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Abstract. This paper studies a family of monotonic extensions of first-order
logic which we call modulated logics, constructed by extending classical logic
through generalized quantifiers called modulated quantifiers. This approach
offers a new regard to what we call flexible reasoning. A uniform treatment
of modulated logics is given here, obtaining some general results in model
theory. Besides reviewing the “Logic of Ultrafilters”, which formalizes induc-
tive assertions of the kind “almost all”, two new monotonic logical systems
are proposed here, the “Logic of Many” and the “Logic of Plausibility”, that
characterize assertions of the kind “many”, and “for a good number of”. Al-
though the notion of simple majority (“more than half”) can be captured by
means of a modulated quantifier semantically interpreted by cardinal mea-
sure on evidence sets, it is proven that this system, although sound, cannot
be complete if checked against the intended model. This justifies the inter-
est on a purely qualitative approach to this kind of quantification, what is
guaranteed by interpreting the modulated quantifiers as notions of families

of principal filters and reduced topologies, respectively. We prove that both
systems are conservative extensions of classical logic that preserve important
properties, such as soundness and completeness. Some additional perspec-
tives connecting our approach to flexible reasoning through modulated logics
to epistemology and social choice theory are also discussed.

Keywords: modulated logics, generalized quantifiers, qualitative reasoning,
uncertain reasoning, flexible reasoning.

1. A softened approach to quantification

A long-standing question, that has received a modern formulation, concerns
the formalization of reasoning and argumentation based upon assertions or
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sentences which are not absolutely true, but are instead supported by fa-
vorable evidence. Such assertions give support to a widespread form of
reasoning and argumentation called uncertain reasoning, which by its turn
helps to support inductive reasoning (in the sense of [Car50] and [Pop72]).
However, the term “uncertain” may be negatively seen as “questionable”
or “inconclusive”, while this pejorative connotation makes no justice to its
fundamental usage in reasoning; we prefer to refer to “flexible” instead. So,
by flexible reasoning we emphasize the positive connotation of any reasoning
based on such modifiers as “most”, “many”, “generally”, “plausibly”, etc.

This form of inductive reasoning and argumentation is still waiting for a
logic foundation. Although Popper (op.cit) claimed that induction is never
actually used by scientists, and deflated the role of inductive argumentation
while distinguishing between science and non-science in favor of falsifiability,
it is not said that inductive reasoning and argumentation are useless. On the
contrary, uncertain reasoning is commonly used, and in the majority of cases
it has to do with assertions and sentences involving a vague quantification
of the kind “almost all”, “the majority”, “most”, “many”, etc. This kind
of statements often occur, not only in ordinary language, but also in new
attempts of formalizing abductive reasoning and heuristics.

Some approaches as in [Car50] and [Rei80] concern the question of ratio-
nal justification of inductive reasoning from the logical viewpoint. However,
all proposed solutions to rational justification of inductive reasoning have
shown to be insufficient (for different reasons) in the sense that they could
not offer a completely satisfactory or definitive answer to the question.

A popular proposal for formalizing certain notions involved in this kind
of reasoning is the default logic (cf. [Rei80]). In that paper, the author pro-
poses a non-monotonic logical system which formalizes sentences of the kind
“almost always” in terms of the notion of “in the absence of any information
to the contrary, assume...”. According to [Rei80], it is clear to anyone ac-
quainted with the tools of formal logic that what we have in these situations
is a question of quantification, namely how to represent and understand gen-
eralized quantifiers1 of the kind “most”, “almost all”, etc. Although [Rei80]
insists upon the necessity of treating such form of reasoning through gen-
eralized quantification, he nonetheless chooses to formalize sentences of the
kind “almost always” or “generally” by using extra-logical operators. Several

1Mathematically interesting quantifiers which cannot be defined in terms of universal
and existential quantifiers([BC81]) were firstly investigated in [Mos57] and have been since
then extensively studied; see [Ebb85] and [Flu85]).
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impediments and problems of the formalization of sentences through the op-
erator proposed in [Rei80] have already been advanced (e.g. [HM87], [Poo91]
and [DW91]). Other criticisms to the non-monotonic approach to the for-
malization of reasoning under uncertainty have been presented by [SCV99]).

In the same vein of Reiter’s argument about the need of representing gen-
eralized quantifiers in formal language, [BC81] suggest that a semantic the-
ory of natural language has to incorporate generalized quantifiers expressing
notions such as “most”, “many”, “more than half”, etc., since quantification
in natural languages is not limited to universal and existential quantifiers.

In the present paper we develop some perspectives initiated in [CS94],
and present a family of (monotonic) logical systems called modulated logics
to express rigorously some kinds of inductive assertions involving notions
of “most” in the sense of “simple majority”, “many” and “a ‘good’ number
of”. The starting point of our approach is that one can only agree on what
is said about such notions when they are suitably formalized. The systems
we investigate here are characterized by adding generalized quantifiers (here
denoted by Q) and called modulated quantifiers to their syntax; they are
semantically interpreted by expanding classical models to include subsets
(denoted by q) from the power set of the universe, defined by certain math-
ematical structures (as filters, topological spaces and their generalizations,
and so on). Intuitively, classical models are endowed with sets of sentences
which represent positive evidence regarding a knowledge basis. Such ex-
panded models are called modulated models or modulated structures.

Modulated structures and modulated quantifiers are the mathematical
achievement of the intuitive idea of understanding logical constants in a
softened way, in the sense of making them more apt to express concepts
and reasoning which only seem to be possible in natural language. This is
the case of linguistic modifiers like “many” and “few”, “much” and “little”,
“generally” and “rarely”, as well as the ability of reasoning by them. If
the classical quantifiers are sufficient to model reasoning when the subject
matter is well-behaved, as in the universe of numbers, sets, groups and so
on − that is, mathematical objects and clear-cut relations on them − usual
reasoning is of course much more wide-scoped, dealing with not so tamed
objects and not so limpid relations on them. For example, “all numbers
that divide 1010 + 1 are odd” is a clear sentence with an uncontroversial
interpretation (since odd numbers cannot have even divisors) while, “all
numbers greater than 1010 + 1 are big numbers” has a controversial mean-
ing since “big number” is a vague predicate. Also, “most prime multiples of
powers of 1010 + 1 are odd” is also controversial, but now for a different rea-
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son: although the numerical predicate “odd” is uncontroversial, the modifier
“most” complicates everything; it is true that “only” 2 · (1010 + 1)n will be
even, while p · (1010 + 1)n will be odd for infinitely many odd primes p. On
the one hand, one may feel inclined to say that there are more odd than even
numbers, but on the other hand, the sets have exactly the same cardinality,
although this is not true about initial segments. This plastic, qualitative
rather than quantitative, capacity of linguistic modifiers convey reasoning
and information, and part of our intention here is to investigate how much of
this reasoning and information can be expressed in expanded logical struc-
tures, while keeping as much as possible the nice and familiar features of
logic. We propose to approach the problem by means of modulated models,
which allow talking about modulated logics.

We show how particular modulated models, defined through specific
mathematical structures, are able to capture specific kinds of uncertain state-
ments. For example, considering q as the class of subsets of the universe
whose cardinal number is greater than their complements, one can formalize
assertions of the form “most...” in the precise sense of “simple majority”.
We call this system the Logic of Simple Majority. Another example, which
we call the Logic of Many, is obtained by identifying q with filters, intended
to formalize assertions of the form “many...”. A third example, taking q as
a weak version of a topological space, can be used to formalize assertions
of the form “for a ‘good’ number of...”. This system is called the Logic of
Plausibility. In particular, we will see that the Ultrafilter Logic (extensively
studied in [CS94], [CV97], [SCV99], [Vel99a] and [Vel02]) is a special case of
modulated logic which formalizes assertions of the form “almost all...”.

It is proven that the Logic of Many and the Logic of Plausibility are
conservative extensions of first-order classical logic, and that they preserve
important properties of classical logic as soundness and completeness with
respect to the defined models, among others. The Logic of Simple Majority,
however, even if sound, is not complete with respect to the intended models.

We also discuss some fundamental issues about relations among mod-
ulated logics, presenting examples of situations where each one is better
applied. Concluding, we comment on the particularities of modulated log-
ics, pointing out some possibilities of further work and applications. This
paper is a companion to [VC04], in the sense that the essentials of modulated
logics are treated here, while a closer investigation on particular logics with
applications for qualitative reasoning is carried out there2.

2This paper is based on the Ph.D. thesis by the second author ([Grá99]) written at the
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2. Modulated logics

In this section we introduce a family of monotonic extensions of first order
logic dubbed modulated logics, which provide a general representation for
several kinds of inductive assertions. This family is defined by extending
classical logic through the modulated quantifiers. Such quantifiers are se-
mantically interpreted by appropriate subsets of the power set of universe;
such subsets mean to represent, in intuitive terms, arbitrary sets of assertions
supported by evidence related to knowledge basis.

Next section introduces the syntax, semantics and the axiomatics for
general modulated logics (Lτωω(Q)), which constitute thus a general formal
approach to inductive or flexible reasoning.

2.1. Syntax, semantics and axiomatics for Lτ
ωω(Q)

Let Lτωω be the usual first-order language of similarity type τ containing
symbols for predicates, functions and constants, and closed under the con-
nectives ∧,∨,→,¬ and under the quantifiers ∃ and ∀.

By Lτωω(Q) we denote the extension of Lτωω obtained by including gen-
eralized quantifiers Q, called modulated quantifiers. The formulas (and sen-
tences) of Lτωω(Q) are the ones of Lτωω plus those generated by the following
clause:

• if ϕ is a formula in Lτωω(Q) then Qxϕ is also a formula in Lτωω(Q).

The notions of free and bound variables in a formula, as well as other syn-
tactical notions, are extended in the usual way for the quantifiers Q.

