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Abstract

This paper explores two non-standard supermajority rules in the context of
judgment aggregation over multiple logically connected issues. These rules
set the supermajority threshold in a local, context sensitive way—partly as
a function of the input profile of opinions. To motivate the interest of these
rules, I prove two results. First, I characterize each rule in terms of a condi-
tion I call ‘Block Preservation’. Block preservation says that if a majority of
group members accept a judgment set, then so should the group. Second, I
show that one of these rules is, in a precise sense, a judgment aggregation
analogue of a rule for connecting qualitative and quantitative belief that
has been recently defended by Hannes Leitgeb. The structural analogy is
due to the fact that Leitgeb sets thresholds for qualitative beliefs in a local,
context sensitive way—partly as a function of the given credence function.

*Thanks to Branden Fitelson, Davide Grossi, Hannes Leitgeb, Gabriella Pigozzi and Patricia
Rich for comments on earlier versions. Thanks to two reviewers for Erkenntnis for detailed
and insightful reports. Special thanks to Branden Fitelson’s epistemology seminar at Rutgers
where this material was presented in the Fall of 2014 and to the audience at the 2015 Formal
Epistemology Workshop. Thanks also to Christian List for suggesting that I slice out one idea out
of a much more baroque project and turn it into a paper in its own right (this one). The more
baroque paper was delivered at DEON 2012 whose audience I also thank for their feedback.
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Introduction

This paper explores two non-standard supermajority rules in the context of judg-
ment aggregation over multiple logically connected issues.1 Informally, aggre-
gating opinions by a supermajority rule means that a sentence ϕ is accepted in
a group G just in case the proportion of individuals in G that accept ϕ meets or
exceeds a threshold t. The rules I discuss here set the threshold in a very local,
context-sensitive way—partly as a function of the input profile of opinions.

It is well-known that, if t is set absolutely (i.e., independently of features of
the context of the aggregation problem) and is less than 1, there is no guarantee
that the output of a supermajority rule will be consistent.

Example 1: five individuals aggregate their beliefs on atomic sen-
tences A1, ...,A5 and their disjunction A1 ∨ ...∨ A5. Each individual i
believes Ai, and rejects all the other members of {A1, ..., A5}. Addi-
tionally, everyone accepts (A1 ∨ ... ∨ A5). Then, there is unanimous
support for the disjunction and 0.8 support against each disjunct.

In Example 1, every supermajority rule with t ≤ 0.8 recommends acceptance of
an inconsistent set of sentences, namely {∼A1, ...,∼A5, (A1∨...∨A5)}. For t > 0.8
(and as long as it is short of 1), a variant of Example 1 involving more than five
atomic sentences establishes a similar point. Example 1 is supermajoritarian
generalization of the doctrinal paradox—the result that the majority rule can
recommend acceptance of inconsistent sets of propositions even if each of the
members of the group is consistent.2

Setting thresholds locally in the way I will suggest offers a way around this
problem. Additionally, I hope to motivate the interest of these rules in two ways.
First, I show (by characterizing each rule) that they have unique properties and
they are immune from objections that apply to less context sensitive supermajor-
ity rules. Second, I show that one of these rules is, in a precise sense, a judgment
aggregation analogue of a rule for connecting qualitative and quantitative belief
that has been recently defended by Leitgeb (2014).

1This work was spearheaded by List and Pettit (2002) but the literature now encompasses
a variety of methods and applications. The key results that set up the present paper are found
in Dietrich and List (2007a,b) and Nehring and Puppe (2007). See Grossi and Pigozzi (2014)
for an updated introduction with an ample reference list: §6.3 of this book—which discusses
Lang et al. (2011, 2012) and Nehring and Pivato (2011)—is especially relevant to the present
discussion.

2Kornhauser and Sager (1986). In some form of other, the doctrinal paradox is discussed
in all of the judgment aggregation references provided here. For important work distinguishing
the doctrinal paradox from the discursive dilemma, see Mongin (2012).

2



1 Setup and Motivation

The following is a familiar formal framework for aggregating qualitative judg-
ments.3 Let G denote a group (a finite non-empty set of individuals). Suppose
that we must aggregate the opinions of members of G on sentences drawn from
an agenda A. Think of the agenda as the set of issues on which the group must
form an opinion. Although we will need to revise this in a later section, the pre-
vailing formalism treats agendas syntactically, as sets of sentences of a formal
language.

Start, then, with a sentential language L. We will need the concepts of
logical consistency, deductive closure and completeness of a set of L-sentences S.
In the present paper, we lift them (without presentation) from standard truth-
functional logic. A set of sentences S is maximally consistent (relative to A)
iff S is consistent and no proper superset of S is consistent. It is minimally
inconsistent iff S is inconsistent and every proper subset of S is consistent. Say
that the negation∗ of ϕ is ∼ϕ, unless the main connective of ϕ is negation (i.e.
for some ψ, ϕ =∼ψ), in which case the negation∗ of ϕ is ψ.

An agenda A is a finite set of sentences closed under negation∗. A judgment
set J is a subset of the agenda. A profile ~J is a sequence of judgment sets–one
judgment set per group member. Each agent is associated with a judgment set:
for instance the judgment set corresponding to the opinions of individual i is Ji.
A rational profile is a sequence of maximally consistent judgment sets. Let RP be
the set of all rational profiles. An aggregation rule F is a function from rational
profiles to judgment sets.

