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Abstract

This paper briefly outlines some advancements in paraconsis-
tent logics for modelling knowledge representation and rea-
soning. Emphasis is given on the so-called Logics of Formal
Inconsistency (LFIs), a class of paraconsistent logics that for-
mally internalize the very concept(s) of consistency and in-
consistency. A couple of specialized systems based on the
LFIs will be reviewed, including belief revision and proba-
bilistic reasoning. Potential applications of those systems in
the AI area of KRR are tackled by illustrating some exam-
ples that emphasizes the importance of a fine-tuned treatment
of consistency in modelling reputation systems, preferences,
argumentation, and evidence.

1 Introduction
Non-classical logics find several applications in artificial in-
telligence, including multi-agent systems, reasoning with
vagueness, uncertainty, and contradictions, among others,
mostly akin with the area of knowledge representation and
reasoning (Thomason 2020). Regarding this latter, there
is a plethora of aims and applications in view when repre-
senting a knowledge of an agent, including fields beyond
AI like software engineering, databases and robotics. Sev-
eral logics have been studied for the latter purposes, includ-
ing non-monotonic, epistemic, temporal, many-valued and
fuzzy logics. This paper highlights the use of paraconsistent
logics in some inconsistency-tolerant frameworks, introduc-
ing the family of Logics of Formal Inconsistency (LFIs) (ad-
vanced in the literature to be presented) for representing rea-
soning that makes use of the very notion of consistency and
inconsistency, suitably formalized within the systems.

2 Reasoning under contradiction
2.1 The informative power of contradictions
Contradictory information is not only frequent, and more so
as systems increase in complexity, but can have a positive
role in human thought, in some cases not being totally un-
desirable. Finding contradictions in juridical testimonies, in
statements from suspects of a crime or in suspects of tax
fraud, for instance, can be an effective strategy – contradic-
tions can be very informative in those cases (Carnielli and
Coniglio 2016).

Indeed, the so called Bar-Hillel-Carnap paradox has al-
ready suggested half century ago the collapse between the
notions of contradiction and semantic information: the less
probable a statement is, the more informative it is, and so
contradictions carry the maximum amount of information
(Carnap and Bar-Hillel 1952). However, and in the light
of standard logic, contradictions are “too informative to be
true” as a famous quote by the latter has it.

To face the task of reasoning under contradictions, a field
where human agents excel, is a difficult philosophical prob-
lem for standard logic, which is forced to equate triviality
and contradiction, and to regard all contradictions as equiv-
alent. However, skipping all technicalities in favour of a
clear intuition (technical details can be found in (Mendonça
2018)), the Bar-Hillel-Carnap observation is not paradoxical
for LFIs.

2.2 The beginings of Paraconsistent Logics
(modern era)

The idea of a non-Aristotelian logic was advanced in a lec-
ture in 1919 by Nicolai A. Vasiliev, where he proposed a
kind of reasoning free from the laws of excluded middle and
contradiction – called Imaginary Logic as an analogy with
Lobachevsky’s imaginary geometry. Such a logic would be
valid, as the former has it, only for reasoning in “imaginary
worlds” (Vasiliev 1912).

A more concrete example of a system for reasoning
with contradictions can be found in the Discussive Logic
(Jaśkowski 1948), advanced as a formal answer to the puz-
zling situation posed by J. Łukasiewicz: which logic ap-
plies in the situation where one has to defend some judge-
ment A, also considering not-A for the sake of the argument?
Jaśkowski’s strategy is to avoid the combination of conflict-
ing information by blocking the rule of adjunction. The idea
is making room for A and ¬A without entailing A ∧ ¬A,
since the classic explosion actually still holds in the form of
A∧¬A 6` B. In terms of reasoning, it has a straightforward
meaning: each agent must still be consistent! Jaśkowski’s
intuitions contributed to the proposal of the society se-
mantics and to general case, the possible-translations se-
mantics. A discussion on some conceptual points involv-
ing society semantics and their role on collective intelli-



gence can be found in (Carnielli and Lima-Marques 2017;
Testa 2020).

Another precursor, with a multi-valued approach, is the
Logic of Nonsense (Halldén 1949) that, despite its name,
captured a meaningful form of reasoning – aiming in study-
ing logical paradoxes by means of 3-valued logical matrices
(closely related to the Nonsense Logic introduced in 1938 by
A. Bochvar). An analogous approach is made by F. Asenjo,
who introduced a 3-valued logic as a formal framework for
studying antinomies by means of 3-valued Kleene’s truth-
tables for negation and conjunction, where the third truth-
value is distinguished (Asenjo 1966). The same logic has
been studied by G. Priest, from the perspective of matrix
logics, in the form of the so-called Logic of Paradox (LP)
(Priest 1979).

With respect to a constructive approach to intuitionistic
negation, D. Nelson proposed an extension of positive in-
tuitionistic logic with a strong negation – a connective de-
signed to capture the notion of “constructible falsity”. By
eliminating the explosion, Nelson obtained a (first-order)
paraconsistent logic (Nelson 1959).

Focusing on the status of contradictions in mathematical
reasoning, N. da Costa advanced a hierarchy of paracon-
sistent systems Cn (for n ≥ 1) tolerant to contradictions,
where the consistency of a formula A (in his terminology,
the ‘well-behavior’ of A) is defined in C1 by the formula
A◦ = ¬(A ∧ ¬A). Let A1 =def A

◦ and An+1=def (An)◦.
Then, in Cn, the following holds: (i) the well behaviour
is denoted by A(n) =defA

1 ∧ · · · ∧ An; (ii) A,¬A 6` B

in general, but A(n), A,¬A ` B always holds; and (iii)
A(n), B(n) ` (A#B)(n) and A(n) ` (¬A)(n).