The result of substituting all free occurrences of a variable x in ϕ by
a term t is denoted by ϕ(t/x). To simplify, when there is no danger of
confusion, we write ϕ(t) instead of ϕ(t/x).

The semantical interpretation for the formulas in the modulated logics
(Lτωω(Q)) is defined as follows:

Definition 2.1. Let A = 〈A, {RAi}i∈I , {f
Aj }j∈J , {c

Ak }k∈K〉 be a classical
first-order structure of similarity type τ = 〈I, J,K, T0, T1〉, and let q be a
set of subset of the universe A such that empty set ∅ does not belong to q,
i.e., q ⊆ ℘(A) − {∅}. The structure Aq formed by the pair 〈A, q〉 is called a
modulated structure for Lτωω(Q).

State University of Campinas and supervised by the first author. A condensed version of
this paper was presented at the 6th Kurt Gödel Colloquium held in Barcelona, June 1999.
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In [Kei70] this kind of structure is called a weak structure. In formal
terms:

Aq = 〈A, q〉 where A = 〈A, {RAi}i∈I , {f
Aj }j∈J , {c

Ak }k∈K , q〉

is a familiar structure such that A is its universe, Ri is a T0(i)-ary relation
defined in A, for i ∈ I, fj is a function from An to A, supposing T1(j) = n,
for j ∈ J ; ck is a constant of A, for k ∈ K; and q ⊆ ℘n(A) is called a complex.
Usually, n = 1 and the complex is just q ⊆ ℘(A); this will be the case in all
of our basic examples, except for the suggested applications for formalizing
fuzziness in Section 8. Intuitively, as aforementioned, we endow classical
first-order logic with a subset of the power set of the universe, which repre-
sents arbitrary sets of assertions supported by positive evidence regarding a
certain knowledge basis.

The interpretation of relation, function and constant symbols is the same
as in Lτωω with respect to A. The notion of satisfaction of a formula of
Lτωω(Q) in a structure Aq is inductively defined in the usual way, by adding
the following clause: let ϕ be a formula in which free variables are among
{x} ∪ {y1, . . . , yn} and consider a sequence a = (a1, . . . , an) in A. We define

Aq
� Qxϕ[a] iff {b ∈ A : Aq

� ϕ[b; a]} ∈ q.

Usual semantical notions, such as a model, validity, logical consequence,
etc. are appropriately adapted from classical logic.

The axioms of Lτωω(Q) are those of Lτωω including the identity axioms
(see, for example, [Men87]), plus the following specific axioms for the quan-
tifier Q:

(Ax1) ∀xϕ(x) → Qxϕ(x);

(Ax2) Qx(ϕ(x)) → ∃x(ϕ(x));

(Ax3) ∀x(ϕ(x) ↔ ψ(x)) → (Qx(ϕ(x)) ↔ Qx(ψ(x)));

(Ax4) Qx(ϕ(x)) ↔ Qy(ϕ(y)).

Intuitively, the axiom (Ax2) asserts that an inductive statement, formalized
in Lτωω(Q), cannot be supported by an empty evidence set. The (Ax1) axiom
means that if all individuals of the universe support a statement, then it is an
inductive statement in Lτωω(Q). Axiom (Ax3) states that if two statements
are equivalent, then they are equivalent inductive statements.

The basic logical rules of the system Lτωω(Q) are the usual rules of classi-
cal logic: Modus Ponens (MP) and Generalization (Gen). Usual syntactical
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concepts such as a proof, a theorem, non-contradictoriness (or consistency),
etc., for Lτωω(Q) are also appropriately adapted from classical first-order
logic.

As it can be seen below, abstract modulated logics preserve several syn-
tactical properties of classical first-order logic.

Theorem 2.2. The system Lτωω(Q) is consistent.

Proof. Analogous to the proof for classical logic Lτωω (see [Men87]), chang-
ing the definition of the “forgetting function” by means of the inclusion of
the condition h(Qxϕ(x)) = h(ϕ(x)).

For Σ ∪ {ϕ, φ} a sentence set and ψ a formula in Lτωω(Q), the following
properties of theories in Lτωω(Q) can be easily proved:

Theorem 2.3 (Deduction Theorem). If Σ ∪ {ϕ} ⊢ ψ, then Σ ⊢ ϕ → ψ.

Proof. A simple adaptation of the classical arguments.

Theorem 2.4. (a) Σ is consistent iff every finite subset Σ0 of Σ is consis-

tent.

(b) Σ ∪ {ϕ} is inconsistent iff Σ ⊢ ¬ϕ.

(c) If Σ is maximal consistent, then:

(i) Σ ⊢ ϕ iff ϕ ∈ Σ;

(ii) ϕ 6∈ Σ iff ¬ϕ ∈ Σ;

(iii) ϕ ∧ φ ∈ Σ iff ϕ ∈ Σ and φ ∈ Σ.

Proof. Analogous to the classical case.

Theorem 2.5. Any consistent theory in Lτωω(Q) can be extended to a max-

imal consistent theory.

Proof. Similar to the proof of the well-known Lindembaum’s theorem.

2.2. Rudimentary model theory for Lτ
ωω(Q)

Considering that [Kei70] proved soundness and completeness for an ax-
iomatic system analogous to Lτωω(Q) with respect to weak models, in this
section we are interested in establishing some other prime results of model
theory for modulated logics. We discuss here, thus, an analogous result of
Łoś ultraproduct theorem for modulated models, and a counter-example to
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the problem of interpolation in Lτωω(Q). A similar result for topological
models was given in [Sgr77].

A modulated ultraproduct for Lτωω(Q) is defined by extending the defini-
tion of ultraproduct in classical first-order logic (see [Men87]) by means of
the following procedure.

Let J be a nonempty set, and for each j ∈ J , let Mj = 〈Aj, qj〉 be a
modulated model for Lτωω(Q). Let F be an ultrafilter on J . For each j ∈ J ,
let Aj denote the universe of the model Mj . The cartesian product ΠjAj is
defined as the set of all functions f with domain J such that f(j) ∈ Aj, for
any j ∈ J . In the cartesian product ΠjAj, the following equivalence relation3

is defined:
f ∼F g iff {j : f(j) = g(j)} ∈ F.

On the basis of this equivalence relation, ΠjAj can be split into equiva-
lence classes: for any f ∈ ΠjAj, its equivalence class fF is defined as:

{g : f ∼F g}.

Denote the set of all equivalence classes fF by ΠFAj, and define a model
M = 〈A, q〉 of Lτωω(Q), with universe ΠFAj , in the usual way, including the
clause:

• Let εj be any element of qj, for any j ∈ J . Then εj ⊆ Aj , thus we have
that if a ∈ εj, then a = f(j) for some f ∈ ΠjAj . The subset q (where
q ⊆ ΠFAj) is generated by:

{[ΠF εj ]F : {j : εj ∈ qj} ∈ F}

where [ΠF εj ]F = {fF ∈ ΠFAj : {β : f(β) ∈ εβ} ∈ F}

We call the model M just defined a modulated ultraproduct for Lτωω(Q) and
denote it by ΠFMj . The definition allows us to express the following theo-
rem.

Theorem 2.6. Let F be an ultrafilter on a set J and {〈Aj , qj〉} be a family of

modulated models for Lτωω(Q). Let M = ΠFMj be a modulated ultraprod-

uct. Then for any formula ϕ, whose free variables are among v1, . . . , vn, and

for any sequence (g1)F , . . . , (gn)F of elements of ΠFAj ,M � ϕ[(g1)F , . . . ,
(gn)F ] if and only if {j ∈ J : Mj � ϕ[g1(j), . . . , gn(j)]} ∈ F .

3It is easy to see that f ∼F g is indeed an equivalence relation ([Men87]).
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Proof. Using induction on the number of connectives and quantifiers in
ϕ, it is simple to carry out the proof similarly to the one for classical logic
Lτωω. The only case that remains to be proven is for formulas ϕ of the form
Qyψ. The other cases are analogous to those of classical first-order logic (see
[Men87], p. 105).

Let ϕ(x) be a formula of the form Qyψ(x) whose free variables belong to
x = {x1, . . . , xn}. Firstly, suppose {j ∈ J : Mj � Qyψ[g1(j), ..., gn(j)]} ∈ F .
Then, by the definition, {j ∈ J : {a ∈ Aj : Mj � ψ[a; g1(j), ..., gn(j)]}} ∈ F

Denoting the set {a ∈ Aj : Mj � ψ[a; g1(j), . . . , gn(j)]} by εψj , we have that

{{j ∈ J : εψj } ∈ qj} ∈ F , hence

[ΠF ε
ψ
j ]F = {fF ∈ ΠFAj : {β : f(β) ∈ εψj } ∈ F} and [ΠF ε

ψ
j ]F ∈ q.

Therefore M � Qyψ[(g1)F , . . . , (gn)F ].
Conversely, suppose that M � Qyψ[(g1)F , . . . , (gn)F ]. Then, by the defi-

nition of satisfaction, {fF ∈ ΠFAj : M � ψ[fF ; (g1)F , ..., (gn)F ]} ∈ q hence,
by the inductive hypothesis,

εψ = {fF ∈ ΠFAj : {j : Mj � ψ[f(j); g1(j), . . . , gn(j)]} ∈ F} ∈ q.

But, by definition of q, then ∀j ∈ {j : Mj � ψ[f(j), g1(j), . . . , gn(j)]} and
{f ∈ εψ : Mj � ψ[f(j); g1(j), . . . , gn(j)]} ∈ qj . So,

{j ∈ J : {f ∈ εψ : Mj � ψ[f(j); g1(j), . . . , gn(j)]} ∈ qj} ∈ F

Therefore, by the definition, {j ∈ J : Mj � Qyψ[g1(j), . . . , gn(j)]} ∈ F .