To this relatively standard setup, I add one more definition:

support(ϕ, ~J) := |{i ∈ G |ϕ ∈ Ji}|/|G|

Informally, support(ϕ, ~J) outputs the proportion of ϕ-supporters in G (given
the opinions recorded in ~J). For example if, given a profile ~J , one fifth of the
G-members accept ϕ and the rest reject it, support(ϕ, ~J) = 0.2. Sometimes, I
will write ‘support(S, ~J)’ where S is a set of sentences drawn from the agenda.
This denotes the proportion of individuals that accept every member of S (i.e.
|{i ∈ G | S ⊆ Ji}|/|G|).

Standard supermajority rules with absolute threshold t (>0.5) are defined
schematically as follows:

Absolute Supermajorityt: SMt(~J) = {ϕ | support(ϕ, ~J)≥ t}

Notice that definitions like this characterize a function relative to a fixed group
G, agenda A and language L. So, technically, in order to earn the right to speak

3For the sources of this framework see the references in fn. 1.
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of the supermajority rule with threshold t, we must fix the values of these pa-
rameters (G,A and L). In the following, unqualified general claims about ag-
gregation rules are intended to apply to groups of size at least 3 and agendas
that contain at least one minimally inconsistent set of size no less than 3.

Example 1 (and its variations) shows that for every threshold t < 1, there
is an agenda A and a group G such that SMt (as defined for A and G) is not
guaranteed to preserve consistency. That is, for every threshold t < 1, there is
an agenda A such that SMt (as defined on A) lacks the property:

Consistency Preservation: ∀~J ∈ RP;F(~J) is consistent.4

Note that the name ‘consistency preservation’ is apt because of the assumption
that every judgment set in any profile in RP is consistent.

Despite this prima facie disappointing result, there is a persistent hunch that
supermajoritarian rules could offer a general way out of the doctrinal paradox.
The hunch is that, in any given case, we could choose a threshold that manages
to yield consistent outputs. For instance, in Example 1, we could choose 0.95 so
as to guarantee consistency. There might, then, be subtler, non-absolute ways
of determining a supermajority threshold that are compatible with consistency-
preservation.

List (2014)—cashing in on results from Dietrich and List (2007a)—notes
that there indeed is a subtle, non-absolute, way of defining supermajorities
that guarantees consistency. Instead of picking a one-size-fits-all supermajor-
ity threshold, we can consider a threshold that varies with the logical properties
of the agenda A. In particular, consistency is guaranteed by any threshold that
exceeds (k−1)/k where k is the size of the largest minimally inconsistent subset
of A. Here we will choose tA = ((k− 1)/k) + ε, where ε < 1/(|G| · |A|). So here
is a rule that deploys this threshold:

Agenda Supermajority: AS(~J) = {ϕ | support(ϕ, ~J)≥ tA}

In Example 1, k = 6, because the largest minimally inconsistent subset is

{∼A1, ...,∼A5, (A1 ∨ ...∨ A5)}

and hence tA is just over 5/6. Selecting the threshold as a function of the agenda
enforces consistency preservation.

While AS has some attractive features, such as consistency preservation, it
is too prudent an aggregation rule.

4Notational Convention: In presenting aggregation conditions, F occurs as a free variable.
A more explicit way of giving the same definition would be to say that the set of Consistency
Preserving rules is: {F | ∀~J ∈ RP; [F(~J) is consistent ].}
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Example 2: Suppose that group G deliberates about the agenda A=
{A, B, A&B,∼A,∼B,∼(A&B)}. Suppose that G is split in two factions:
one faction accepts A, B and A&B. The other accepts ∼A, ∼B and
∼(A&B). 60% of G belong to the first faction; the remaining 40%
belong to the second faction.

In Example 2, AS outputs the empty set (we may colorfully think of this as a
case in which it recommends collective suspension of judgment on every issue
in the agenda).

In some applications of judgment aggregation models, this outcome is coun-
terintuitive. Even though the agenda has enough complexity to raise the su-
permajority threshold above 0.5, group members’ patterns of acceptance only
seem to distinguish two alternative states. In other words, each judge treats the
agenda as if it were the simpler agenda {(A&B),∼(A&B)}. It would be intuitive
in such cases to go with the majoritarian verdict.

By increasing the complexity of the agenda, we can get even more striking
situations of this kind. Consider again the setup in Example 1 with five judges
and five atomic sentences. As I noted earlier, in this case we have tA just over
5/6. This means that the following distribution of judgments would also result
in an empty collective judgment set:

Judges 1-4: A1, A2, A3, A4, A5, (A1 ∨ ...∨ A5)
Judge 5: ∼A1, ∼A2, ∼A3, ∼A4, ∼A5, ∼(A1 ∨ ...∨ A5)

Under AS, even 4/5 uniform agreement over an entire judgment set may not be
enough to warrant acceptance. It is easy to imagine applications of judgment
aggregation theory in which these constraints are too strict.

We can turn these observations about particular cases into a general require-
ment.

(Weak) Block Preservation: ∀~J ∈ RP;∀S ⊆ A;∀t > 0.5;
IF:

(i) S is consistent and complete relative to A.

(ii) support(S, ~J)> t

THEN: [F(~J) = S].

Informally: if a majority of group members submit the same judgment set (i.e.
the same opinion on every issue), then the collective ought to agree. Block
Preservation is, in my view, a reasonable (and in any case interesting) property
of the majority rule.