By concentrating on the non-triviality of the systems
rather than on the absence of contradictions, da Costa de-
fined a logic to be paraconsistent with respect to ¬ if it can
serve as a basis for ¬-contradictory yet non-trivial theories
(da Costa 1974):

Definition 1. ∃Γ∃α∃β(Γ ` α and Γ ` ¬α and Γ 6` β)

2.3 Motivations: main approaches

Preservationism Similar to the way discussive logic has
it, there is a clear distinction between an inconsistent data
set, like {A,¬A} (which is considered tractable), with a
contradiction in the form A ∧ ¬A (intractable). Thus, given
an inconsistent collection of sentences (in an already defined
logic L, usually classical logic), one should not try to reason
about that collection as a whole, but rather focus on inter-
nally consistent subsets of premises. (Schotch, Brown, and
Jennings 2009).

Relevant Logics Relevant logics are mainly concerned
with a meaningful connection between the premises and the
conclusion of an argument, thus not accepting for example
inferences like B ` A → B. This strategy induces a para-
consistent character in the resulting deductions, since A and
¬A, as premisses, do not necessarily have a meaningful con-
nection with an arbitrary conclusion B (Anderson, Belnap,
and Dunn 1992).

Adaptive Logics Human reasoning can be better under-
stood as endowed with many dynamic consequence rela-
tions. Adaptive reasoning recognizes the so-called abnor-
malities to develop formal strategies to deal with them:
for instance, an abnormality might be an inconsistency
(inconsistency-adaptive logics), or it might be an inductive
inference, and a strategy might be excluding a line of a proof
(by marking it), or to change an inference rule. (Batens
2001).

Dialetheism A dialetheia is a sentence A, such that both
it and its negation ¬A are true. Assuming that falsity is the
truth of negation, a dialetheia then is a sentence which is
both true and false. Dialetheism, accordingly, is the meta-
physical view that there are dialetheia, i.e., that there are
true contradictions. As such, dialetheism opposes the Law
of Non-Contradiction in the forma of ¬(A ∧ ¬A) (Priest
1987). A system admitting ‘both’ as a truth-value, for in-
stance, is the aforementioned Logic of Paradox.

Inconsistent (or rather Contradictory) Formal Systems
The main idea is that there are situations in which contra-
dictions can, at least temporarily, be admissible if their “be-
haviour can be somehow controlled”, as da Costa has it (op.
cit.). Contemporaneously, (Carnielli and Marcos 2002) ex-
tended and further generalized such notions, giving rise to
the so called Logics of Formal Inconsistency, to be presented
in the next section.

3 Logics of Formal Inconsistency- LFIs
3.1 Contradiction, consistency, inconsistency, and

triviality
LFIs are a family of paraconsistent logics designed to ex-
press the notion(s) of consistency and inconsitency (some-
times defining one another, sometimes taken as primitive,
depending on the strength of the axioms) within the object
language by employing a connective “◦” (or “•”), in which
◦α means that “α is consistent” (and •α means that “α is in-
consistent”), further expanding and generalizing da Costa’s
hierarchy of C systems. Accordingly, the principle of explo-
sion is not valid in general, although this law is not abolished
but restricted to the so-called “consistent sentences”, a fea-
ture captured by the following law, which is referred to as
the “principle of Gentle Explosion” (PGE):

α,¬α, ◦α ` β, for every β, but α,¬α 6` β for some β (1)

In formal terms, we have the following (Carnielli and
Coniglio 2016):

Definition 2 (A formal definition of LFI). Let L be a
Tarskian logic with a negation ¬. The logic L is a LFI if
there is a non-empty set©(p) of formulas in some language
L of L which depends only on the propositional variable p,
satisfying the following:

a. ∃α∃β(¬α, α 6` β)

b. ∃α∃β(©(α), α 6` β)

c. ∃α∃β(©(α),¬α 6` β)

d. ∀α∀β(©(α), α,¬α ` β)



For any formula α, the set ©(α) is intended to express, in
a specific sense, the consistency of α relative to the logic
L. When this set is a singleton, it is denoted by ◦α the sole
element of©(α), thus defining a consistency operator.

The connective “◦”, as mentioned, is not necessarily a
primitive one. Indeed, LFI is an umbrella definition that cov-
ers many paraconsistent logics of the literature.
Remark 3 (Some notable LFIs). Following definition 2, it
can be easily proved that some well-known logics in the lit-
erature are LFIs, including the aforementioned Jaśkowski’s
Discussive logic, Halldén’s nonsense logic and, as ex-
pected, da Costa’s C-systems (Carnielli and Coniglio 2016;
Carnielli, Coniglio, and Marcos 2007; Carnielli and Mar-
cos 2002).

It is worth observing that each one of the aforementioned
logics has their own motivations and particularities - be-
ing Remark 3 to be understood as a logic-mathematical re-
minder that those logics share some common results and
properties.

3.2 A family of LFIs
It should be clear that the notions of consistency and non-
contradiction are not coincident in the LFIs, and that the
same holds for the notions of inconsistency and contra-
diction. There is, however, a fully-fledged hierarchy of
LFIs where consistency is gradually connected to non-
contradiction.

Starting from positive classical logic plus tertium non
datur (α ∨ ¬α), mbC is one of the basic logics intended
to comply with definition 2 in a minimal way: an axiom
schema called (bc1) is added solely to capture the aforemen-
tioned principle of gentle explosion.
Definition 4 (mbC(Carnielli and Marcos 2002)). The logic
mbC is defined over the language L ( generated by the con-
nectives ∧,∨,→,¬, ◦) by means of a Hilbert system as fol-
lows:

Axioms:
(A1) α→ (β → α)
(A2) (α→ β)→ ((α→ (β → δ))→ (α→ δ))
(A3) α→ (β → (α ∧ β))
(A4) (α ∧ β)→ α
(A5) (α ∧ β)→ β
(A6) α→ (α ∨ β)
(A7) β → (α ∨ β)
(A8) (α→ δ)→ ((β → δ)→ ((α ∨ β)→ δ))
(A9) α ∨ (α→ β)
(A10) α ∨ ¬α
(bc1) ◦α→ (α→ (¬α→ β))