We conclude this section presenting a counter-example to the validity
of an interpolation theorem in Lτωω(Q). The problem of interpolation in
Lτωω(Q) can be formulated in the following way. Let ϕ and ψ be sentences of
Lτωω(Q) such that ϕ � ψ. Then there exists a sentence θ of Lτωω(Q) such that
ϕ � θ, θ � ψ and, except for the equality, all extra-logical symbols (relations,
functions and constants) occurring in θ occur both in ϕ and ψ. We call the
sentence θ an interpolate of ϕ and ψ.

Let ϕ and ψ be the sentences of Lτωω(Q). Suppose Lτωω(Q) is the language
containing just symbols occurring in ϕ or ψ. Let:

• L1 = sublanguage of Lτωω(Q) containing just extralogical symbols in ϕ;

• L2 = sublanguage of Lτωω(Q) containing just extralogical symbols in ψ;

• L0 = L1 ∩ L2.
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We will construct sentences ϕ and ψ and modulated models 〈A, q1〉 and
〈A, q2〉 in such a way that ϕ � ψ, 〈A, q1〉 � ϕ, 〈A, q2〉 � ¬ψ and 〈ℜ, q1〉 ≡
〈ℜ, q2〉, where ℜ is the reduct of A to L0. This construction violates the
interpolation property since any interpolate is in L1 ∩ L2 and the models
above are elementarily equivalent in L1 ∩ L2. So if 〈A, q2〉 � ¬ψ, then it is
true that 〈A, q2〉 � ¬θ; but 〈A, q1〉 � θ too, which generates a contradiction
(since 〈ℜ, q1〉 ≡ 〈ℜ, q2〉) ([Sgr77]).

Let L1 = {B(x), C(x), P (x)} and L2 = {B(x), C(x), R(x)}. Let ϕ be
the sentence QxP (x) ∧ ∀x(P (x) ↔ (B(x) ∨ C(x))) ∧ ¬QxC(x) and ψ be the
sentence Qx(B(x) ∨ C(x)) ∨ ¬∀x(C(x) → R(x)).

We can verify, on the basis of axiom (Ax1), that � ϕ → ψ (or, equiva-
lently, by the deduction theorem, ϕ � ψ).

Let N be the set of natural numbers,

PA = {2n : n ∈ N},

CA = {4n : n ∈ N},

BA = {n : n ∈ PA − CA or n = 8k, for some k ∈ N}

RA = {n : n ∈ CA or n = 2k + 1, for some k ∈ N}.

By defining

〈A, q1〉 = 〈N, BA, CA, PA, RA, {PA}〉,

〈A, q2〉 = 〈N, BA, CA, PA, RA, {PA}〉

and then

〈ℜ, q1〉 = 〈N, BA, CA, {PA}〉

〈ℜ, q2〉 = 〈N, BA, CA, {RA}〉.

we can easily verify that 〈A, q1〉 � ϕ and 〈A, q2〉 � ¬ψ. The above construc-
tion represents a counter-example to the interpolation property in Lτωω(Q),
since 〈ℜ, q1〉 ≡ 〈ℜ, q2〉4.

In the following section we present some specific forms of flexible reason-
ing formalized by means of the notion of modulated logics.

3. The Logic of Simple Majority

This section is devoted to particularizing Lτωω(Q) for a system which for-
malizes inductive statements of the type “most...” in the sense of “simple

4Result given in [Sgr77], p.188.
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majority”, that is, “more than half”. Under the approach to be formalized in
this section, we say that the simple majority of individuals satisfy a sentence
ϕ when the set formed by the individuals satisfying it is greater than the
one formed by the individuals not satisfying it. So this non-qualitative ap-
proach intends to explain the notion of “most” in terms of frequency (simple
majority) or set cardinality.

Under this explanation of “most”, when an assertion represents most in-
dividuals in a universe (a large set of individuals), the assertion expressing
its complement represents the minority of individuals (a small set of individ-
uals). Also, when a sentence ϕ represents most individuals and it forms a
subset of an assertion expressed by ψ, then of course most individuals satisfy
ψ too. Moreover, if ϕ and ψ represent most individuals of a universe, then
there exists at least one individual of this universe which size of the set.

Taking into account the above exposition, we present some criteria for
subsets of a set U to be considered large (in the sense of majority). Let X,
Y be arbitrary subsets of U :

1. if X is large then its complement Xc with respect to U is not large;

2. if X is large and X ⊆ Y then Y is large too;

3. if X and Y are large, then X ∩ Y 6= ∅;

4. U is large.

These criteria are naturally based on the concept of the cardinal number
|X| associated with a set X. In this way, we say that most individuals satisfy
X if and only if |X| > |Xc|.

Other approaches to this notion in the literature are [Pet79] (which ana-
lyzes the relationship between “few”, “many”, “most”, “all” and “some” by
means of Aristotelian squares of opposition), while [Res62] and [Sla88] treat
the notion of “most”, in the sense of majority, by means of a new quantifier.

As an illustration of the application of this account of “most” for uncer-
tain reasoning, we recall the famous example of birds given in [Rei80]. Let
B be the universe of birds and F (x) be any property applicable to birds, as
“flying” for example. We say “the property F applies to most birds” if for
the set F = {x ∈ B : F (x)} we have |F | > |F c|.

Syntactically, we will include a new quantifier ♯ in the syntax and denote
the fact that the property R applies to most individuals by means of the
sentence ♯xR(x).

The semantics and syntax of this modulated quantifier ♯, which captures
the notion of “most”, were firstly introduced in [Res62]. Although some
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papers (as those mentioned above) have discussed this notion, its formal
properties have not been investigated.

In the next section we present the formal system Lτωω(♯) to represent this
notion and investigate some of its basic syntactical and semantical proper-
ties.

3.1. Soundness and incompleteness of Lτ
ωω(♯)

The system Lτωω(♯) constitutes a particular modulated logic intended to cap-
ture the notion of “most” in the sense of “‘simple majority”. In formal terms,
the language of Lτωω(♯) is obtained by particularizing the quantifier Q in
Lτωω(Q) to the quantifier ♯ intended to express simple majority .

The semantics of the formulas in Lτωω(♯) is defined by means of modulated
structures, identifying, in this case, the class q with the following subsets:

q = {B ⊆ A : |B| > |Bc|}.

For a sequence a = (a1, . . . , an) in A, the satisfaction of a formula of the
form ♯xϕ, whose free variables are contained in {y1, . . . , yn}, is defined by

A � ♯xϕ[a] iff {b ∈ A : A � ϕ[b; a]} ∈ q,

i.e.,

A � ♯xϕ[a] iff |{b ∈ A : A � ϕ[b; a]}| > |{b ∈ A : A � ¬ϕ[b; a]}|. (I)

Intuitively, ♯xϕ(x) is true in A iff most individuals (in the sense of simple
majority, or more than half) in A satisfy ϕ(x).

This kind of logic certainly has a great interest for voting and social
choice theory (specially for infinite population, cf. [Fey04] see also [PS04]
and [Tay05]), as we can obviously formalize sentences as “most voters prefer
A” by ♯xA(x), but examples can be given in several scenarios.

Example 3.7. Let I(x), R(x) and E(x) be predicates in Lτωω(♯) representing
the properties of being an irrational number, a rational number, an even
number, and G(x, y) be “x ≤ y and x is odd”, respectively.

(a) “most numbers are irrational” by ♯xI(x);

But also, considering the universe of natural numbers, one can formalize:

(b) “most numbers are not even” by ♯x¬E(x);

(c) “for any odd natural number y, most of its predecessors are also odd”
by ∀y♯xG(x, y).
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The axioms of Lτωω(♯) are the ones of Lτωω(Q) augmented by the following
specific axioms for the quantifier ♯:

(Ax5♯) ∀x(ϕ(x) → ψ(x)) → (♯x(ϕ(x)) → ♯x(ψ(x)));

(Ax6♯) ♯x(ϕ(x)) → ¬♯x(¬ϕ(x));

(Ax7♯) (♯x(ϕ(x)) ∧ ♯x(ψ(x))) → ∃x(ϕ(x) ∧ ψ(x)).

Intuitively, given an interpretation with a universe A and formulas ϕ
and ψ with exactly one free variable, then for sets [ϕ] = {a ∈ A : ϕ[a]} and
[ψ] = {a ∈ A : ψ[a]} axioms (Ax5♯) to (Ax7♯) assert that:

• (Ax5♯) if [ϕ] ⊂ [ψ] and most (in the sense of majority of) individuals belong
to [ϕ], then most individuals belong to [ψ];

• (Ax6♯) if [ϕ] is formed by most (in the sense of majority of) individuals,
then [¬ϕ] is not formed by most individuals;

• (Ax7♯) if [ϕ] and [ψ] are formed by most (in the sense of majority of)
individuals, then their intersection is not empty.

We note here that such conditions seem to be indeed acceptable in terms
of voting and social choice; this justifies some interpretations of this logic in
terms of certain problems of judgement aggregation as we discuss at the end
of this subsection.

The basic logic rules and usual syntactical concepts such as a proof, a
theorem, logical consequence, consistency, etc., for Lτωω(♯) are the same as
those for Lτωω(Q).

Returning to the Example 3.7, one can deduce, for example, by means of
the axioms (Ax3) and (Ax6♯) and the sentences (a) and ∀x(¬I(x) ↔ R(x))
that “rational numbers do not constitute most of the numbers”, that is:
¬♯xR(x). By means of the established axioms for Lτωω(♯) it is easy to prove
the following general theorems.

Theorem 3.8. The following formulas are theorems of Lτωω(♯):

(a) ♯x(ϕ(x) ∧ ψ(x)) → (♯x(ϕ(x)) ∧ ♯x(ψ(x)));

(b) ♯x(ϕ(x)) → ♯x(ϕ(x) ∨ ψ(x));

(c) ♯x(¬ϕ(x)) → ¬♯x(ϕ(x));

(d) (∀x(ϕ(x)) ∧ ♯x(ϕ(x) → ψ(x))) → ♯x(ψ(x)).