Absolute supermajorities (with the exception of the majority rule itself) fail
to satisfy it. Moreover, and crucially, Agenda Supermajority (AS) violates it, as
long as the agenda contains a minimally inconsistent set of size 3 (or greater).
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For that degree of complexity in the agenda will raise the threshold over 2/3
and thus prevent acceptance of 60/40 blocks (as in Example 2).

These observations raise two natural questions:

(Q1) are there rules that satisfy consistency preservation and block preserva-
tion?

(Q2) are there rules that are supermajoritarian in inspiration, but satisfy consis-
tency preservation and block preservation?

Q1 is easily answered: the computer science literature has drawn attention to a
vast class of distance-based rules (Konieczny et al., 2004, Pigozzi 2006, Miller and
Osherson 2009, Chandler 2013). Many distance-based rules—for instance, the
rule based on summing up Hamming distances—are both consistency preserving
and block preserving. No doubt many other distance-based rules are as well.
Since I do not aim to provide a fully general answer to (Q1) and since it is
independently interesting to explore rules that do not presuppose a distance
metric, I set distance-based rules aside and omit detailed presentation of them.5

Q2 is more interesting, because its answer depends on what it means to be
“supermajoritarian in inspiration”. On one way of making sense of this concept,
the answer must be negative. Say that a family of thresholds (on A) is a function
τ such that for each ϕ ∈ A, τ(ϕ) is a threshold (0.5 < τ(ϕ) ≤ 1). Let T be the
set of all families of thresholds (on A). We define the class of quota rules

Quota Rule: ∃τ ∈ T;∀~J ∈ RP;F(~J) = {ϕ | support(ϕ, ~J)≥ τ(ϕ)}

Informally, F is a quota rule if there is a family of thresholds τ such that ϕ is
accepted by F (on ~J) iff ϕ is accepted by a proportion of τ(ϕ) individuals (or
more).

Now, let Tuni = {τ ∈ T | for any ϕ,ψ ∈ A, τ(ϕ) = τ(ψ)}. Say that a quota
rule (based on agenda A) is uniform iff it satisfies the above condition with Tuni

in place of T. Informally, uniform quota rules are such that every sentence in
the agenda is assigned the same threshold.

Let us return to (Q2). We could try making sense of “F is supermajoritarian
in inspiration” as meaning “F is a uniform quota rule.” However, it is an easy
consequence of the main theorem in List and Dietrich (2007a) that no uniform
quota rule is consistent and block preserving. In particular, their Corollary 2(a)
implies that a uniform quota rule F is consistent if and only if its threshold is
tA or greater (recall that tA = ((k − 1)/k) + ε where k is the size of the largest
minimally inconsistent subset of A and ε is some sufficiently small number).

5 Two more reasons to broaden the focus beyond distance-based rules: first, distance-based
rules are typically very difficult to compute (see Endriss, 2015, §17.3.2); second, they are typi-
cally language dependent (see Cariani et al., 2008). Having said that, issues of computational
complexity and language dependence for the rules I present in the next section are beyond the
scope of this paper.
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And we know that supermajority rules based on such thresholds are not block
preserving.

2 Local Supermajorities

The key to an affirmative answer to Q2 is to adopt a more permissive conception
of what it is to be “supermajoritarian in inspiration”. A natural idea is to swap the
quantifiers in the definition of Quota Rules, thus making the family of thresholds
dependent on the profile.

Relaxed Quota Rule: ∀~J ∈ RP;∃τ ∈ T;F(~J) = {ϕ |support(ϕ, ~J)≥
τ(ϕ)}

Say that a relaxed quota rule is uniform just in case it satisfies this definition
with Tuni in place of T.

It turns out that the property of being a relaxed quota rule is weak enough
that it can be combined with block preservation and consistency preservation.
In fact, this combination can be instantiated by a variety of non-equivalent rules.
I present two here.

Each rule is defined in two steps. Here is the first rule:

Auxiliary Definition: cons(~J , t) = {ϕ | support(ϕ, ~J) ≥ t}, if this
set is consistent, ; otherwise.

Local Supermajority:

LS− (~J) =
⋃

0.5≤t≤1

cons(~J , t)

Informally, one way of thinking about LS− is that it sets its supermajority thresh-
old only after ‘peeking’ at the profile ~J . A crucial property of cons-sets is that: if
cons(~J , t) is non-empty, and t < t ′, cons(~J , t) ⊇ cons(~J , t ′). For this reason, the
effect of taking the union of the cons-sets is the same as the effect of choosing
as a threshold one of the maximally inclusive thresholds.6

Although LS− is consistency preserving, some may object to it on the grounds
that its output is not guaranteed to be deductively closed (or, as I will simply say:
closed).

Closure: ∀~J ∈ RP; F(~J) is deductively closed.

Here is an example that shows that LS− is not closed:

6In general, there is no guarantee that there will be exactly one maximally inclusive thresh-
old: for any threshold t that is maximally inclusive, there is a sufficiently small ε such that either
t−ε or t+ε accept the same sentences. There always is, however, a set X of maximally inclusive
thresholds.
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Example 3: Let G= {1, ..., 7};A= {A, B, (A& B),∼A,∼B,∼(A& B)}.

- J1 = J2 = J3 = {A, B, (A& B)}.

- J4 = J5 = {A,∼B,∼(A& B)}

- J6 = J7 = {∼A, B,∼(A& B)}

Let ~J = 〈J1, J2, J3, J4, J5, J6, J7〉.