Inference Rule:
(Modus Ponens (MP)) α, α→ β ` β

(A1)-(10) plus (MP) coincides with Baten’s paraconsis-
tent logic CLuN – it is worth mentioning that a nonmono-
tonic characterization of the Ci-hierarchy (presented in sec-
tion 6) can be found in (Batens 2009). Furthermore, (A1)-
(A9) plus (MP) defines positive classical propositional logic
CPL+.

mbC can be characterized in terms of valuations over
{0, 1} (also called bivaluations), but cannot be semantically
characterized by finite matrices (cf. (Carnielli, Coniglio, and
Marcos 2007)). Surprisingly, however, mbC can be charac-
terized by 5-valued non-deterministic matrices, as shown in
(Avron 2005) (details also in Example 6.3.3 of (Carnielli and
Coniglio 2016)).
Definition 5 (Valuations for mbC). A function v : L →{

0, 1
}

is a valuation for mbC if it satisfies the following
clauses:
(Biv1) v(α ∧ β) = 1 ⇐⇒ v(α) = 1 and v(β) = 1

(Biv2) v(α ∨ β) = 1 ⇐⇒ v(α) = 1 or v(β) = 1

(Biv3) v(α→ β) = 1 ⇐⇒ v(α) = 0 or v(β) = 1

(Biv4) v(¬α) = 0 =⇒ v(α) = 1

(Biv5) v(◦α) = 1 =⇒ v(α) = 0 or v(¬α) = 0.
The semantic consequence relation associated to valua-

tions for mbC is defined as expected: X |=mbC α iff, for
every mbC-valuation v, if v(β) = 1 for every β ∈ X then
v(α) = 1.
Definition 6 (Extensions of mbC (Carnielli and Marcos
2002; Carnielli, Coniglio, and Marcos 2007; Carnielli and
Coniglio 2016)). Consider the following axioms:
(ciw) ◦α ∨ (α ∧ ¬α)

(ci) ¬◦α→ (α ∧ ¬α)

(cl) ¬(α ∧ ¬α)→ ◦α
(cf) ¬¬α→ α

(ce) α→ ¬¬α
Some interesting extensions of mbC are the following:
mbCciw = mbC+(ciw)
mbCci = mbC+(ci)
bC = mbC+(cf)
Ci = mbC+(ci)+(cf) = mbCci+(cf)
mbCcl = mbC+(cl)
Cil = mbC+(ci)+(cf)+(cl) = mbCci+(cf)+(cl) = mbCcl+

(cf) + (ci) = Ci+(cl)
The semantic characterization by bivaluations for all these

extensions of mbC can be easily obtained from the one for
mbC (see (Carnielli, Coniglio, and Marcos 2007; Carnielli
and Coniglio 2016)). For instance, mbCciw is character-
ized by mbC-valuations such that v(◦α) = 1 if and only if
v(α) = 0 or v(¬α) = 0 (if and only if v(α) 6= v(¬α)).
Notation 7 (derived bottom particle and strong negation).
⊥=def α ∧ ¬α ∧ ◦α and ∼ α =def α→⊥ (for any α).

It is then clear that the LFIs are at the same time subsys-
tems and extensions of CPL. They can be seen as classical
logic extended by two connectives: a paraconsistent nega-
tion and a consistency connective (or an inconsistency one,
dual to it). In formal terms, consider CPL defined over the
languageL0 generated by the connectives∧,∨,→,¬, where
¬ represents the classical negation instead of the paraconsis-
tent one. If Y ⊆ L0 then ◦(Y ) = {◦α : α ∈ Y }. Then, the
following result can be obtained:
Observation 8 (Derivability Adjustment Theorem (Carnielli
and Marcos 2002)). Let X ∪{α} be a set of formulas in L0.
Then X `CPL α if and only if ◦(Y ), X `mbc α for some
Y ⊆ L0.



4 Paraconsistent Belief Change
Belief Change in a wide sense has been subject of philosoph-
ical reflection since antiquity, including discussions about
the mechanisms by which scientific theories develop and
proposing rationality criteria for revisions of probability as-
signments (Fermé and Hansson 2018). Contemporaneously,
there is a strong tendency towards confluence of the research
traditions on the subject from philosophy and from computer
research (Hansson 1999).

The most influential paradigm in this area of study is the
AGM model (Alchourrón, Gärdenfors, and Makinson 1985),
in which epistemic states are represented as theories – con-
sidered simply as sets of sentences closed under logical con-
sequence. Three types of epistemic changes (or operations)
are considered in this model: expansion, the incorporation of
a sentence into a given theory; contraction, the retraction of
a sentence from a given theory; and revision, the incorpora-
tion of a sentence into a given consistent theory by ensuring
the consistency of the resulting one.

Notably, given the possibility of reasoning with contradic-
tions (as paraconsistent logics have it), as well as the afore-
mentioned scrutiny on the very concept of “consistency”, the
definition of revision can be refined. Indeed, there are some
investigations in the literature alongside this direction:

Based on the four-valued relevant logic of first-degree en-
tailment, (Restall and Slaney 1995) defines an AGM-like
contraction without satisfying the recovery postulate. Re-
vision is obtained from contraction by the Levi identity (to
be introduced).

Also based on the first-degree entailment, (Tamminga
2001) advances a system that put forth a distinction between
information and belief. Techniques of expansion, contrac-
tion an revisions are applied to information (which can be
contradictory), while other kind of operations are advanced
for extracting beliefs from those information. The demand-
ing for consistency (i.e. non-contradictoriness) is applied
only for those beliefs.

(Mares 2002) proposes a model in which an agent’s belief
state is represented by a pair of sets – one of these is the
belief set, and the other consists of the sentences that the
agent rejects. A belief state is coherent if and only if the
intersection of these two sets is empty, i.e. if and only if
there is no statement that the agent both accepts and rejects.
In this model, belief revision preserves coherence but does
not necessarily preserve consistency.

Also departing from a distinction between consistency
and coherence, (Chopra and Parikh 1999) advances a model
based on Belnap and Dunn’s logic that preserves an agent’s
ability to answer contradictory queries in a coherent way,
splitting the language to distinguish between implicit and
explicit beliefs.

