue, Planck, Schrödinger 

and Einstein. By 1933, political problems in Germany reached dramatic proportions, 

and it seems that no proper physics was done anymore. Von Laue and Planck remain 

in Germany and try to save what they can. Schrödinger goes first to Oxford, then 

Vienna, then Dublin. Einstein never returns from the U.S.A.  

 

 It is interesting to note that an important issue related to hidden variables, 

namely the question about the completeness of quantum mechanics, was being 

discussed during the years just before and just after the publication of von Neumann's 

Mathematical Foundations. This debate on completeness reached its climax with the 

publication of the famous ‘EPR paper’ of 1935. It is a curious historical fact that there 

was a nearly total divorce between the EPR argument and the von Neumann proof. 

The only exception seems to be a paper by W.H. Furry who elaborated the 
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‘impossibility proof’ to be able to apply it to the EPR paradox.14 His conclusion was 

that a real description according to the criteria in the EPR argument was at variance 

with quantum mechanics rather than being an indication of its completeness. One may 

be tempted to say that an explanation of this divorce could be the fact that only two 

references in English to von Neumann's book can be found between 1933 and 1958.15 

It seems unlikely however that physicists during that period did not read German. A 

more plausible explanation is the fact that physicists who had fled Nazi Germany 

were keen on finding a job in a new environment. They were obliged to seek to 

conform to new ways of doing physics. In fact, it is obvious that Einstein and his 

collaborators in the EPR argument were doing physics in a different way: a style 

based on the notion of a thought-experiment rather than on the notion of 

axiomatisation, which was the foundation of von Neumann's approach.16  

 

 

3.  BROAD CULTURAL FACTORS UNDERPINNING THE FORMULATION OF THE PROOF. 

 

 Having given a sketch of the ‘impossibility proof’ and illustrated some 

significant aspects of its aftermath, I will now describe some features of the 

historiographic method employed here. There are a number of important historical 

studies concerning this ‘impossibility proof’, but none treat specifically of its 

origins.17 Our attention will be focused rather on a recent paper by A. Warwick in 

spite of the fact that this treats of a different subject matter. Here we have a valuable 

analysis of how to write the history of theoretical  physics.18 

 

 Andrew Warwick investigates the earliest commentaries of the 1905 Einstein 

paper on special relativity. He considers these commentaries as active 

reinterpretations of the text rather than as responses to a commonly perceived theory 

of relativity. In this way he reaches two conclusions: (a) that the original text (in his 

case the 1905 paper) becomes a much more powerful tool for the comparative study 
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of different traditions in physics; and (b) that the traditions revealed by his analysis do 

not represent ‘national’ styles but different networks of collaboration and competition. 

Now, it is clear that when considering the von Neumann ‘impossibility proof’, we 

have something similar to the case studied by Warwick, because this proof, like 

special relativity, can be traced back to a single author and a single paper, which has 

been read by many. 

 

 The most significant notion in Warwick's paper is that of ‘theoretical 

technology", a notion with which he endeavours to give an account of the history of 

science in its mathematical and theoretical dimension rather than in its experimental 

dimension. This latter dimension had been, and still is, well analysed by historians 

like Shapin and Schaffer who argue that, if experiments are derivative of the 

instruments and techniques possessed by a particular culture at a particular time, then 

knowledge claims based upon those experiments can be related to the broad issues 

within that culture.19 Warwick rightly claims that if the work of mathematical 

physicists, largely considered to be a solitary activity, is characterised in terms of 

abstract theories whose essence can be stated in purely conceptual terms, then an 

unsatisfactory account results. Such a history captures neither the real-time experience 

of learning nor the skill needed to apply these theoretical concepts to practical 

problems. «In short, the history of idealised theories makes no place for the local 

cultural resources that generate and sustain individual theoretical enterprises.»20 This 

explains why Warwick, in formulating a methodology applicable to theoretical 

practice, attempts the same micro-sociological studies that inspired the historical 

investigation of experimental practice: 

 

 I shall employ the term theoretical technology to describe 

pieces of theoretical work that are not constitutive of a general theory, 

but which are used to solve particular problems and which are taken 

for granted by members of a local community...Just as the products of 

experimental work can be seen as cultural artefacts of the instruments 

and skills from which they are constituted, so the products of 
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theoretical work can be viewed as the cultural artefacts of the 

theoretical practices learned and articulated by theoreticians.21 

 

 Andrew Warwick's ideas are an extension of the method employed by Shapin 

and Schaffer. These latter authors presuppose an important interaction occurring 

between the following factors: firstly, broad issues within the culture where a science 

develops, secondly the instruments and techniques, thirdly the experiments 

performed, and fourthly the knowledge claims proposed by the scientists. We may 

therefore assume that the same kind of interaction is at play between the following 

corresponding factors: firstly the broad issues within the specific culture, secondly the 

conceptual techniques available, thirdly the learning process characterised by 

canonical solutions to set problems, and fourthly the final results of the theoretical 

practice in the form of theorems or proofs.  