In this case we have support(A, ~J) = support(B, ~J) = 5/7; support(A& B, ~J) =
3/7; support(∼(A & B), ~J) = 4/7. Given this: LS−(~J) = {A, B}, which entails,
but obviously does not include, (A&B). In one sentence: though LS− guarantees
consistent outputs, it does not guarantee closed ones. If closure is desirable,
LS− is objectionable.

One way to dodge this objection is to close under entailment after the aggre-
gation. Though I do not think closing in this way is particularly objectionable,
there is an alternative way of enforcing closure that will prove to have indepen-
dent interest.

Auxiliary Definition: closed(~J , t) = {ϕ |support(ϕ, ~J)≥ t}, if this
set is consistent and closed (relative to A), ; otherwise.

Closed Local Supermajority:

LS+ (~J) =
⋃

0.5≤t≤1

closed(~J , t)

The key modification is the italicized addition in the Auxiliary Definition. LS+ guar-
antees consistency and closure.

I do not claim that LS− and LS+ are ideal ways of aggregating opinions.
Instead, I acknowledge that it is clear they have puzzling features. For instance,
both rules can output the empty set on some input judgments. Classic instances
of the doctrinal paradox are an example.

Example 4: Suppose G = {Charlotte, Lara, Chandra}. Charlotte ac-
cepts {A, B, A& B}; Lara: {A,∼B,∼(A& B)}. Chandra: {∼A, B,∼(A&
B)}.

Depending on the purposes of the aggregation and the background features of
the aggregation context, this empty output might (or might not be) a bad verdict
(in any case, this is a verdict that LS−/LS+share with AS).

Another, more serious objection is that it is easy to imagine situations in
which local supermajority rules incentivize a certain kind of strategic voting. In
Example 4, depending on her preferences, Chandra might have an incentive to
submit the judgment {∼A,∼B,∼(A & B)}. If she were to submit this ‘insincere’
judgment set, LS− would output {A,∼B,∼(A&B)}. Chandra might ‘trade’ losing
on ∼B in order to get the collective outcome to agree with her on ∼(A & B).
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It might be deemed bad if an aggregation rule allows this kind of strategic
voting and it is well-known in the literature that the possibility of strategic
voting is tightly connected to failures of Independence constraints (Dietrich and
List 2007b, Nehring and Puppe 2007).7

In defense of the present enterprise, however, I wish to make three points.
First, while these objections are well taken, the point of studying of aggregation
rules is not to find the right rule in some abstract a-priori sense. It is rather to
understand the rationale behind different rules (or classes of rules), by thinking
about the aggregation conditions that characterize them. As I will show, local su-
permajorities allow us to explore aggregation conditions that have a distinctive
intuitive motivation, but are otherwise difficult to identify.

Second, local supermajorities are not the only rules that allow strategic vot-
ing. Given that the possibility of strategic voting is tightly connected with fail-
ures of Independence, the aforementioned distance-based rules also allow for
strategic voting (as do many others). Moreover, Independence constraints are
both normatively suspicious and involved in almost every impossibility result.

Third, strategic voting in general has significant epistemic and preferential
preconditions. For one thing, it can only be exploited by an individual who has
significant knowledge of the entire profile of judgments (Chopra et al., 2004,
Kube and Puppe 2009, Conitzer et al. 2011, van Ditmarsch et al. 2013.) For an-
other, it requires that voters have preferences over judgment sets. But there are
many applications of judgment aggregation tools in which these preconditions
fail. An example is the case of deference to a group of epistemic experts that
motivated Pettit’s discussion of Supermajority rules (2006). Suppose you are
trying to form an opinion by deference on the basis of the judgment of several
independent and equally informed experts. If Jane, an expert, has no stakes in
what you get to believe (or does not know what the others are testifying), there
is no direct threat that she would misrepresent her opinion.8 The general point
here is that whether the possibility of insincere voting counts against a rule is
an application-dependent problem.

3 Basic Analysis of Local Supermajorities

In this section, I provide a simple characterization of LS−and LS+. The charac-
terization of LS− turns crucially on the following strengthening of block preser-

7Independence is the requirement that the collective judgment on ϕ depend only on the
individual judgments on ϕ.

8There might even be cases of collective decision-making in which the rule cannot easily
be exploited. Imagine a society whose members submit their judgments to a social planner (in
ignorance of the judgments of others). The social planner is then be tasked with choosing an
appropriate threshold, and derive some range of collective choices. Under such a system, there
is relatively little threat that individuals would vote insincerely.
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vation.9

Strong Block Preservation: ∀~J ∈ RP;∀S, T ⊆ A;∀t > 0.5;
IF:

(i) S is consistent

(ii) ∀ψ ∈ S, support(ψ, ~J)≥ t,

(iii) if T and S are inconsistent, ∃ψ ∈ T,support(ψ, ~J)< t

THEN: [S ⊆ F(~J)]

This entails, but is not entailed by the original block preservation condition.10

It states a sufficient condition for the sentences in a set S to belong to the ag-
gregated output: namely, that each sentence in S be supported by at least t · |G|
individuals while any set T inconsistent with S is not uniformly supported by at
least t · |G| individuals.

Theorem 1 (characterization of LS−) LS− is the only uniform relaxed quota rule
that is consistency preserving and strongly block preserving.