In (Priest 2001) and (Tanaka 2005), it is suggested that
revision can be performed by just adding sentences without
removing anything, i.e, revision can be defined as a sim-
ple expansion. Furthermore, Priest first pointed out that in a
paraconsistent framework, revision on belief sets can be per-
formed as external revision, defined with the reversed Levi
identity as advanced for belief bases (Hansson 1993) .

The fact is that there are in the literature several systems
that could be understood as endowing a certain paraconsis-
tent character, each one based on distinct strategies and mo-
tivations (see for instance (Fermé and Wassermann 2017) for
an Iterated Belief Change perspective). An approach of Be-
lief Change from the perspective of inconsistent formal sys-
tems was conceptually suggested by (da Costa and Bueno
1998). Departing from the technical advances of mbC and
its extensions, (Testa, Coniglio, and Ribeiro 2017) goes fur-
ther in this direction, defining external and semi-revisions
for belief sets, as well as consolidation (operations that were
originally presented for belief bases (Hansson 1993)(1997).
By considering consistency as an epistemic attitude, and al-
lowing temporary contradictions, the informational power of
the operations are maximized (as it argued by (Testa 2015)).

It is worth mentioning that, as proposed by Priest and
Tanaka (op. cit.), paraconsistent revision could be under-
stood as a plain expansion. As it is explained by (Testa et al.
2018), to equate paraconsistent revision with expansion it is
necessary to assume that consistency is necessarily equiva-
lent to non-triviality in a paraconsistent setting and, further-
more, that all paraconsistent logics do not endow a bottom
particle (primitive or defined). As this paper intends to high-
light, neither assumption is true.

Remark 9. From now on, let us assume a LFI, namely
L=〈L,`L〉, such that L is mbC or some extension as pre-
sented above. Since the context is clear, we will omit the
subscript, and simply denote `L by ` and, accordingly, the
respective closure by Cn.

4.1 Revisions in the LFIs
In (Testa, Coniglio, and Ribeiro 2017) the so-called AGMp
system is proposed, in which it is shown that a paraconsis-
tent revision of a belief set K by a belief-representing sen-
tence α (the operation K ∗ α) can be defined not only by
the Levi identity as in classical AGM (that is, by a prior con-
traction by ¬α followed by a expansion by α) but also by
reversed Levi identity and other kind of constructions where
contradictions are temporarily accepted. Formally, we have
the following:

Let K = Cn(K). The expansion of K by α (K + α) is
given by

Definition 10. K + α = Cn(K ∪ {α})
There are several constructions for defining a contraction

operator. The one adopted is the partial meet contraction,
constructed as follows (Alchourrón, Gärdenfors, and Makin-
son 1985):

1. Choose some maximal subsets of K (with respect the in-
clusion) that do not entail α.

2. Take the intersection of such sets.

The remainder of K and α is the set of all maximal sub-
sets of K that do not entail α.

Definition 11 (Remainder). The set of all the maximal sub-
sets of K that do not entail α is called the remainder set of
K by α and is denoted by K⊥α, that is, K ′ ∈ K⊥α iff:

(i) K ′ ⊆ K.



(ii) α 6∈ Cn(K ′).
(iii) If K ′ ⊂ K ′′ ⊆ K then α ∈ Cn(K ′′).

TypicallyK⊥αmay contain more than one maximal sub-
set. The main idea constructing a contraction function is to
apply a selection function γ which intuitively selects the sets
in K⊥α containing the beliefs that the agent holds in higher
regard (those beliefs that are more entrenched).
Definition 12 (selection function). A selection function for
K is a function γ such that, for every α:

1. γ(K⊥α) ⊆ K⊥α if K⊥α 6= ∅.
2. γ(K⊥α) = {K} otherwise.

The partial meet contraction is the intersection of the sets
of K⊥α selected by γ.
Definition 13 (partial meet contraction). Let K be a belief
set, and γ a selection function for K. The partial meet con-
traction on K that is generated by γ is the operation −γ
such that for all sentences α:

K −γ α =
⋂
γ(K⊥α).

The distinct revisions are then defined as follows:
Definition 14. Internal revision (K − ¬α) + α

External revision (K + α)− ¬α
Semi-revision (K + α)!

The aforementioned operator “!”, originally advanced for
belief bases (Hansson 1997), is a particular case of con-
traction – called consolidation. In Hansson’s original pre-
sentation, this operator is defined as a contraction by “⊥”.
In the context of LFIs, it is defined as the contraction by
ΩK = {α ∈ K : exists β ∈ L such that α = β ∧ ¬β}. The
technical details of those operations, alongside a presenta-
tion through postulates and their respective representation
theorems can be found in the references.

4.2 Reasoning with consistency and inconsistency
Each of the LFIs in the aforementioned family (recall def-
inition 6) captures distinct properties regarding the notion
of formal consistency. For instance, mbC separates the
notions of consistency from non-contradictoriness (◦α `
¬(¬α ∧ α), but the converse does not hold), and also sep-
arates the notions of inconsistency from contradictoriness
(α ∧ ¬α ` ¬◦α, but the converse does not hold). In Ci in-
consistency and contradictoriness are identified (¬◦αa`α∧
¬α) and, in Cil consistency and non-contradictoriness are
identified (◦αa`¬(α ∧ ¬α)).

This cautious way of dealing with the formal concept of
consistency allows the modeling of significant forms of rea-
soning, as it is illustrated by the following example adapted
from (Hansson 1999). In Hansson’s original presentation,
it was intended to show a case of an external partial meet
revision that is not also an internal partial meet revision –
indeed, neither one can be subsumed under the other. In our
analysis, the same conclusion applies: the avoidance of con-
tradictions in every step of the reasoning refrain the revision
to adduce the following significant results.

Let ¬◦α =def •α, and let us consider Ci as the underly-
ing logic.