 

 To identify some important elements of the broad issues in the case of the von 

neumann proof, we have to discuss the nature of presupposed ideas within the 

community of physicists at the time. These ideas are usually never formulated 

explicitly in a rigorous way. However they determine, at least in part, which type of 

mathematics or physics is worth working on. That this factor was operating to some 

extent in the formulation of the ‘impossibility proof’ is attested to by a close friend of 

von Neumann's, Eugene Wigner, who wrote:  

 

 Apparently, even mathematicians are convinced occasionally 

by considerations which they cannot formulate in a rigorous fashion. 

[...] the point [...] is that all schemes of hidden parameters which either 

von Neumann himself, or anyone else whom he knew, could think of 

[...] had some feature which made it unattractive, in fact unreasonable. 

This was, in my opinion, the true reason for his conviction of the 

inadequacy of the theories of hidden variables.»22   

 

 If we attempt to uncover the exact nature of the presupposed features which 

made hidden variables so unattractive, we will be obliged to examine the complicated 
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issue of the role of causality in the mind of scientists in the 1920's and 1930's. The 

classic paper about this is the one by Paul Forman, who endeavours to describe how a 

conversion from determinism to indeterminism was a result of cultural factors in the 

lives of Hermann Weyl and Richard von Mises, both of whom were very well known 

to von Neumann.23 The attitude of von Neumann towards the question of causality is 

not very clear: Trevor Pinch goes to the point of suggesting that his position was self-

contradictory. However, what can be said with a high degree of certainty is that he 

clearly indicated his belief that causality is a matter to be decided upon while 

considering the micro-world rather than while considering macroscopic objects: «That 

macroscopically identical objects exhibit identical behaviour has little to do with 

causality: they are in fact not equal at all, since the co-ordinates which determined the 

states of their atoms almost never coincide exactly, and the macroscopic method of 

observation averages over these co-ordinates (here they are the ‘hidden parameters’). 

[...] The question of causality could only be put to a true test only in the atom, in the 

elementary processes themselves, and here everything in the present state of our 

knowledge militates against it.» Such a manner of writing about the notion of 

causality adds more confirmation to our hypothesis that broad cultural issues, 

consisting of unformulated presuppositions, did play a significant role in the 

‘impossibility proof’. 

 

 

4.  FACTORS INHERENT IN THE LEARNING PROCESS. 

  

 A second broad issue which has a substantial role in the life of any scientist is 

the learning process. David Bloor developed models of theoretical practice that 

characterise theoreticians as skilled artisans rather than as contemplative 

philosophers.24 According to these enculturational models, scientists learn their trade 

not by being taught the logical application of strict theoretical principles (the 

algorithmical model of learning), but by being taught to tackle a range of problems by 
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reference to a number of canonical solutions. The skills that are common to all 

members of a community form a pool of common expertise that lends currency to 

physical theories.  

 

 If we turn to our case of John von Neumann, we discover that a particular way 

of doing mathematics was developing in Hungary around the turn of the century. 

Education became compulsory in Hungary in 1868. Mathematical education in 

particular started to become very popular after the first generation of important 

mathematicians. von Neumann’s teacher, L. Fejér (1880-1959), is described in by M. 

Mikolás as «the most outstanding of the second generation mathematicians who 

studied at or shortly after the turn of the century.»25 Budapest in the period of the two 

decades around the First World War proved to be an exceptionally fertile breeding 

ground for scientific talent. According to von Neumann himself, when asked by his 

student S. Ulam, the explanation of the phenomenon lies in the fact that cultural 

factors were involved in producing a subconscious feeling of extreme insecurity in 

individuals. This motivated scientists to produce the unusual as a means of escaping 

extinction.26  

 

 Following von Neumann as he left Hungary, we are obliged to focus our 

attention on the particular way theoretical research was carried out in German 

universities at the turn of the century. The man most responsible for this was David 

Hilbert (1862-1943), whose influence could be said to have radiated over all Germany 

from the University of Göttingen, where he arrived in 1895. His major mathematical 

accomplishments centred around his desire to axiomatise, a desire which can be 

traced back to his work on the consistency of geometry. The wish to axiomatise 

number theory has even been described as an ‘obsession’ by Hans Freudenthal.27 

Hilbert thus came upon the notion of a formalism, a concept used to designate the task 

of reducing mathematics to a finite operation with an infinite but finitely defined 

group of formulae, the only condition being that the operation be consistent. It is 
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interesting to note that he obtained encouragement for such a project from the 

Academy of Sciences of Berlin University: in 1900 he shared the ‘Steiner Prize’ for 

outstanding previous work in mathematics. In a letter he addressed to the Academy, 

he explicitly mentioned the fact that the prize served as an encouragement to continue 

in his work of treating Mechanics as he had treated Geometry. He described his main 

problem as «das Problem der logisch-mathematischen Behandlung der Axiome der 

Physik.»28 

 

 It seems certain that von Neumann was deeply affected by this project. His 

close friend Wigner attests to this: 

 

 His [von Neumann's] work in mathematics — which was 

always closest to his heart and in which his brilliance could manifest 

itself most decisively — was strongly under the influence of Hilbert's 

axiomatic school. This applies not only to his work in mathematical 

logic, but also to his approach to other problems to which he 

contributed fundamentally.29 

 

In fact, the motivation behind von Neumann's work in set theory can be traced back to 

the fact that Cantor's theory of sets had been greatly affected by the discovery of 

paradoxes. This led the German mathematician Ernst Zermelo (1871-1953) to 

axiomatise set theory, and von Neumann added the so-called ‘axiom of foundation’ to 

eliminate certain extraordinary sets. 