See the appendix for a proof of this and all other theorems.11

LS+ is also a uniform relaxed quota rule. The key difference is that LS+ is
not strongly block preserving. In Example 3, any rule that satisfies strong block
preservation entails that {A, B} is accepted, and in fact LS−(~J) = {A, B}. By
contrast, LS+(~J) = ; (the key observation being that the consistent, closed and
non-empty judgment set {A, B, A& B} is not supported by a majority).

There is, however, a weakening of strong block preservation that applies to
LS+.

Intermediate Block Preservation: ∀~J ∈ RP;∀S ⊆ A;∀t > 0.5;
IF:

(i) S is consistent and closed

(ii) ∀ψ ∈ S, support(ψ, ~J)≥ t
9The principle is related to the principle of supermajoritarian efficiency in Nehring and Pi-

vato (2011), which they describe informally as the requirement to overrule “if necessary, small
supermajorities in favor of an equal or larger number of supermajorities of equal or greater size”
(p.9).

10To see this, note (a) that both are quantified conditionals with one open variable F, (b) that
the antecedent of the Weak property is strictly stronger than the antecedent of the Strong one
and, finally, (c) that the consequent of the former is strictly weaker than the consequent of the
latter.

11 A side remark: it does not follow from Theorem 1 that there is no distance-based rule that
is strongly block preserving, because distance-based rules are generally not uniform relaxed
quota rules.
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(iii) ∀ψ ∈ A s.t. ψ is not entailed by S, support(ψ, ~J)< t

THEN [S ⊆ F(~J)]

This condition is intermediate in strength between the initial block preservation
condition and the strong one. On the one hand, it entails that any judgment set
J that is supported by a majority of individuals is accepted by the group. On the
other, it is silent on what happens in cases like Example 3.

To characterize LS+, then we say:

Theorem 2 (characterization of LS+) LS+ is the only uniform relaxed quota rule
that satisfies consistency preservation, deductive closure, and intermediate block
preservation.

It seems possible to simplify both characterization results, especially in light of
the fact that the block preservation conditions are (i) fairly complex conditions
and (ii) are only used in one direction of the respective proofs. But for the
present purposes, they are useful because they allow us to think of LS− and
LS+ in terms of what kinds of blocks of opinion they preserve.

4 LS+ and the Stability Theory of Belief

Much literature has noted the close formal analogy between the problem of judg-
ment aggregation and the problem of connecting graded belief and qualitative
belief (Levi 2004, Douven and Romejin 2007, Chandler 2013, Briggs et al. 2014,
Dietrich and List ms.). More generally, there is a natural correspondence be-
tween acceptance rules and a subset of the set of all aggregation rules.

In this section, I (1) make this correspondence precise, and (2) note that,
under the correspondence, LS+ matches an acceptance rule recently developed
by Hannes Leitgeb (2014).

To make the connection precise, we must revise some elements of our aggre-
gation setup. First, it is slightly more convenient to discuss acceptance rules in a
setup with propositions (understood as sets of worlds), rather than sentences of
a formal language. Suppose we have possible worlds drawn from a set W . Per-
haps, we can start with the language L and identify possible worlds as maximally
consistent sets of literals of L. For every sentence ϕ, there is a set of worlds at
which that sentence is true (if we identify worlds with maximally consistent sets
of literals, these would be the maximally consistent sets that sententially entail
ϕ). Propositions are just such sets. To mark this shift to propositional talk, I
am going to start using variables p, q, r, ranging over sets of worlds. I do not
reintroduce new notation for the other concepts (e.g. support, A).12

12Some remarks about how the apparatus is lifted to the propositional setting. Say that a set
of propositions P is: (i) consistent iff there is a world w such that w ∈

⋂

P; (ii) complete iff there
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A more substantive amendment concerns the structure of the agenda. In
the standard aggregation setup, we just require agendas to be closed under the
operation of negation∗. In propositional talk, the parallel move would be to
require agendas to be closed under complementation relative to the set W of all
worlds. In the acceptance literature, however, it is presupposed that agendas
that have much more structure. Specifically, to set up our correspondence
we require agendas to be σ-algebras: that is, we require that the agenda be
a set of propositions closed under complementation and countable unions and
intersections.

The question then is how to connect judgment aggregation and a theory of
acceptance. I address this in two steps. First, we note that a profile of judgments
determines a probability function over A.

Step 1: Determination. For each rational profile ~J , let P ~J(·) be the
function whose value for a given p ∈ A is support(p, ~J).

It is easy to check (see appendix) the following fact.

Fact 1 If A is a σ-algebra and ~J ∈ RP, P ~J(·) is a probability function.

That is to say, P ~J(·) obeys the axioms of the probability calculus.
Now, say that an acceptance rule R (on A) is a function that takes a probability

function (defined on A) and outputs a rational judgment set. The next step is to
note that we can define aggregation rules by composing the determination step
with different acceptance rules. That is, we hold fixed the determination step,
and then note:

Step 2: Composition. For every acceptance rule R, the function
F(~J) = R(P ~J) that is the result of composing P ~J and R is an aggre-
gation rule.