Proof. Routine.
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It can also be easily verified that theorems 2.2, 2.3, 2.4 and 2.5 for general
modulated logics remain valid in the “Logic of Simple Majority”.

It can be proven, however, that the “Logic of Simple Majority”, although
preserving soundness, is not complete with respect to the defined models,
that is, not every valid formula can be derived in Lτωω(♯). This justifies
the interest in purely qualitative approaches to this type of quantifiers, as
opposed to such a cardinality-based approach.

Theorem 3.9 (Soundness). If ϕ is a theorem in Lτωω(♯), then ϕ is valid.

Proof. Since the inference rules (MP) and (Gen) in Lτωω(♯) preserve validity
of formulas and the axioms are valid in such structures, soundness of Lτωω(♯)
is clear.

However, since the completeness problem for a language containing quan-
tifiers Q1, . . . , Qs relies on whether the set of true formulas is recursively
denumerable ([Mos57]), the converse of this theorem (i.e. Completeness)
cannot hold, as it can be seen from the following argument.

Let S = {(κ, θ) : exist R ⊆ A such that κ = |R| and θ = |Rc|}. Given A
(a classical first-order structure), for each function T : S → {0, 1}, R ⊆ An+1

and b = (b1, . . . , bn) ∈ An, [Mos57] defines:

QT (R) = T (|{a ∈ A : (a, b) ∈ R}|, |{a ∈ A : (a, b) ∈ R}c|).

Therefore, for a formula ϕ in Lτωω(♯) with exactly one free variable, the
definition in (I) is equivalent to:

A � ♯xϕ(x) iff TM (κ, θ) = 1,

in which TM(κ, θ) = 1 iff κ > θ.
The following definition, also from [Mos57], provides the basis for our

proof.

Definition 3.10. Let m,n be non-negative integers and T ′, T ′′ functions
such that {T ′(κ, θ) = 1} ≡ (κ = m) and {T ′′(κ, θ) = 1} ≡ (θ = n). Quanti-
fiers QT ′ and QT ′′ will be denoted by Σ(m) and Π(n), respectively. Boolean
polynomials of quantifiers Σ(m),Π(n)(m,n = 0, 1, 2, · · · ) are called numerical

quantifiers.

The quantifier ♯ is clearly not a numeric quantifier, since it cannot be
expressed by a Boolean polynomial of Σ(m) and Π(n) quantifiers. However,
the following theorem directly implies that the completeness problem in
Lτωω(♯) has a negative solution.
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Theorem 3.11. Let the quantifiers ∃ and ∀ occur among Q1, . . . , Qs and let

A be a denumerable universe. A necessary and sufficient condition for the

completeness problem for quantifiers Q1, . . . , Qs to have a positive solution

is that the quantifiers Q1, . . . , Qs be numerical.

Proof. A proof is found in [Mos57].

Thus from the above theorem we conclude that there are valid formulas
which cannot be proved in Lτωω(♯). This is an interesting case of elemen-
tary incompleteness having in its genetic constitution a numerical approach,
which is, on the other hand, the essence of the celebrated incompleteness
arguments of [Göd31]. It is well known that his first theorem is general, as
much as it can be applied to any axiomatic theory which is ω consistent,
whose proof procedure is effective and which is strong enough to represent
basic arithmetic. However, pace Gödel, the theorem loses force as much as
we should be able to avoid reasoning in numerical terms. This can of course
be regarded as a motivation to think in other than numerical terms. Of
course, big questions remain, as for example how effective or interesting this
deviation could be. We do not try to answer this, but at least sketch on the
essentials of what can be done from the qualitative side.

However, a very appealing interpretation of our incompleteness results
concerns its relationship with the discursive dilemma (also called doctrinal
paradox) of choice social theory and political theory. A clear account of this
problem and a proposed solution by means of new aggregation procedures
is given in [Pig06]; what the above incompleteness result shows is that there
is no logical way to always grant consistent collective judgements under the
rule of simple majority voting. In a sense, our result no only justifies a
modal outlook to the question as in [PS04], but also represents one more of
the “impossibility results” so popular after [Arr70].

4. The Logic of Many

This section considers a qualitative form of modulated logic intended to
formalize inductive assertions of the kind “many...”. The vague notion of
“many” approached here is associated with the concept of a large evidence
set, but not necessarily linked to the notion of majority (in terms of cardinal-
ity) nor to the invariant thresholds (in the sense of something not changing
from one model to another).

So, for example, considering the universe of Brazilians, when we assert
that “many Brazilians wear skirts”, we have associated with the assertion
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an evidence set (Brazilians) considered large. On the other hand, when we
assert “many Brazilians love soccer”, we have associated with this statement
another set of Brazilians, considered large too. However, not necessarily the
two sets of Brazilians are of the same size. Besides, not necessarily the
evidence observed in favor of these assertions represent the majority of the
universe, nor their intersection is necessarily large.

In this way the notion of “many” treated here and expressing “a great
amount of evidence” is more abstract than the one treated in the Logic of
Simple Majority.

The notion of “many” can be considered, as well as some accounts of
“most” and “almost all”, as an intermediary notion between the maniqueist
vision of the universe conveyed by mere “there exists” and “all”. However,
it distinguishes itself from those (“most” and “almost all”) by the fact that
the set of instances that do not satisfy the assertions within the scope of
“many” is not necessarily small. In the notions of “most” and “almost all”
the set of individuals that do not satisfy the assertions is necessarily small
(in the particular case of “almost all”, they are termed exceptions). There
are situations, however, in which the evidence set in favor of the assertion
as well as of its complement (in relation to a particular universe) can be
considered large. For example, “many Brazilians wear skirts” is large, but
it seems intuitive that “many Brazilians don’t wear skirts” is (hopefully) a
large set too.

As another example of statements formalized under the notion of “many”,
consider the universe of natural numbers. It seems intuitive that one can
assert that “many natural numbers are odd” and “many natural numbers
are even”. In the Logic of Simple Majority, however, we cannot assert either
of them and, in the Ultrafilter Logic (that treats the notion of “almost all”),
stating one of them impeaches stating the other.

Besides the properties presented for general modulated logics, the fol-
lowing property is clearly identified with the notion of “many”: if many
individuals satisfy a sentence ϕ, and ϕ is contained in ψ, then ψ is also
satisfied by many individuals of the universe.

The notion of “many”, exposed above, can be captured by the mathemat-
ical concept of upper closed families (or families of principal filters). An up-
per closed family F over a universe A is a collection of subsets of A such that

(i) if B ∈ F and B ⊆ C, then C ∈ F ;

(ii) A ∈ F ;

(iii) ∅ 6∈ F .



Modulated logics and flexible reasoning 227

The notion of a large set in a universe is thus identified with the concept
of upper closed families over this universe. In this way, a property is true for
many individuals in a universe (i.e., the evidence set is large) if it belongs
to the family of principal filters associated with the model.

By the well-known finite intersection property for filters (see [BM77]) if
B is a set of subsets of A then B can be extended to a family of principal
filters ([Grá99]).

Syntactically, we define a new modulated quantifier, ♥ (in the language
of modulated logics) called quantifier of many, by

♥xϕ(x)

meaning “for many x, ϕ(x)”.
In the following section we present the formal system (Lτωω(♥)) and its

semantics, which formalize the notion of “many” interpreted by the concept
of upper closed families (or families of principal filters).

4.1. Syntax, semantics and axiomatics for Lτ
ωω(♥)

The language of Lτωω(♥) is obtained by particularizing in Lτωω(Q) the quan-
tifier Q to the quantifier ♥ for many. The semantical interpretation of
formulas in Lτωω(♥) is carried out in modulated structures where the sub-
sets q are identified with families of principal filters. Formally, a modulated
structure for Lτωω(♥), called a structure of principal filters, is constructed by
endowing A with a family of principal filters FA over A and given by

AF = 〈A, FA〉 = 〈A, {RA
i }i∈I , {f

A
j }j∈J , {c

A
k }k∈K , F

A〉.

The notion of satisfaction of a formula of the form ♥xϕ, whose free vari-
ables belong to {y1, . . . , yn}, by a sequence a = (a1, . . . , an) in A, is defined
by

AF
� ♥xϕ[a] iff {b ∈ A : AF

� ϕ[b; a]} ∈ FA

for FA a family of principal filters in A.
Intuitively ♥xϕ(x) is true in AF , i.e., the set of individuals in A satisfying

ϕ(x) belongs to FA if and only if many individuals of A satisfy ϕ(x).
Again, the usual semantical notions like a model, validity and semantical

consequence for this system are the same as the general ones for modulated
logics.

The following examples illustrate assertions that can be naturally ex-
pressed in Lτωω(♥).
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Example 4.12. Let E(x), O(x) and G(x, y) be predicates in Lτωω(♥), standing
for “x is even”, “x is odd” and “x is greater than y”, respectively.

Considering the universe of natural numbers, we represent the assertions:

(a) “many natural numbers are even” by: ♥xE(x);

(b) “many natural numbers are odd” by: ♥xO(x);

(c) “for any natural number, many natural numbers are greater than it” by:
∀y♥xG(x, y).

The axioms for Lτωω(♥) are the ones of Lτωω(Q), augmented by the fol-
lowing specific axiom for quantifier ♥:

(Ax5♥) ∀x(ϕ(x) → ψ(x)) → (♥x(ϕ(x)) → ♥x(ψ(x))).