Example 1. A man has died in a remote place in which only
two other persons, Adam and Bob, were present. Initially,
the public prosecutor believes that neither Adam nor Bob
has killed him. Thus her belief state contains ¬A (Adam has
not killed the deceased) and ¬B (Bob has not killed the de-
ceased). For simplicity, we may assume that her belief state
is K0 = Cn({¬A,¬B}).
Case 1: The prosecutor receives a police report saying (1)
that the deceased has been murdered, and that either Adam
or Bob must have done it; and (2) that Adam has previously
been convicted of murder several times. After receiving the
report, she revises her belief set by (A ∨ B) and by the as-
sumption that Bob’s innocence is indeed consistent ◦¬B, i.e.
she revises her initial belief set by (A ∨B) ∧ ◦¬B.
Case 2: differs from case 1 only that it is Bob who has pre-
viously been convicted of murder. Thus, the new piece of
information consists of (A ∨B) ∧ ◦¬A.
Internal Revision approach: If represented as an internal
partial meet revision, when the first suboperation is per-
formed (namely, contraction by ¬((A ∨ B) ∧ ◦¬B) and
¬((A ∨ B) ∧ ◦¬A) respectively in case 1 and case 2), we
have that

K0⊥(¬((A ∨B) ∧ ◦¬B)) = K0⊥(¬((A ∨B) ∧ ◦¬A)).

The subsequent expansion does not necessarily add nor
delete Adam’s or Bob’s guilty/innocence in both cases,
since the previous contraction could indiscriminately delete
Adam’s or Bob’s innocence – not taking profit of the new
piece of information as a whole.
External Revision approach: If represented as an external
partial meet revision, we have the following.
Case 1: The police report brings about the expansion of K
toK1 = Cn(K+(A∨B)∧◦¬B). Notably,A ∈ K1 (on the
grounds that ◦¬B,¬B,A∨B ` ◦¬B,¬B,A∨¬¬B ` A).
In plain English, Adam is now proven to be guilty. More-
over, •¬A ∈ K1 (for A ∧ ¬A ` ¬¬A ∧ ¬A ` •¬A) i.e.,
the initial assumption about Adam’s innocence is logically
proven to be inconsistent. The subsequent contraction thus
has means to delete the initial supposition about Adam’s in-
nocence.
Case 2: Mutatus mutandis.
Semi-revision approach: The semi-revision approach is
analogous to the external-revision, with the distinction that
the second suboperation (namely, contraction) does not nec-
essarily delete Adam’s and Bob’s innocence (respectively in
case 1 and case 2) but, rather, gives the option for deleting
the new piece of information given by the police report.

4.3 Formal consistency as an epistemic attitude
An alternative system considered in (Testa, Coniglio, and
Ribeiro 2017), called AGM◦, relies heavily on the formal
consistency operator. This means that the explicit construc-
tions themselves (and accordingly the postulates) assume
that such operator plays a central role. In a static paradigm
(i.e., when the focus is the logical consequence relation) this
is already the case. Assuming the consistency of the sen-
tence involved in a contradiction entails a trivialization (as
elucidated in the gentle explosion principle) – which some-
how captures and describes the intuition of the expansion.



The main idea of AGM◦ is to also incorporate the notion
of consistency in the contraction. In this case, it is inter-
preted that a belief being consistent means that it is not li-
able to be removed from the belief set in question, adducing
that the contraction endows the postulate of failure (namely,
that if ◦α ∈ K then K − α = K).

The strategy is to incorporate the idea of non-revisibility
in the selection function – the consistent belief remains in
the epistemic state in any situation, unless the agent retract
the very fact that such belief is consistent.
Definition 15 (selection function for AGM◦ contraction).
A selection function for K is a function γ′ such that, for
every α:

1. γ′(K,α) ⊆ K⊥α if α /∈ Cn(∅) and ◦α /∈ K.
2. γ′(K,α) = {K} otherwise.

Contraction, thus, is defined as definition 13.
In short, the seven epistemic attitudes defined in AGM◦

are:
Definition 16 (Possible epistemic attitudes in AGM◦, see
figure 1 (Testa, Coniglio, and Ribeiro 2017; Testa 2014)).
Let K be a given belief set. Then, a sentence α is said to be:
Accepted if α ∈ K.
Rejected if ¬α ∈ K.
Under-determined if α /∈ K and ¬α /∈ K.
Over-determined if α ∈ K and ¬α ∈ K.
Consistent if ◦α ∈ K.
Boldly accepted if ◦α ∈ K and α ∈ K.
Boldly rejected if ◦α ∈ K and ¬α ∈ K (i.e. ∼G ∈ K).

>

◦α, α ∈ K α,¬α ∈ K ◦α,¬α ∈ K

α ∈ K ◦α ∈ K ¬α ∈ K

α,¬α /∈ K

Figure 1: Epistemic attitudes in AGM◦

The following examples illustrate an important feature of
human belief that, in classical AGM, has no room in a model
solely based on contractions and revisions – the stubborn-
ness of human belief. Instead of introducing the notions of
necessity and possibility on the metalanguage, as suggested
by (Hansson 1999), it is possible to capture such notions
based on the concept of bold-acceptance. Indeed, as inter-
preted by (Testa 2014), this fact illustrate a well-studied fea-
ture regarding the proximity of LFIs with modal logics.
Example 2. Adapted from (Hansson 1999)

1. Doris is not religious, but she has religious leanings. She
does not believe that God exists (G 6∈ K), but it is possible
for her to become a believer (∼G 6∈ K).

2. Ellen, on the other hand, is a believer (G ∈ K). How-
ever, it may very well happen that she loses her faith so
definitely that she can never become a believer in God
again (◦¬G ∈ K).

3. Florence is an inveterate doubter. Nothing can bring her
to a state of firm (irreversible) belief (◦G 6∈ K) and
neither can she be brought to a state of firm disbelief
(◦¬G 6∈ K)

Paraconsistent Belief Revision based on the LFIs are
an important step for further advancements on systems
for detecting and handling with contradictions, mostly if
combined with tools for expressing probabilistic reasoning.
Some progress in this direction are overviewed in the fol-
lowing sections.