For example, it is easy to see that the standard propositions-wise majority rule
(MA) is characterized by the acceptance rule LO (for Lockean) that says:

LO(P) = {p | P(p)> 0.5}

in the sense that for all profiles ~J , MA(~J) = LO(P ~J). More generally, it is easy
to see that supermajority rules with threshold t are the result of composing the
determination step with an acceptance rule (LOt) that says that p is accepted iff
P(p)≥ t.

is w such that
⋂

P ⊆ {w}; (iii) closed relative to agenda A iff for every proposition q ∈ A such that
⋂

P ⊆ q, q ∈ P. The other definitions are also easily lifted: an agenda is a set of propositions
with appropriate closure properties (we will, however, change the closure properties: see the
next paragraph in the main text); a judgment set is a subset of the agenda; support can be
redefined by replacing the variables for sentences with variables for propositions. Similarly for
closed (the concept used in defining LS+).
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Note that not every aggregation rule can be represented as the composition
of the determination step and an acceptance rule. For example, there is no
way of capturing the dictatorship of judge i in this way: the reason is that the
probability function P ~J loses information that is explicitly represented in a profile
of judgments—for example, information about the identity of the judges.

However, and remarkably, LS−and LS+ can be represented in this way. In
particular, LS+corresponds to one of the (broadly) Lockean rules defined in Leit-
geb (2014). Leitgeb is driven by a parallel insight to the one that drove the
definition of LS−/LS+. He notes that some of paradoxes about acceptance rules
(e.g. the Preface and Lottery Paradox) can be resolved if we choose our accep-
tance threshold as dependent on the probability function P.

The thresholds in Leitgeb’s acceptance rule are defined in terms of the no-
tion of a P-stable proposition. The motivation and definition of this notion are
complex, but Leitgeb provides a simple characterization we can borrow in this
context (p. 142). Let P be a probability function:

q is P-stable iff either P(q) = 1 or for all w ∈ q, P({w})> P(W − q)

One of Leitgeb’s principal results is that any acceptance rule according to which
the acceptance threshold (for P) is P(q)with q a non-empty P-stable proposition
makes the set of accepted propositions consistent and deductively closed (this is
a consequence of Theorem 1 on p. 140 of Leitgeb, 2014). I appeal to this result
in the proofs below.

Given a probability measure P, there may be multiple P-stable propositions.
However, as long as the agenda is finite (as we required), there always is a
strongest P-stable proposition. Let hA be a function that, given a probability
function P (on A), outputs the strongest P-stable proposition. We can then define
the following acceptance rule:

ST(P) = {q | P(q)≥ P(hA(P))}

The key claim of this section is:

Theorem 3 (correspondence between LS+ and ST) LS+(~J) = ST(P ~J)

Informally, closed local supermajority is (equivalent to) the result of convert-
ing the profile of opinions into a probability function and applying a maximally
inclusive version of Leitgeb’s acceptance rule.

This result is interesting in a few different ways. Most obviously, it forges a
somewhat surprising connection between an acceptance rule and an aggregation
rule that are motivated in rather different (though structurally similar) ways.

Relatedly, it allows us to bring the characterization results of §3 to bear
on our understanding of acceptance rules. For example, recent aggregation lit-
erature (Lang 2011, 2012, Nehring and Pivato 2011) discusses techniques to
define more complex rules that extend LS−(where F extends LS−iff for all ~J ,
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LS−(~J) ⊆ F(~J) and for some ~J the inclusion is strict). An interesting conceptual
question is whether these extensions can be given philosophical motivation in
the application to acceptance rules.

Finally, the result opens up important questions in collective epistemology.
To highlight this, let me outline a possible application of these results to models
of deference to a group of experts that are epistemic peers of each other (Pettit
2006). We might consider two kinds of models: the Bayesian model suggests
selecting a probability function Pold and then updating by conditionalization on
the testimony of each of the experts to get to a new probability function Pnew. If
we want our model to output a set of propositions (the propositions one ought
to come to accept as a result of deference), we might apply an acceptance rule
to Pnew. The Aggregation model suggests instead finding an appropriate aggrega-
tion rule F, and applying to the input opinions of the expert. In principle, there is
no guarantee that these models will agree. However, under the correspondence
result proved in this section, there need not be any disagreement between an
Aggregation model based on LS+ and a Bayesian model based on the appro-
priate version of Leitgeb’s stability theory (provided that, given a profile ~J , Pnew

and P ~J are related in the appropriate way). This work, of course, remains to be
done.

Appendix: proofs of theorems.

Proof of theorem 1. Suppose A and ~J are respectively an arbitrary agenda and
an arbitrary profile. First, one can easily check that LS− satisfies the three char-
acterizing properties. Second, let F be an arbitrary rule that satisfies the three
characterizing properties. We prove that ∀ϕ ∈ A, ϕ ∈ LS−(~J)⇔ ϕ ∈ F(~J).

[⇒]: suppose ϕ ∈ LS−(~J). Then there is a threshold t > 0.5 with cons(~J , t) =
LS−(~J) and so ϕ ∈ cons(~J , t). We show that cons(~J , t) is a set of sentences that
meets the conditions in the antecedent of strong block preservation, instantiating
the quantifiers with profile ~J , agenda A and threshold t. Because F satisfies
strong block preservation, establishing this implies cons(~J , t) ⊆ F(~J) and so
ϕ ∈ F(~J).

Obviously: cons(~J , t) ⊆ A. For conditions (i) and (ii), it is also obvious that
cons(~J , t) is consistent (cons-sets must be consistent) and support(ψ, ~J) ≥ t
for ψ ∈ cons(~J , t). Finally, to establish (iii), there cannot be any set T inconsis-
tent with cons(~J , t) such that for all ψ ∈ T , support(ψ, ~J) ≥ t. If there was,
T ⊆ cons(~J , t), which is impossible because cons(~J , t) is consistent. Since the
antecedent of strong block preservation is met, cons(~J , t) ⊆ F(~J), so ϕ ∈ F(~J).