Given an interpretation with a universeA and ϕ,ψ formulas, with exactly
one free variable, axiom (Ax5♥) intuitively asserts, for sets [ϕ] = {a ∈ A :
ϕ[a]} and [ψ] = {a ∈ A : ψ[a]}, that if [ϕ] contains many individuals and [ϕ]
is a subset of [ψ], then [ψ] also contains many individuals.

The inference rules, usual syntactical notions like a sentence, a proof, a
theorem, a logical consequence, consistence, etc., for Lτωω(♥) are the same
as those for general modulated logics.

Looking at the definition of satisfaction and the axiomatic system in
Lτωω(♥), we see that, syntactically, the quantifiers ♥ and ∃ have the same
logical consequences. However, the modulated quantifier ♥ differs seman-
tically from ∃ by offering a free choice of the sets representing large sets,
i.e., sets that represent many individuals. In this way, under the notion
of “many”, we establish for each situation (or model) a measure of large-
ness. Under the notion of “there exists” such a measure is invariant for all
structures (and models), i.e., the existential quantifier is interpreted in all
structures by q ⊆ ℘(A) − {∅}, for a universe A .

The following logical consequence of Lτωω(♥) can be easily proven.

Theorem 4.13. The following formulas are theorems in Lτωω(♥):

(a) ♥xϕ(x) ∧ ♥xψ(x) → ♥x(ϕ(x) ∨ ψ(x));

(b) ¬♥x(ϕ(x) ∧ ¬ϕ(x)).

Proof. Routine.

Example 4.14. Let B(x, y), S(x) and D(x) be predicates in Lτωω(♥), standing
for “x likes drinks of a type y”, “x wears shoes” and “x wears dresses”.
Examples of formalized assertions in Lτωω(♥) are:
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(a) “many people like some type of drink” by: ♥x∃yB(x, y);

(b) “many people like many species of drink” by: ♥x♥yB(x, y);

(c) “many people wear dresses” by: ♥xD(x).

So, on the basis of the axiomatic system of the Logic of Many, we can
deduce for example the following from (c) above :

(d) “many people wear dresses or wear shoes”, or

(e) “many people like some kind of drink or wear dresses”

But the intersection of assertions (d) and (e) in this example is not a logical
consequence in Lτωω(♥), i.e., the intersection of those assertions does not
constitute a collection of “many” individuals. This fact agrees with our
intuition that, although assertions (d) and (e) represent large sets, the set
interpreting their intersection is not necessarily large. Besides, as already
cited in previous examples, we may not deduce in this case the negation of
assertion (d), i.e., ¬♥x(D(x) ∨ S(x)), neither the negation of assertion (e).
Again, this seems to go along our intuition, since apparently, both negations
(of (d) and (e)) fail to constitute small sets.

We can easily verify that theorems 2.2, 2.3, 2.4 and 2.5 for modulated
logics remain valid in the Logic of Many.

4.2. Soundness and Completeness for Lτ
ωω(♥)

This section shows that the Logic of Many is sound and complete with
respect to structures of principal filters.

Theorem 4.15 (Soundness). If ϕ is a theorem of Lτωω(♥), then ϕ is valid.

Proof. This is immediate, since rules (MP) and (Gen) preserve the validity
of formulas, and the axioms of Lτωω(♥) are true in every structure of principal
filters.

The proof of the Completeness Theorem for Lτωω(♥) uses an analogous
construction of the well-known method of building models by adding wit-
nesses (known as Henkin’s method) to modulated models.

Theorem 4.16 (Extended Completeness Theorem). Let T be a set of sen-

tences of Lτωω(♥). Then, T is consistent if and only if T has a model.
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Proof. We sketch here only the crucial steps of the proof. Given a set
T of sentences in Lτωω(♥) and C a set of new constants, we extend T to a
consistent set T ∗ such that T ∗ has C as the witness set. We define a canonical
model of a family of principal filters AF = 〈A, {RA

i }i∈I , {f
A
j }j∈J , {c

A
k }k∈K ,

FA〉 in a similar way to the completeness proof for classical logic, including
the definition of an appropriate family of principal filters FA over A as
follows:

(1) We define for each formula ϕ(v), with free variables v = {v1, . . . , vn},

ϕ(v)T = {(c∼
1 , . . . , c

∼
n ) ∈ An : T ⊢ ϕ(c1, . . . , cn)}

and considering the formulas θ(x), with only one free variable,

BT = {θ(x)T ⊆ A : T ⊢ ♥xθ(x)}.

(2) In view of the axiom (Ax5♥) in Lτωω(♥), and using the finite intersec-
tion theorem for filters, BT ⊆ ℘(A) can be extended to a family of principal
filters FA. Let FA ⊆ ℘(A) be the family of principal filters generated by BT .

It can be shown by induction on the length of ϕ that for every sentence
ϕ of T,AF

� ϕ iff T ⊢ ϕ. The only interesting step is where ϕ is a sentence
of the form ♥xϕ(x). Let θ(x) ≡ ♥xϕ(x).

AF
� ♥xϕ(x) iff {c∼ ∈ A : AF

� ϕ(c∼)} ∈ FA iff, by inductive hypoth-
esis, {c∼ ∈ A : T ⊢ ϕ(c∼)} ∈ FA iff (ϕ(x))T ∈ BT iff T ⊢ ♥xϕ(x).

Since Lτωω(♥) preserves the Completeness Theorem, then Compactness
and Löwenheim-Skolem Theorems can be adapted to hold for Lτωω(♥). It
is worth noting that though there may be an apparent conflict involving
such results and the well-known Lindström’s theorems which characterize
classical logics (see, e.g., [Flu85]), this can be easily explained taking into
consideration that our notion of a model is not a standard one, due to the
presence of families of principal filters in the models.

5. The Logic of Plausibility

The purpose of this section is to formalize inductive statements of the kind
“a ‘good’ number of...”. The expression “‘good’ number” is used here to
mean a significant set of positive evidence, but not necessarily large with
respect to a universe. The sense of the notion of a significant set employed
here is that, although it can be small, it represents a characteristic which is
present almost everywhere in the universe.
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For example, consider again the universe of Brazilians and the assertion
“a ‘good’ number of Brazilians are unemployed”. What we mean in this situ-
ation is that, even considering that the set formed by unemployed Brazilians
may not be large (in relation to the universe size), it represents a property
present almost everywhere in the country. In other words, even if we know
a single Brazilian who is not unemployed, we can find someone in a close
neighborhood who is. We will see further that we can also consider this
logic as formalizing the notion of “ϕ is ubiquitous” or “ϕ is valid almost
everywhere”, for a sentence ϕ.

The concept we want to formalize is independent of the notion of a large
evidence set, but akin to the notion of “significant evidence” ascribed to an
assertion. A smaller set may be more significant than a larger one, or just
as significant.

On the one hand, those statements express a more “vague” form of in-
ductive reasoning. On the other, sentences of this kind (“ significant positive
evidence”) represent assertions close to those used in statistical inference, in
which the evidence set (sample) considered sufficient to establish inferences,
although significant, is generally small in relation to the universe size. In
this theory, in general, a small non-biased (random) set is more significant
than another one, perhaps larger but biased.

This suggests a connection between modulated logics and Bayesian in-
ference, which permits interpretations of probabilities as degrees of belief,
contrary to strict frequentism, and also with Bayesian epistemology, a con-
temporary theory aiming to create a formal apparatus for inductive logic5.

Thinking about the features of the notion of “a ‘good’ number of”, it
seems natural that if there exists a ‘good’ number of individuals for which
ϕ is true, and for a ‘good’ number of individuals ψ is also satisfied, then for
a ‘good’ number of individuals, ϕ or ψ is satisfied too. For instance if “a
‘good’ number of Brazilians love soccer” and “a ‘good’ number of Brazilians
love samba”, then it is natural that we can assert that “a ‘good’ number of
Brazilians love soccer or love samba”.

It also seems completely intuitive that if we know that the whole universe
satisfies an assertion ϕ, then a ‘good’ number of individuals of this universe
also satisfies ϕ. Conversely, if no individual in the universe satisfies an
assertion ϕ, then certainly there does not exist a ‘good’ number of individuals
that satisfy ϕ.

5Both Bayesian inference and Bayesian epistemology are based upon certain presuppo-
sitions inherited from Thomas Bayes in the 18th Century.
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Another apparently intuitive property of this notion is that if two sets
are not significant, i.e., do not represent assertions of the type “a ‘good’
number of ...”, then their union is also not significant. For example, if the
set of Brazilians that love baseball is not significant, i.e., we do not have
that “a ‘good’ number of Brazilians love baseball”, and the set of Brazilians
that love golf is not significant either, then it seems intuitive that the set of
Brazilians that love baseball or love golf is not significant.

Dually we can assert that if two sets are both significant, i.e., they rep-
resent assertions of the type “a ‘good’ number of...”, then their intersection
is significant too. [SCV99] uses a similar argument to justify that the inter-
section of (qualitative) large sets is large.

The notion of plausibility sketched above has the following structural
properties:

1. if two assertions are plausible, then so is their conjunction and disjunction;

2. if every individual of the universe satisfies the assertion, then it is plau-
sible;

3. if no individual of the universe satisfies the assertion, then it is not plau-
sible.

Such properties lead us to the idea of topology.
However, the usual clause in the definition of topology which asserts that

“the union of an arbitrary families of open sets is an open set” has no coun-
terpart in flexible reasoning, since reasonings and arguments (as deductions)
are assumed to be of finite character. Moreover, the empty set is open in ev-
ery topology, but no form of inductive reasoning can infer assertions without
supporting evidence (cf. axiom (Ax2) of general modulated logics).

For such reasons, in the formalization of inductive assertions of the type
“a ‘good’ number of x, ϕ(x)” we employ a more abstract notion of topology
called reduced topology.