5 Sound probabilistic reasoning under
contradiction

This section briefly surveys the research initiative on para-
consistent probability theory based on the LFIs and its con-
sequences, which makes it possible to treat realistic proba-
bilistic reasoning under contradiction.

Paraconsistent probabilities can be regarded as degrees of
belief that a rational agent attaches to events, even if such
degrees of belief might be contradictory. Thus it is not im-
possible for an agent to believe in the proposition α and ¬α
and to be rational, if this belief is justified by evidence, as
argued in (Bueno-Soler and Carnielli 2016).

A quite general notion of probability function can be de-
fined, in such a way that different logics can be combined
with probabilistic functions, giving rise to new measures that
may reflect some subtle aspects of probabilistic reasoning.

Definition 17. A probability function for a language L of a
logic L, or a L-probability function, is a function P : L 7→
R satisfying the following conditions, where `L stands for
the syntactic derivability relation of L:

1. Non-negativity: 0 ≤ P (ϕ) ≤ 1 for all ϕ ∈ L
2. Tautologicity: If `L ϕ, then P (ϕ) = 1

3. Anti-tautologicity: If ϕ `L, then P (ϕ) = 0

4. Comparison: If ψ `L ϕ, then P (ψ) ≤ P (ϕ)

5. Finite additivity: P (ϕ∨ψ) = P (ϕ) +P (ψ)−P (ϕ∧ψ)

This collection of meta-axioms, by assuming appropriate
`L (for instance, by taking the classical, intuitionistic or
paraconsistent derivability relation) defines distinct proba-
bilities, each one deserving a full investigation. In particular,
for the sake of this project, we have in mind paraconsistent
probability theory based on the Logics of Formal Inconsis-
tency, as it has been treated in (Bueno-Soler and Carnielli
2016),(2017).

Several central properties of probability are preserved, as
the notions of paraconsistent updating which is materialized
through new versions of Bayes’ theorem for conditionaliza-
tion. Other papers already proposed connections between
non-classical logics and probabilities and even for the para-
consistent case (references can be found in the aforemen-
tioned works), recognizing that some non-classical logics



are better suited to support uncertain reasoning in particu-
lar domains. The combinations between probabilities and
LFIs deserves to be emphasized, as they offer a quite natu-
ral and intuitive extension of standard probabilities which is
useful and philosophically meaningful.

The following example uses the system Ci, a member of
the LFI family with some features that make it reasonably
close to classical logic (recall definition 6); it is appropri-
ate, in this way, to define a generalized notion of probability
strong enough to enjoy useful properties.
Observation 18 (Paraconsistent Bayes’ Conditionalization
Rule (PBCR) (Bueno-Soler and Carnielli 2016)).

If P (α ∧ ¬α) 6= 0, then:

P (α/β) =
P (β/α) · P (α)

P (β/α) · P (α) + P (β/¬α) · P (¬α)− δα

where δα = P (β/α∧¬α)·P (α∧¬α) is the ’contradictory
residue’ of α.

It is clear that this rule generalizes the classical con-
ditionalization rule, as it reduces to the classical case if
P (α ∧ ¬α) = 0 or if α is consistent: indeed, in the last
case, P (β ∧◦α) = P (β ∧◦α∧α) +P (β ∧◦α∧¬α) since
P (◦α ∧ α ∧ ¬α) = 0.

We can interpret (PBCR) as Bayes’ ruke taking into ac-
count the likelihood relative to the contradiction. It is possi-
ble, however, to formulate other kinds of conditionalization
rules by combining the notions of conditional probability,
contradictoriness, consistency and inconsistency.
Example 3. As an example, suppose that a doping test for
an illegal drug is such that it is 98% accurate in the case of
a regular user of that drug (i.e., it produces a positive result,
showing “doping”, with probability 0.98 in the case that the
tested individual often uses the drug), and 90% accurate in
the case of a non-user of the drug (i.e., it produces a negative
result, showing “no doping”, with probability 0.9 in the case
that the tested individual has never used the drug or does not
often use the drug).

Suppose, additionally, that: (i) it is known that 10% of the
entire population of all athletes often uses this drug; (ii) that
95% of the entire population of all athletes does not often
use the drug or has never used it; and (iii) that the test pro-
duces a positive result, showing “doping”, with probability
0.11 for the whole population, independent of the tested in-
dividual.

Let the following be some mnemonic abbreviations:
D : the event that the drug test has declared “doping” (pos-

itive) for an individual;
C : the event that the drug test has declared “clear” or “no

doping” (negative) for an individual;
A : the event that the person tested often uses the drug;
¬A : the event that the person tested does not often use the

drug or has never used it.
We know that P (A) = 0.1 and P (¬A) = 0.95. The

situation is clearly contradictory with respect to the events
A and ¬A, as they are not excludent. Therefore, by finite
additivity, P (A ∨ ¬A) = 1 = (P (A) + P (¬A)) − P (A ∧
¬A), and thus, P (A∧¬A) = (P (A)+P (¬A))−1 = 0.05

Furthermore, as given in the problem, P (D/A) = 0.98,
P (C/¬A) = 0.9 and P (D) = 0.11. The results of
the test have no paraconsistent character, since the events
D (‘doping’ ) and C (‘no doping’) exclude each other.
Thus, P (D/¬A) = 1 − P (C/¬A) = 0.1 and P (C/A) =
1− P (D/A) = 0.02.

Suppose someone has been tested, and the test is positive
(“doping”). What is the probability that the tested individ-
ual regularly uses this illegal drug, that is what is P (A/D)?