[⇐]: suppose ϕ ∈ F(~J). Because F is a uniform relaxed quota rule, given ~J ,
there is a threshold t ~J such that

14



(#)∀ψ [ψ ∈ F(~J) iff support(ψ, ~J)≥ t ~J]

Fix some such t ~J . Note that by (#) and the fact that F(~J) is consistent, F(~J) =
cons(~J , t ~J). But we know cons(~J , t ~J) ⊆ LS−(~J), so F(~J) ⊆ LS−(~J), and hence
ϕ ∈ LS−(~J).

Proof of theorem 2. First, we note that LS+ satisfies all of the characterizing
conditions. As before, we prove that for all ϕ ∈ A, ϕ ∈ LS+(~J)⇔ ϕ ∈ F(~J),
where F is an arbitrary aggregation function satisfying the characterizing condi-
tions.

[⇒]: suppose ϕ ∈ LS+(~J). Then there is a threshold t such that closed(~J , t) =
LS+(~J) and so ϕ ∈ closed(~J , t). To prove ϕ ∈ F(~J), we check that closed(~J , t)
satisfies the conditions in the antecedent of intermediate block preservation.
First, closed(~J , t) must be a closed and consistent subset of A, thus satisfy-
ing condition (i). Condition (ii) is satisfied by construction of closed(~J , t). To
check condition (iii), suppose there was a ψ such that closed(~J , t) 2 ψ and
support(ψ, ~J) ≥ t. This would imply ψ ∈ closed(~J , t), which contradicts the
claim thatψ is not entailed by closed(~J , t). By intermediate block preservation
ϕ ∈ F(~J).

[⇐]: suppose ϕ ∈ F(~J). We know that F(~J) is consistent and closed. Because
F is a uniform relaxed quota rule, given ~J , there is a threshold t ~J such that

ϕ ∈ F(~J) iff support(ϕ, ~J)≥ t ~J

Fix some such t ~J . Because F(~J) is consistent and closed, F(~J) = closed(~J , t ~J)).
Since, by definition, closed(~J , t ~J)) ⊆ LS+(~J), ϕ ∈ LS+(~J).

Proof of Fact 1
We assume that that A is a σ-algebra and ~J ∈ RP. We check that P ~J(·), that is
support(·, ~J), satisfies the Kolmogorov axioms.
Non-negativity: For p ∈ A, P ~J(p)≥ 0 follows from the definition of support.
Tautology: For any tautology, >, P ~J(>) = 1, because ~J is a rational profile,
which implies consistent and complete relative to A (> ∈ A because A is a σ-
algebra).
Additivity: Suppose p and q are mutually exclusive. Let support(p, ~J) = x and
support(q, ~J) = y . It follows that support(p ∪ q, ~J) = x + y , because the fact
that ~J is a rational profile entails each of the following: (i) every group member
who either accepts p or accepts q must also accept p∪q (note that p∪q must be
in A because of A’s closure properties); (ii) no group member can believe both p
and q (as they are mutually exclusive); (iii) no group member other than those
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who either accept p or q can accept p ∪ q.

Proof of theorem 3
[⊆]: suppose p ∈ LS+(~J). We want to show p ∈ ST(P ~J). Let q =

⋂

[LS+(~J)].
Since A is a finite σ-algebra, q ∈ A. Because LS+’s output is closed (relative to
A), q ∈ LS+(~J). We show that q is the strongest P ~J -stable proposition (in A).

(I) q is P ~J -stable: Suppose it is not, then P ~J(q) < 1 and there is w ∈ q, s.t.

P ~J({w}) ≤ P ~J(W − q). Let r := (q − {w}) ∪ (W − q). Given P ~J({w}) ≤
P ~J(W − q), we must have: P ~J(r)≥ P ~J(q). This is equivalent to:

support(r, ~J)≥ support(q, ~J)

Given this, the fact that LS+ is a uniform relaxed quota rule and q ∈ LS+(~J),
r ∈ LS+(~J). However, this is incompatible with q =

⋂

[LS+(~J)]. Because
w ∈ q, and q =

⋂

[LS+(~J)], w ∈ r, but that contradicts r ’s definition.

(II) q is strongest among the P ~J -stable propositions: suppose there is an r that

is P ~J -stable and r ( q. Let w be the world that witnesses r ( q (so w ∈
q, w /∈ r). Because r is P ~J -stable, {s | P ~J(s) ≥ P ~J(r)} must be non-empty
(it includes r), consistent and closed. But then closed(~J , P ~J(r)) is non-
empty, consistent and closed. Moreover, because r ( q, P ~J(r) ≤ P ~J(q).
This, together with the fact that closed(~J , P ~J(r)) is non-empty, consistent
and closed, implies:

closed(~J , P ~J(q)) ⊆ closed(~J , P ~J(r))

Because of the definition of LS+, this implies:

(i) closed(~J , P ~J(r)) ⊆ LS+(~J)

In addition, we must have all of the following.

(ii) r ∈ closed(~J , P ~J(r));

(iii) q =
⋂

[LS+(~J)];

(iv) w ∈ q, w /∈ r

(ii) is immediate because r ∈ {s | P ~J(s)≥ P ~J(r)}; (iii) and (iv) repeat how
we fixed q and w respectively at the beginning of this proof.