Definition 5.17. A reduced topology is a family ℑ of subsets of a set X,
called reduced open subsets which satisfies the following conditions:

(a) the intersection of two reduced open subsets is a reduced open subset;

(b) the union of two reduced open subsets is a reduced open subset;

(c) X is a reduced open subset;

(d) the empty set ∅ is not a reduced open subset.
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The notions of reduced topological space and reduced closed subset are
defined analogously to those for the usual topology. Also, by analogy with
corresponding notions in topology, we can introduce a reduced topology in
a set by describing just the ‘basic’ reduced open sets as follows.

A reduced open basis, or simply a basis in a reduced topological space
(X,ℑ), is a collection B of reduced open subsets of X, called basic reduced
opens, with the following property: every reduced open subset A ⊆ X is
expressed as a non-void finite union A = ∪βλ of reduced open subsets which
belong to B.

The following theorem can be proven:

Theorem 5.18. A family B of sets is a basis for some reduced topology over

X =
⋃

{β : β ∈ B} if and only if all members of B are pairwise non-disjoint

and, for any two members U , V of B and each point x in U ∩ V , there is W
in B such that x ∈ W and W ⊆ U ∩ V .

Proof. Analogous to the corresponding theorem for topological spaces (see
[Kel55]).

This last condition is fulfilled, in particular, when U ∩ V ∈ B.
It can be easily noted that the notion of a reduced topology does not

refer to a new concept of neighborhood, but rather to the concept of a dense
neighborhood, since, as it will be shown, every reduced topology defines a
basis of dense opens of a topological space (in another space). This fact is a
consequence of the following proposition:

Theorem 5.19. Every reduced topology defines a basis of dense opens of a

topological space.

Proof. Let ℑ be a reduced topology. Given U ∈ ℑ, we define

Û = {V ∈ ℑ : U ⊆ V }, where Û ⊆ ℑ.

• The set B = {Û : U ∈ ℑ} is a basis of a topology in ℑ.

In fact, if Û1, . . . , Ûn ∈ B, then Û1 ∩ · · · ∩ Ûn = ̂(
⋃n
i=1 Ui) ∈ B. So

ℑ∗ = {
⋃

i∈I

Ûi : Ûi ∈ B} is a topology over ℑ.

Moreover, Û is dense. In fact, let V =
⋃
i∈I Ûi 6= ∅ be an open subset

in ℑ∗, Û ∩
⋃
i∈I Ûi =

⋃
i∈I Û ∩ Ûi =

⋃
i∈I

̂(U ∪ Ui). But, U ∪ Ui ∈ ̂(U ∪ Ui),

then U ∪ Ui ∈
⋃
i∈I

̂(U ∪ Ui), whence Û ∩
⋃
i∈I Ûi 6= ∅. Then, Û is dense.

Therefore, every reduced topology defines a basis of dense opens of a
topological space.
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In this way, every reduced topology ℑ defines a topology ℑ∗ (in another
space) such that the reduced open sets of ℑ are identified with elements of
a basis of dense subsets of ℑ∗.

The previous result justifies an alternative interpretation of Hxϕ(x) as
“ϕ(x) is ubiquitous”, i.e., although the evidence set may not be large (in
relation to the universe), individuals satisfying that property are densely
widespread in the universe.

As an example of this assertion, consider the universe of real numbers and
let R(x) be the unary predicate standing for “x is rational”. We can assert
“the rational numbers are ‘ubiquitous”’, since in any open neighborhood of a
real number we find a rational. We remind, however, that the set of rational
numbers is not large (in relation to the size of real numbers).

We can still easily verify the following property about reduced topology.

Theorem 5.20. Every family of dense opens in a topological space is a

reduced topology.

Proof. Immediate from Definition 5.17.

Syntactically, we identify the modulated quantifier Q with a new quan-
tifier H, called quantifier of plausibility, in the language of modulated logic,
given by

Hxϕ(x)

representing the assertion “a ‘good’ number of x, ϕ(x)” or “there are suffi-
cient x such that ϕ(x) is ‘ubiquitous”’.

We call this particularization of modulated logics the Logic of Plausibil-
ity.

The following section presents the formal system and semantics for the
Logic of Plausibility, intended to formalize the notion of plausibility of an
assertion supported by pieces of evidence.

5.1. Syntax, semantics and axiomatics of Lτ
ωω(H)

Taking into account that the system Lτωω(H) constitutes another particular-
ization of general modulated logics designed to capture the notion of “for a
‘good’ number of”, it will be defined extending Lτωω(Q) by interpreting the
quantifier Q as a subset q with a reduced topology and including specifics
axioms for this kind of inductive assertions.
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In this way, the language of Lτωω(H) is obtained by identifying the quan-
tifier Q in Lτωω(Q) with the plausibility quantifier H. The semantical inter-
pretation of formulas in Lτωω(H) is defined through modulated models where
the subset q is identified with a reduced topology. Formally, a structure for
Lτωω(H), called a reduced topological structure, is defined by endowing A with
a reduced topology ℑA over A, given by:

Aℑ = 〈A,ℑA〉 = 〈A, {RA
j }j∈J , {f

A
j }j∈J , {c

A
k }k∈K ,ℑ

A〉.

For a sequence a = (a1, . . . , an) in A, the notion of satisfaction of a
formula of the form Hxϕ whose set of variables is contained in {y1, . . . , yn}
is defined by:

Aℑ
� Hxϕ[a] iff {b ∈ A : Aℑ

� ϕ[b; a]} ∈ ℑA.

In intuitive terms, Hxϕ(x) is true in Aℑ iff a certain ‘good’ number of
individuals of A satisfy ϕ(x). Furthermore, a ‘good’ number of individuals
of A satisfy ϕ(x) iff the set of individuals satisfying ϕ belongs to ℑA, i.e.,
ϕ(x) is ubiquitous.

The usual semantic notions such as a model, validity, semantical conse-
quence, etc., are defined for this system in a similar way as those for general
modulated logics.

The following examples illustrate assertions expressed in Lτωω(H).

Example 5.21. Let C(x) and S(x) be unary predicates in Lτωω(H) standing
for “x likes coffee” and “x likes samba”, respectively.

Considering the universe of Brazilians, the following sentences can be
formalized in Lτωω(H):

(a) “a ‘good’ number of people like coffee” by: HxC(x);

(b) “a ‘good’ number of people like samba” by: HxS(x).

whose intuitive meaning is the following: even if you know that a single
individual does not like samba, for example, you will find in a closer neigh-
borhood someone who does, i.e., S(x) is ubiquitous.

Example 5.22. Take the universe of real numbers and let R(x) be a unary
predicate in Lτωω(H) standing for “x is rational”. The following sentences
can be formalized in Lτωω(H):

(a) “a ‘good’ number of real numbers is rational” by: HxR(x); or

(a′) “The set of rational numbers is ubiquitous among real numbers” by:
HxR(x).
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The axioms of Lτωω(H) are those of Lτωω(Q), augmented by the following
specific axioms for quantifier H:

(Ax5H) (Hxϕ(x) ∧ Hxψ(x)) → Hx(ϕ(x) ∧ ψ(x));

(Ax6H) Hxϕ(x) ∧ Hxψ(x) → Hx(ϕ(x) ∨ ψ(x)).

Considering an interpretation with universe A, formulas ϕ and ψ with
exactly one free variable and sets [ϕ] = {a ∈ A : ϕ[a]} and [ψ] = {a ∈ A :
ψ(a)}, axioms (Ax5H) and (Ax6H), intuitively, assert that:

• (Ax5H) if a ‘good’ number of individuals belong to [ϕ] and [ψ], then a
‘good’ number of individuals belong to their conjunction;

• (Ax6H) if a ‘good’ number of individuals satisfy conditions [ϕ] and [ψ],
then a ‘good’ number of individuals satisfy their disjunction.

Usual syntactical notions like a sentence, a proof, a theorem, logical
consequence, consistency, etc., are, again, defined for Lτωω(H) in an analogous
way as those defined in the general modulated logics.

Theorem 5.23. The following formulas are theorems in Lτωω(H):

(a) Hxϕ(x) ∧ Hxψ(x) → ∃x(ϕ(x) ∧ ψ(x));

(b) Hxϕ(x) → ¬Hx¬ϕ(x).

Proof. Routine.

5.2. Soundness and completeness for Lτ
ωω(H)

This subsection shows that, as well as in the Logic of Many, a theory in
Lτωω(H) is sound and complete with respect to reduced topological structures.

Theorem 5.24 (Soundness). If ϕ is a theorem in Lτωω(H), then ϕ is valid.

Proof. This is a routine proof, since the rules (MP) and (Gen) preserve
validity of formulas, and axioms of Lτωω(H) are true in every reduced topo-
logical structure.

In order to prove the completeness theorem for Lτωω(H) it is convenient
to adapt the arguments of the completeness for Lτωω(H).

Theorem 5.25 (Extended Completeness Theorem). Let T be a set of sen-

tences in Lτωω(H). Then, T is consistent if and only if T has a reduced

topological model.
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Proof. We define a canonical reduced topological model Aℑ = 〈A,
{RA

i }i∈I , {f
A
j }j∈J , {c

A
k }k∈K ,ℑ

A〉 in a similar way as for the completeness
proof of the Logic of Many, changing the definition in order to obtain an
appropriate reduced topology ℑA over A in the following way: (1) define
first, for each formula ϕ(v) with free variables, v = {v1, . . . , vn},

ϕ(v)T = {(c∼
1 , . . . , c

∼
n ) ∈ An : T ⊢ ϕ(c1, . . . , cn)} and

for formulas θ(x) with only one free variable,

BT = {θ(x)T ⊆ A : T ⊢ Hθ(x)}.