By applying the paraconsistent Bayes’ rule:

P (A/D) =
P (D/A) · P (A)

P (D/ A) · P (A) + P (D/¬A) · P (¬A)− δA

where δA = P (D/A ∧ ¬A) · P (A ∧ ¬A)
since P (A ∧ ¬A) 6= 0.
All of the values are known, with the exception of

P (D/A ∧ ¬A). Since:

P (D/A ∧ ¬A) = P (D ∧A ∧ ¬A)
P (A ∧ ¬A)

it remains to compute P (D ∧ A ∧ ¬A). It follows directly from
some easy properties of probability that P (D ∧ A ∧ ¬A) =
P (D ∧ A) + P (D ∧ ¬A) − P (D) = P (D/A).P (A) +
P (D/¬A).P (¬A) − P (D) = 0.083. Therefore, by plugging in
all of the values, it follows that P (A/D) = 51.9%1.

This example suggests, as argued below, that the para-
consistent Bayes’ conditionalization rule is more robust than
traditional conditionalization, as it can provide useful results
even in the case the test could be regarded as ineffective due
to contradictions. The following table compares the para-
consistent result with the results obtained by trying to re-
move the contradiction involving the eventsA (the event that
the person tested often uses the drug) and ¬A (the event that
the person tested does not often use the drug or has never
used it), that is by trying to make them “classical”.

Since A and ¬A overlap by 5%, we might consider re-
viewing the values, by ‘removing the contradiction’ accord-
ing to three hypothetical scenarios: an alarming scenario,
by lowering the value of ¬A by 5%; a happy scenario, by
lowering the value of A by 5%; and a cautious scenario, by
dividing the surplus equally betweenA and ¬A and comput-
ing the probability P (A/D) that the tested individual regu-
larly uses this illegal drug.

Table 1: Removing the contradiction

Alarming Scenario Cautious Scenario Happy Scenario

P (A) = 10% P (A) = 7.5% P (A) = 5%

P (¬A) = 90% P (¬A) = 92.5% P (¬A) = 95%

P (D/A) = 98% P (D/A) = 98% P (D/A) = 98%

P (D/¬A) = 10% P (D/¬A) = 10% P (D/¬A) = 10%

Result Result Result

P (A/D) = 52% P (A/D) = 44% P (A/D) = 34%

1The values correct some miscalculations in (Bueno-Soler and
Carnielli 2016).



Using paraconsistent probabilities, one obtains, in the
case of this example, a value close (even if a bit inferior)
to the “alarming” hypothetical scenario, helping to make a
decision even if the contradictory character would make it be
seen as ineffective. In other words, the presence of a contra-
diction does not mean that we need to discard the test, if we
have reasoning tools that are sensitive and robust enough.

6 Possibility and necessity measures
Possibility theory is a generalization of (or an alternative to)
probability theory devoted to deal with certain types of un-
certainty by means of possibility and necessity measures.

As aforementioned, it is well recognized that reasoning
with contradictory premises is a critical issue, since large
knowledge bases are inexorably prone to incorporate contra-
dictions. Contradictory information comes from the fact that
data is provided by different sources, or by a single source
that delivers contradictory data as certain.

The connections between the possibilistic and the para-
consistent paradigms are complex and various forms of
contradiction can be accommodated into possibilistic logic,
defining concepts such as ‘paraconsistency degree’ and
‘paraconsistent completion’ (Dubois and Prade 2015). Para-
consistent logics offer simple and effective models for rea-
soning in the presence of contradictions, as they avoid col-
lapsing into deductive trivialism by a natural logic machin-
ery. Taking into consideration that it is more natural and ef-
fective to reason from a contradictory information scenario
than trying to remove the contradictions involved, the in-
vestigation of credal calculi concerned with necessity and
possibility is naturally justified.

On one hand, possibility theory based on classical logic
is able to handle contradictions, but at the cost of expensive
manoeuvres (Dubois and Prade 2015). On the other hand,
paraconsistent logics cannot easily express uncertainty in a
gradual way. The blend of both via the LFIs, in view of the
operators of consistency and inconsistency, offers a simple
and natural qualitative and quantitative tool to reason with
uncertainty.

The idea of defining possibility and necessity models,
dubbed as credal calculi, based on the Logics of Formal
Inconsistency, takes advantage of the flexibility of the no-
tions of consistency “◦” and inconsistency “•”. Some ba-
sic properties of possibility and necessity functions over the
Logics of Formal Inconsistency have been investigated in
(Carnielli and Bueno-Soler 2017), making clear that para-
consistent possibility and necessity reasoning can, in gen-
eral, attain realistic models for artificial judgement.

A generic notion of logic-dependent necessity measures
is given by the conditions below.
Definition 19 ((Carnielli and Bueno-Soler 2017)). A neces-
sity function (or measure) for a languageL in an LFI, called
an LFI-necessity function, is a function N : L 7→ R satis-
fying the following conditions, where `L stands for the syn-
tactic derivability relation of L:

1. Non-negativity: 0 ≤ N(ϕ) ≤ 1 for all ϕ ∈ L
2. Tautologicity: If `L ϕ, then N(ϕ) = 1

3. Anti-Tautologicity: If ϕ `L, then N(ϕ) = 0

4. Comparison: If ψ `L ϕ, then N(ψ) ≤ N(ϕ)

5. Conjunction: N(ϕ ∧ ψ) = min{N(ϕ), N(ψ)}
6. Metaconsistency: N(•α) +N(◦α) = 1

A condition N(α) = λ can be understood as expressing
that ‘α is certain to degree λ’ (in all normal states of affairs).

Possibilistic measures are also useful when representing
preferences expressed as sets of prioritized goals, as e.g.
some lattice-valued possibility measures studied in the lit-
erature instead of real-valued possibility measures. The pa-
rameter L in the above definition can be Cie, or the three-
valued logic LFI1(see references for details).