 

 Other indications that Hilbert's axiomatic school had a decisive influence on 

von Neumann are linked to one of ‘Hilbert's problems’ presented originally in a 

lecture delivered before the international congress of mathematicians at Paris 1900. 

The problem of interest to our topic is the sixth one, formulated by Hilbert in the 

following words: «to treat in the same manner, by means of axioms, those physical 

sciences in which mathematics plays an important part.»30 Hilbert attempted to do this 

himself, and in the winter term of 1926-1927, he gave a series of lectures on Quantum 
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Mechanics on these lines. These lectures were prepared in collaboration with two 

assistants: L. Nordheim and J. von Neumann, who was in Göttingen at the time. 

 

 

5. THE CONCEPTUAL TECHNOLOGY BEHIND THE FORMULATION OF THE PROOF 

 

 The broad issues described up to now lead naturally to the conclusion that von 

Neumann's main contribution in his Mathematical Foundations was the application of 

the conceptual technique of axiomatisation which had proved so useful in 

mathematics. According to  Paul Halmos, 

 

 The ‘axiomatic method’ is sometimes mentioned as the secret 

of von Neumann's success. In his hands it was not pedantry but 

perception; he got to the root of the matter by concentrating on the 

basic properties (axioms) from which all else follows. The method, at 

the same time, revealed to him the steps to follow to get from the 

foundations to the applications.31  

 

One may wonder what David Hilbert himself thought of von Neumann's approach. It 

seems plausible that he considered his former colleague's work as the fruit of his own 

previous methodological insights. Wightman writes: «I do not know whether Hilbert 

regarded von Neumann's book as the fulfilment of the axiomatic method applied to 

quantum mechanics, but, viewed from afar, that is the way it looks to me. In fact, in 

may opinion, it is the most important axiomatisation of a physical theory up to this 

time.»32 

 

 This method was not however without its problems; and von Neumann seems 

to have been aware of them. Hilbert himself never felt the same sort of security within 

physics as he felt within mathematics. And this seems to have been known by his 

collaborators. His obituary notice, written by Hermann Weyl in 1944, explicitly refers 

to this point in the following words: 
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The maze of experimental facts which the physicist has to take into 

account is too manifold ... for the axiomatic method to find a firm 

enough foothold. Men like Einstein and Niels Bohr grope their way in 

the dark towards their conceptions of general relativity or atomic 

structure by another type of experience and imagination then those of 

the mathematician, although no doubt mathematics is an essential 

ingredient. Thus Hilbert's vast plans in physics never matured.33 

 

 Even during Hilbert's lifetime, his axiomatic school was not without its 

enemies. The most intransigent adversary to his method was L.E.J. Brouwer, who 

from 1907 onwards held that it is truth rather than consistency that matters in 

mathematics. In the 1920's, Hermann Weyl, one of Hilbert's famous students and 

friend of von Neumann, took Brouwer's side. The calamity came in 1931 when Kurt 

Gödel proved that Hilbert's program was not feasible. How did this affect von 

Neumann? It seems probable that Gödel's ‘other method’ of doing mathematics 

deeply impressed and intrigued von Neumann, who was so attached to being 

absolutely clear in thought or in expression. Halmos testifies that von Neumann 

«knew his own strengths and he admired, perhaps envied, people who had the 

complementary qualities, the flashes of irrational intuition that sometimes change the 

direction of scientific progress.» He continues a little later that von Neumann, 

«admired Gödel and praised him in strong terms.»34  

 

 The ‘impossibility proof’ contains in fact the following words of caution. «The 

only formal theory existing at the present time which orders and summarised our 

experiences in this area in a half-way satisfactory manner, i.e., quantum mechanics, is 

in compelling logical contradiction with causality. Of course it would be an 

exaggeration to maintain that causality has thereby been done away with: quantum 

mechanics has, in its present form, several lacunae, and it may even be that it is false, 

although this latter possibility is highly unlikely, in the face of its startling capacity in 

the qualitative explanation of general problems.»35 One of von Neumann's 

biographers, who knew him personally, Leon van Hove, testifies that «he was 
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conscious of the fact that axiomatisation is a limited process which keeps us within a 

specific theory.»36 This did not prevent him from later criticism like that of 

Belinfante.37  Whatever the outcome of his proof, we may conclude that von 

Neumann, having endorsed the method of axiomatisation, was a typical example of 

German physicists who were interested mainly in deriving physics from first 

principles, who considered phenomenological theories as not to be regarded highly, 

and who were, in effect, mathematicians rather than experimental physicists. 
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