In view of the axiom (Ax5H) and by Theorem 5.18, BT ⊆ ℘(A) is a
basis for some reduced topology. It is clear that BT is a reduced topol-
ogy, considering axioms (Ax1), (Ax6H) and (Ax2). In fact, if θ(x)T ∈ BT ,
then T ⊢ H(x)θ(x). But by (Ax2), T ⊢ Hxθ(x) → ∃xθ(x) so, by (MP),
T ⊢ ∃xθ(x), from where we have that T ⊢ ∃xθ(x) → θ(c) for some c ∈ C.
Applying (MP), we have that T ⊢ θ(c) which means that θ(x)T 6= ∅. There-
fore, ∅ does not belong to BT . On the other hand, by axiom (Ax1),
T ⊢ ∀x(x = x) → Hx(x = x), and T ⊢ ∀x(x = x), hence we obtain, by (MP),
that T ⊢ Hx(x = x) and, then, (x = x)T = A ∈ BT . Also, if θ(x)T , ϕ(x)T ∈
BT we have that T ⊢ Hxθ(x) and T ⊢ Hxϕ(x), from which follows that
T ⊢ Hxθ(x) ∧ Hxϕ(x). But, by the axiom (Ax6H), T ⊢ Hxθ(x) ∧ Hxϕ(x) →
Hx(θ(x) ∨ ϕ(x)) and then, by (MP), T ⊢ Hx(θ(x) ∨ ϕ(x)). Then, (θ(x) ∨
ϕ(x))T ∈ BT or θ(x)T ∪ ϕ(x)T ∈ BT .

Therefore BT is a reduced topology.
Now we show, by induction on the length of ϕ, that for every sentence

ϕ of T :

Aℑ
� ϕ iff T ⊢ ϕ.

The only interesting case remaining to be proven is when ϕ is a sentence
of the form Hxψ(x). Let ϕ be a sentence of the form Hxψ(x).

Aℑ
� Hxψ(x) iff {c∼ ∈ A : Aℑ

� ψ(c∼)} ∈ BT iff, by inductive hypoth-
esis, {c∼ ∈ A : T ⊢ ψ(c∼)} ∈ BT iff (ψ(x))T ∈ BT iff T ⊢ Hxψ(x).

Since Lτωω(H) is complete, it is not difficult to see that Compactness and
Löwenheim-Skolem Theorems can be also proved for Lτωω(H).
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6. The Logic of Almost All: Ultrafilter Logic

The development of Modulated Logics has had as its first motivation the
Ultrafilter Logic (Lτωω(∇)), proposed in ([CS94]) in an endeavor to propose
a monotonic substitute for the default logic of [Rei80] based on the con-
cept of ultrafilter. Since then further work about Ultrafilter Logic has been
developed (e.g., [CV97], [SCV99], [Vel99b] and [VC04]).

This system aims to formalize an intuition for “almost all” or “generally”,
by means of including a generalized quantifier in the classical first order
language. The central idea in this approach is the semantical interpretation
of the quantifier “almost all” by a proper ultrafilter structure.

However, although Ultrafilter Logic6 has represented the initial moti-
vation for Modulated Logics, this logical system may be characterized as
particular cases of Modulated Logics, as we will see below.

The language of (Lτωω(∇)) is obtained by identifying the quantifier Q
in Lτωω(Q) with the quantifier ∇. The semantic interpretation of formulas
in (Lτωω(∇)) is carried out in modulated structures where the subsets q are
identified with a proper ultrafilter. Formally, a structure for (Lτωω(∇)) can
be defined endowing a classical first order structure A, with an ultrafilter
UA over A and given by

AU = 〈A,UA〉 = 〈A, {RA
i }i∈I , {f

A
j }j∈J , {c

A
k }k∈K ,U

A〉.

The notion of satisfaction of a formula of the form ∇xϕ, whose free
variables belong to {y1, . . . , yn}, by a sequence a = (a1, . . . , an) in A, is de-
fined by

AU
� ∇xϕ[a] iff {b ∈ A : AU

� ϕ[b; a]} ∈ UA

for UA a proper ultrafilter on A.
In intuitive terms, ∇xϕ(x) is true in UA iff almost all individuals of A

satisfy ϕ(x). Furthermore, almost all individuals in A satisfy ϕ(x) iff the set
of individuals satisfying ϕ(x) belongs to a proper ultrafilter UA.

The usual semantical notions such as a model, validity, semantical con-
sequence, etc. are defined for Ultrafilter Logic in a similar way as those for
general modulated logics.

The axioms of Lτωω(∇) can be defined as those of Lτωω(Q), augmented by
the following specific axioms for the quantifier ∇:

6For a detailed exposition concerning Ultrafilter Logic see [SCV99], [CV97] and also
[VC04]
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(Ax5∇) ∀x(ϕ(x) → ψ(x)) → ((∇xϕ(x)) → (∇xψ(x)));

(Ax6∇) ((∇xϕ(x)) ∧ (∇xψ(x))) → ∇x(ϕ(x) ∧ ψ(x));

(Ax7∇) ∇xϕ(x) ∨ ∇x¬ϕ(x).

Given an interpretation with a universe A and formulas ϕ and ψ with
exactly one free variable, then for sets [ϕ] = {a ∈ A : ϕ[a]} and [ψ] = {a ∈
A : ψ[a]}, intuitively, axioms (Ax5∇) to (Ax7∇) assert that (cf. [SCV99]):

• (Ax5∇) if [ϕ] ⊂ [ψ] and [ϕ] is large (almost all individuals of A), then so
is [ψ];

• (Ax6∇) if [ϕ] and [ψ] are large, then [ϕ] ∩ [ψ] is large too;

• (Ax7∇) either ϕ or its complement [¬ϕ] is large.

[Vel99b] admits that axiom (Ax7∇) is probably the least intuitively ac-
ceptable one. He justifies its adoption by means of the notion of importance
of sets, asserting that“the universe is so important (i.e. carries so much
weight) that any attempt to cover it by finitely many subsets must employ
a very important subset (one carrying considerable weight, or equivalently,
almost as important as the entire universe)” ([Vel99b], p. 480). In that pa-
per, Veloso prefers to use the notion of “important” instead of “large” to
approach questions concerning the notion of “almost all” or “generally”.

Usual syntactical notions as a sentence, a proof, a theorem, logical con-
sequence, consistency, etc., can be defined for Lτωω(∇) in the same way as
those defined in the general modulated logics.

Several properties of Ultrafilter Logic were already proven, as mentioned
before. Some remarkable features that this logic shares with classical logic
include the deduction theorem, soundness and completeness, compactness
and Löwenheim-Skolem (e.g. [CV97]), existence of prenex normal forms (cf.
[SCV99]), many-sorted versions (e.g. [CV97]) and the development of a nat-
ural deduction system ([RHV03]).

In the next section we discuss some fundamental issues about the rela-
tionships among particular forms of Modulated Logics, presenting examples
of situations in which some are better suited than the others.

7. Comparing systems of modulated logic

This section compares the particular forms of Modulated Logic introduced
here (including Ultrafilter Logic), trying to clarify the syntactical relations
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among them. Denoting by Th(L(Q)) the theory of the basic system L7,
and denoting by Q one of the quantifiers ♯,♥,H,∇, we can easily prove the
following syntactical relations among those particular forms of Modulated
Logics ([Grá99]):

Th(L) ⊆ Th(L(H)) ⊆ Th(L(∇)) and

Th(L) ⊆ Th(L(♥)) ⊆ Th(L(♯)) ⊆ Th(L(∇)).

Illustratively, taking Th(L(Q)) → Th(L(Q′)) to mean Th(L(Q)) ⊆
Th(L(Q′)), we can express the relationship above in the following way:

Th(L(∇)) Th(L(♯))oo

Th(L(H))

OO

Th(L(♥))

OO

Th(L)

99rrrrrrrrrr

eeLLLLLLLLLL

We will present some statements that will help to clarify the distinctive
features of those systems.

Let Q be ∇, ♥, H or ♯; then the formulas of the form ¬Qxϕ(x) →
Qx¬ϕ(x) are theorems of Ultrafilter Logic, but they are neither theorems in
the Logic of Simple Majority, nor in the Logic of Many, nor in the Logic of
Plausibility. So this gives to Ultrafilter Logic a maximal status with respect
to inclusion and provides to this system a decisive criterion for ’large’ subsets.

In the same way, formulas of the form

(Qxϕ(x) ∧Qxψ(x)) → Qx(ϕ(x) ∧ ψ(x))

are theorems of the Ultrafilter Logic and of the Logic of Plausibility, but
they are not theorems of the Logic of Simple Majority and of the Logic of
Many. So, a characteristic of the Logic of Plausibility is that it formalizes a
notion of a significant set, such that the intersection of two significant sets
is also significant. Similarly, the Ultrafilter Logic treats the notion of ‘large’
set, so that it makes sense to assert that the intersection of ‘large’ sets is
a large set too. These systems are only concerned with the treatment of
inductive assertions that are coherent with such principles. If this is not

7By a question of simplicity, we will adopt in this section the symbol L instead of Lτ
ωω.
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observed in the situation to be formalized, probably the assertions will be
better formalized by other forms of inductive assertion, for example, as those
proposed by the Logic of Many or the Logic of Simple Majority.

It is still to be observed that formulas of the form

(Qxϕ(x) ∧Qxψ(x)) → ∃x(ϕ(x) ∧ ψ(x))

are theorems of the Ultrafilter Logic, the Logic of Plausible and the Logic
of Simple Majority, but they are not theorems of the Logic of Many; thus
intuitively, in the last system, the inherent concept of ‘large’ is such that the
intersection of large sets is not necessarily nonempty.

Besides, it should be clear from the axiomatics (details can be found
in [Grá99]) that the quantifiers ∇,♥,H, ♯ are intermediary between ∀ and
∃, and that their relative position is the following (take Q → Q′ to mean
Qxϕ → Q′xϕ):

∃

∇

OO

♯oo

H

OO

♥

OO

∀

??�������

__>>>>>>>>

Semantically, taking into account that the Logic of Simple Majority
shows itself to be incomplete with respect to the intended models, we will
restrict our analysis to the relationship among the Logic of Many, the Logic
of Plausibility and the Ultrafilter Logic.