Analogously to the necessity function, a generic notion
of logic-dependent possibility measure (dual to a necessity
function) is defined as follows:
Definition 20. A possibility function (or measure) for the
language L of Cie, or a Cie- possibility function, is a func-
tion Π : L 7→ R satisfying the following conditions:

1. Non-negativity: 0 ≤ Π(ϕ) ≤ 1 for all ϕ ∈ L
2. Tautologicity: If `L ϕ, then Π(ϕ) = 1

3. Anti-Tautologicity: If ϕ `L, then Π(ϕ) = 0

4. Comparison: If ψ `L ϕ, then Π(ψ) ≤ Π(ϕ)

5. Disjunction: Π(ϕ ∨ ψ) = max{Π(ϕ),Π(ψ)}
6. Metaconsistency: Π(•α) + Π(◦α) = 1

Standard necessity and possibility measures do not cope
well with contradictions, since they treat contradictions in
a global form (even if in a gradual way). This is the main
reason to define new forms of necessity and possibility mea-
sures based upon paraconsistent logics; although they lack
graduality, LFIs offer a tool for handling contradictions in
knowledge bases in a local form, by locating the contradic-
tions on critical sentences. Yet, the combination of them
reaches a good balance: the paraconsistent paradigm by it-
self does not allow for any fine-grained graduality in the
treatment of contradictions, which may lead to some loss
of information when contradictions appear in a knowledge
base. When enriched with possibility and necessity func-
tions, however, a new reasoning tool emerges.

It is possible to define a natural non-monotonic conse-
quence relation on databases acting under some of the logic
L as above. Non-monotonic logics are structurally closed
to the internal reasoning of belief revision, as argued in
(Gärdenfors 1990), where it is shown that the formal struc-
tures of the two theories are similar. The resulting logic sys-
tems have a great potential to be used in real-life knowledge
representation and reasoning systems.

Another important concept that can be advantageously
treated by the paraconsistent paradigm is the concept of ev-
idence. The paper (Rodrigues, Bueno-Soler, and Carnielli
2020) introduces the logic of evidence and truth LETF as
an extension of the Belnap-Dunn four-valued logic FDE.
LETF is equipped with a classicality operator ◦ and its dual
to non-classicality operator •. It would be interesting to de-
fine possibility and necessity measures over LETF , gener-
alizing the probability measures defined over LETF and to
further investigate the connections between the formal no-
tions of evidence and the graded notions of possibility and
necessity.



7 Other applications and further work
Description Logics (DLs) play an important role in the se-
mantic web domain and in connections to computational
ontologies, and incorporating uncertainty in DL reasoning
has been the topic of lively research. DLs can expanded
with paraconsistent, probabilistic and possibilistic tools, or
with their combinations (one example toward the relevance
of paraconsistent reasoning for the Semantic Web can be
found in (Zhang, Lin, and Wang 2010)). Enhancing DLs
with LFI-probabilities and possibility measures is a research
in progress, and will represent a considerable step forward
to DLs in regard to the representation of more realistic on-
tologies.

A second problem concerns clarifying the concept of
evidence. As mentioned, (Rodrigues, Bueno-Soler, and
Carnielli 2020) introduces the logic of evidence and truth
LETF , a Logic of Formal Inconsistency and Undetermined-
ness that extends Belnap–Dunn four-valued logic, formal-
izes a notion of evidence as a concept weaker than truth in
the sense that there may be evidence for a proposition α even
if α is not true.

The paper proposes a probabilistic semantics for LETF
taking into account probabilistic and paracomplete scenar-
ios (where, respectively, the sum or probabilities for α and
¬α is P (α) + P (¬α), is greater or less than 1). Classical
reasoning can be recovered when consistency and inconsis-
tency behave within normality, that is, then P (◦α) = 1 or
P (•α) = 0. In this way it is possible to obtain some new
versions of standard results of probability theory. By relat-
ing the concepts of evidence and coherence, it may be possi-
ble to obtain an enhanced version of the model proposed in
(Chopra and Parikh 1999). This may represent an important
leap forward into the clarification of the notion of evidence,
each time more demanded in AI and KR.

Paraconsistent Bayesian networks is another topic with
great interest. Bayesian Networks are indispensable tools
for expressing the dependency among events and assigning
probabilities to them, thus ascertaining the effect of changes
of occurrence in one event given the others.

Bayesian Networks can be (roughly) represented as nodes
an annotated acyclic graph (a set of direct edges between
variables) that represents a joint (paraconsistent) probabil-
ity distribution over a finite set of random variables V =
{V1 · · · , Vn}. The praxis usually supposes that each vari-
able has only a finite number of possible values (though this
is not a mandatory restriction – numeric or continuous vari-
ables that take values from a set of continuous numbers can
also be used.

For such discrete random variables, conditional probabil-
ities are usually represented by a table containing the prob-
ability that a child node takes on each of the values, taking
into account the combination of values of its parents, that
is, to each variable Vi with parents {B1, · · · , Bni

} there is
attached a conditional probability table relating Vi to its par-
ents (regarded as “causes”)

Paraconsistent Bayesian networks, notably when com-
bined with paraconsistent belief revision (including (Testa,
Coniglio, and Ribeiro 2017)) and with belief maintenance
systems can lead to a new approach to detecting and han-

dling contradictions, and producing explanations for its con-
clusions. This is naturally relevant, for instance, in medical
diagnosis, natural language understanding, forensic sciences
and other areas where evidence interpretation is an important
issue.

Again, this is work in progress, but it seem clear that para-
consistent Bayesian networks may be useful and stimulating
in a series of circumstances where contradictions are around.
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Vasiliev, N. 1912. Imaginäre (nichtaristotelische) logik. In
Zhurnal m–va nar. prosveshcheniya, volume 40, 207–246.
Zhang, X.; Lin, Z.; and Wang, K. 2010. Towards a paradox-
ical description logic for the semantic web. In Link, S., and
Prade, H., eds., Foundations of Information and Knowledge
Systems, 306–325. Springer.


	Introduction
	Reasoning under contradiction
	The informative power of contradictions
	The beginings of Paraconsistent Logics (modern era)
	Motivations: main approaches

	Logics of Formal Inconsistency- LFIs
	Contradiction, consistency, inconsistency, and triviality
	A family of LFIs

	Paraconsistent Belief Change
	Revisions in the LFIs
	Reasoning with consistency and inconsistency
	Formal consistency as an epistemic attitude

	 Sound probabilistic reasoning under contradiction
	Possibility and necessity measures
	Other applications and further work 