But these four claims are contradictory. By (i) and (ii), r ∈ LS+(~J). By (iii)
and (iv), w is in every member of LS+(~J). But it is not in r, so r /∈ LS+(~J).

Putting together (I) and (II) implies that q is the strongest P-stable proposition.
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[⊇]: suppose p ∈ ST(P ~J). Let q =
⋂

ST(P ~J) and t ′ = P ~J(q). Note that it
immediately follows that P ~J(p)≥ t ′. Furthermore, it follows that if closed(~J , t ′)
is non-empty, p ∈ closed(~J , t ′) and so p ∈ LS+(~J).

All we have to show is that closed(~J , t ′) is non-empty, which it is iff {p |
support(p, ~J) ≥ t ′} (i.e. {p | P ~J(p) ≥ t ′}) is closed and consistent. This follows
by Leitgeb’s theorem that for every probability function P, including P ~J , {p |
P(p)≥ P(q)} is consistent and closed (relative to A) when q is P-stable.

References

BRIGGS, R. CARIANI, F. EASWARAN, K. AND FITELSON, B. (2014) Individual coher-
ence and group coherence. In Essays in Collective Epistemology, J. Lackey (ed.),
Oxford University Press, pp. 215-249.

CARIANI, F., PAULY, M. AND SNYDER, J. (2008) Decision framing in judgment
aggregation. Synthese, 163(1), 1-24.

CHANDLER, J. (2013) Acceptance, aggregation and scoring rules, Erkenntnis,
78(1), 201-217.

CHOPRA, S., PACUIT E. and Parikh R. (2004). Knowledge-theoretic properties
of strategic voting. Proceedings of Logics in Artificial Intelligence: 9th European
Conference (JELIA), (eds. J. J. Alferes and J. Leite).

CONITZER, V., WALSH, T. and XIA, L. (2011) Dominating manipulations in voting
with partial information. AAAI, vol. 11, pp. 638-643.

DIETRICH, F. and LIST C. (2007a) Judgment aggregation by quota rules. Journal
of Theoretical Politics, 19(4).

DIETRICH, F. and LIST C. (2007b) Strategy-proof judgment aggregation. Eco-
nomics and Philosophy, 23, 269-300.

DIETRICH, F. and LIST C. (ms.) From degrees of belief to beliefs: Lessons from
Judgment-Aggregation Theory. Working Paper, University of East Anglia and
LSE.

VAN DITMARSCH, H., LANG J. and SAFFIDINE, A. Strategic voting and the logic
of knowledge. Proceedings of the 14th Conference on Theoretical Aspects of Ratio-
nality and Knowledge (TARK-2013), 2013.

DOUVEN, I. and ROMEIJN, J. (2007) The discursive dilemma as a lottery paradox.
Economics and Philosophy, 23, 301-319.

ENDRISS, U. Judgment Aggregation (2015) F. Brandt, V. Conitzer, U. Endriss,
J. Lang, and A.D. Procaccia (eds.), Handbook of Computational Social Choice.
Cambridge University Press.

17



GROSSI, D. and PIGOZZI, G. (2014) Judgment aggregation. A primer. Morgan &
Claypool.

KONIECZNY S., LANG J. and MARQUIS, P. (2004) DA2 merging operators. Artificial
Intelligence, 157(1-2), 49-79.

KORNHAUSER, L.A. AND SAGER, L.G. (1986) Unpacking the court. The Yale Law
Journal 96(1), 82-117.

KUBE, S. and PUPPE, C. (2009) (When and how) do voters try to manipulate?
Experimental evidence from Borda elections. Public Choice, 139, pgs. 39-52.

LANG, J., PIGOZZI, G., SLOVKOVIK, M. AND VAN DER TORRE, L. (2011) Judgment
aggregation rules based on minimization. In TARK, 238-246.

LANG, J., PIGOZZI, G., SLOVKOVIK, M. AND VAN DER TORRE, L. (2012) Judgment
aggregation rules based on minimization - extended version, technical report,
Université Paris-Dauphine.

LEITGEB, H. (2014) The stability theory of belief. The Philosophical Review,
132(2), pp. 131-171.

LEVI, I. (2004) List and Pettit. Synthese, 140(1/2), 237-242.

LIST, C. (2014) When to defer to supermajority testimony and when not to. In
Essays in Collective Epistemology, J. Lackey (ed.), Oxford University Press, pp.
240-250.

LIST, C. and PETTIT, P. (2002) Aggregating sets of judgments; an impossibility
result. Economics and Philosophy, 18(1), 89-110.

MONGIN, P. (2012) The doctrinal paradox, the discursive dilemma, and logical
aggregation theory. Theory and Decision, 73(3), 315-355.

MILLER, M. and OSHERSON, D. (2009) Methods for distance-based judgment
aggregation. Social Choice and Welfare, 32, 575-601.

NEHRING, K. and PIVATO, M. (2011) Majority rule in the absence of a majority,
manuscript.

NEHRING, K. and PUPPE, C. (2007) The structure of strategy-proof social choice –
Part I: General characterization and possibility results on median spaces. Journal
of Economic Theory, 135, 269-305.

PIGOZZI, G. (2006) Belief merging and the discursive dilemma: an argument-
based account to paradoxes of judgment aggregation. Synthese, 152, 285-298.

PETTIT, P. (2006) When to defer to majority testimony and when not to. Analysis,
66(3), 179-187.

18