For A, a classical first-order structure with a universe A, let [∀] = {A},
[∃] = ℘(A) − {∅}, ℑ be a reduced topology over A, and F a family of prin-
cipal filters over A.

It can be easily seen (see [Grá99]) that we can construct an ultrafilter U
on the basis of ℑ and an ultrafilter U ′ on the basis of F . Considering that
[∀] is, by definition, a subset of F and ℑ and that U and U ′, by definition,
belong to [∃], we can express the following relations:

[∀] ⊆ ℑ ⊆ U ⊆ [∃] and

[∀] ⊆ F ⊆ U ′ ⊆ [∃].
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By availing ourselves of the semantical relationship observed above, the
following picture (where C → C ′ means C ⊆ C ′) illustrates the relations
among [∀] and [∃] sets, ultrafilters U , reduced topologies ℑ and families of
principal filters F on A:

[∃]

U

OO

ℑ

>>}}}}}}}}
F

``AAAAAAAA

[∀]

??~~~~~~~~

__@@@@@@@@

Reflecting on the possibilities of applying these systems, we can conclude
that there exists no universally applicable inductive reasoning pattern. In
agreement with [McC86], each system seems to give rise to a different form
of inductive reasoning. So, also in agreement with [DW91], to regard one
of these systems as preferable in relation to the others in all questions of
inductive reasoning does not seem to be a reasonable position.

The account for the Logic of Simple Majority depends on the notion of
large sets taken in the “counting”, “non-vague” sense. In this case, the ex-
act size of the set is relevant and the parameter (threshold) that establishes
largeness of sets is just one in all models: a set is only considered large when
its cardinal number is greater than the cardinal number of its complement.
Thus the notion of “most” expressed through the concept of cardinality
treated in this logic is reduced to a quantitative, measurable aspect, and
presumably obtains conclusions less exposed to debate. The example about
real numbers (in which we formalize the statement asserting that irrational
numbers constitute the most of real numbers) is a typical example of appli-
cation of the Logic of Simple Majority; on the other hand, this logic suffers
from incompleteness, as seen in Subsection 3.1.

In the Logic of Many the notion of largeness is more vague. In this
system, two sets can be large, without their intersection being nonempty,
i.e., they not necessarily constitute the greater part of universe, as in the
Logic of Simple Majority. This is the case of Example 4.12, presented in
Section 4.1, in which we formalize the argument that many natural numbers
are odd and that many natural numbers are even. Another example where
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the Logic of Many is very useful in situations as those below Example 4.14 at
page 229 where the intersection of (d) and (e) is not a large set, even it can
be non-empty. Such account of “many” has a purely qualitative character,
since it is invariant from one model to another.

On the other hand, the Logic of Plausibility does not depend on the
notion of a large set, but it is connected with the notion of a significant
evidence set. Examples 5.21 and 5.22 appropriately illustrate the cases where
this system works very well. This notion of significance of evidence has a
pertinent relationship to the notion of Bayesian statistical inference, where
we do not necessarily use large samples, but sufficiently relevant samples to
carry out the inferences.

Still, the Logic of Plausibility can be considered as a subsystem of the
Ultrafilter Logic in which the notion of plausibility is not inherited to su-
persets of plausible sets (recall that it does not deduce theorems of the form
∀x(ϕ(x) → ψ(x)) → (Qx(ϕ(x)) → Qx(ψ(x)))).

As a brief conclusion concerning the essential distinction between the
inductive arguments supported by the systems presented in sections 3, 4
and 5, we can say that the Logic of Simple Majority intends to formalize
rigid quantitative inductive assertions, while other systems support flexible,
qualitative inductive assertions.

8. Scope and significance of modulated logics

Modulated logics are conservative extensions of the classical first-order logic,
and the purely qualitative cases studied here (which excludes the Logic of
Simple Majority) enjoy sound and complete deductive system that share
with the classical first-order logic some important features, such as com-
pactness and Löwenheim-Skolem properties. The fact that we are using a
non-standard notion of a model by including a mathematical structure in
the models confers to modulated logics an independent model-theoretical
interest.

The concept of modulated logics, which leads to the development of the
systems treated in sections 3, 4 and 5, consists basically in the inclusion of a
generalized quantifier in the syntax of the classical logic. This new quantifier
is intended to represent intuitively a particular form of inductive assertions.
Semantically, each generalized quantifier is interpreted by an appropriate
mathematical structure within a modulated model. The axiom sets which
characterize each particular form of Modulated Logic are divided into two
groups of axioms, one formed by basic axioms ((Ax1) to (Ax4) presented
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in Section 2.1) and the other constituted by specific axioms to character-
ize the mathematical structure that is interpreting a particular modulated
quantifier.

Other proposals which treat somehow similar problems with (in princi-
ple) comparable views are [Wey97] and [Sch95]. Even if our approach seems
to drastically diverge from them on what concerns the role of monotonicity
in logic, there may be more points of contact than noticeable at first sight.
A principled comparison is yet to be done.

The different forms of inductive argumentation that modulated logics
are capable of formalizing open interesting possibilities for the analysis of
linguistics questions, since they offer a sharp tool that permits “logical syntax
to correspond more closely to natural language syntax” ([BC81], p. 159).

Modulated quantifiers, regarded as a theory of generalized quantifiers
break away the naive notion that “the meaning of the quantifiers must be
built into the logic, and hence cannot vary from one model to another”
([BC81], p. 162).

The notion of truth and falsity associated with generalized quantifiers
in the scope of modulated logics does not depend on any a priori logic,
but depends on which underlying measure we are using, and that “must
be included as part of the model before the sentences have any truth value
whatsoever” ([BC81], p. 163).

Another area of obvious interest are the extensions of modulated logics
in the direction of modal modulated logics. Logics of this kind seem to be
naturally appropriate to certain inherently qualitative reasoning as reason-
ing with spatial relations, of practical interest for geographical information
systems. We can only conclude that modulated quantifiers deserve further
study, contributing to the understanding of the relationship between logic
and language.

Another advantage of modulated logics is that they do not associate de-
grees of belief with the assertions supported by evidence, but work with an
intrinsic qualitative notion given by the associate mathematical structure
of their models, and thus free themselves from possible incoherences gener-
ated to confront degrees of belief associated with assertions and theories of
probability.

A related and developing research direction is to employ modulated logics
to provide alternative foundations to fuzzy concepts and fuzzy reasoning.
The notion of a fuzzy set first introduced in [Zad65] (but see [Zim01] for
the developments) has its intuitive interpretation of the concept of degress
of membership, and their logic counterpart has been connected to the idea
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of many-valuedness (logics with more than two truth-values, see [Háj98]).
Now, modulated structures offer a new approach to fuzziness which is totally
independent of many-valuedness, permitting to built natural and elegant
purely qualitative fuzzy logics. The simple idea is to attach partial ordering
relations to sets which are interpretations of our new quantifiers (see also
[VC04], Section 3.1).

If, as certain interpretations claim, fuzzy sets (and fuzzy logics) intend
to cope with the vagueness and ambiguity of natural language and common
reasoning and has to face more than one imprecision (as, for example, which
chunk of the universe is to be measured, which parameters are actually to
be measured, and so on) our purely qualitative approach seems to be much
more appropriate.

As examples, suppose that Aq = 〈A, q〉 is a modulated structure where
A = 〈A, {RA

i }i∈I , {f
A
j }j∈J , {c

A
k }k∈K , q〉 is a structure (in the usual sense)

such that R(x, y) ∈ {RA
i }i∈I interprets a partial ordering ≤ on A (that is,

≤ is interpreted as a reflexive, transitive, and anti-symmetric relation).
If p(x) is a function symbol in the language (Lτωω(∇x)), we define a fuzzy

predicate as a wff of the form:

ϕ(y) := (∇x)(p(x) ≤ p(y)) or φ(y) := (∇x)(p(y) ≤ p(x))

For instance, taking p(x) to represent body weight, ϕ(y) expresses, for
an individual y, that “y is heavy if for most individuals x, the weight p(x) is
less than the weight p(y) of y”. This individual fuzziness can be contrasted
to the population fuzziness: (∇y)ϕ(y) expresses the information that most
individuals of a certain population are fat.

Therefore ϕ(y) and φ(y) represent vague or debatable predicates, and
there is a natural qualitative fuzzy gauge attached to them which is inde-
pendent of any degrees of membership. Suppose that the complex q contains
another partial ordering ≤E on ℘(A) × ℘(A); ≤E is an external partial or-
dering, and in this case q ⊆ ℘3(A)). We say that ≤E is a plausibility measure
if the following conditions hold:

1. ∅ ≤E B and ∅ ≤E A, for every B ∈ ℘(A);

2. If B ⊆ C then B ≤E C, for every B,C ∈ ℘(A).

Observe that plausibility measures are order homomorphisms on upper
closed families (or families of principal filters) introduced in Section 4. Such
internal and external partial orderings play respectively the role of the “fuzzy
measures” and “measures of fuzziness” in the usual quantitative fuzzy set
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theory. Thus a new branch of fuzzy theory can be established, based on
modulated structures.

On the other side, modulated logics have also a natural interpreta-
tion which permits one to express interesting questions related to classi-
cal problems of philosophy of science, specially those concerning induction.
For example, the naive belief that “inductive argumentation” is necessarily
“contrary-to-inductive argumentation” is clearly challenged by the modu-
lated logics, as well as the view that flexible reasoning that formalizes un-
certainty necessarily involves non-monotonicity. Some investigations in this
direction are suggested in [VC04], Section 7, but there is still much to be
done.
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