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ABSTRACT
One of the most relevant features of Quantum Field Theory is the phenomenon of pair
production, the existence of which, first suggested by Dirac, was not even suspected in the
older theories. On the other hand Feynman, in the spirit of his spatio-temporal approach
to quantum mechanics, showed how a description of pair production could be given within
classical relativistic kinematics; in fact, he actually exhibited world—lines with the required
properties in the framework of a nonlocal modification of classical electrodynamics con-
ceived by Bopp. In the present paper we show how classical world—lines, just of the type
required by Feynman to describe the phenomenon of pair production, naturally arise in
classical electrodynamics. More precisely, we show that such world-lines occur as solutions
of the well known Abraham-Lorentz-Dirac equation, which was originally designed to

describe the motion of just a single point charge in selfinteraction with the electromagnetic
field.

PACS numbers: 03.50.D, 03.65.B, 02.30.M
Running title: Classical pair production

1. Introduction. In the usual approach to special relativity, the motion of a particle is
described by its world-line, i.e. a time-like path z,(s) in space-time parametrized by the
proper time s, (by which we mean the arc-length divided by ¢; obviously, we refer here to
the pseudo-riemannian metric, which we take in the form g, = diag(—c?,+1,+1,+1), ¢
being the speed of light). But the choice of the parametrization does not fix the orientation
of the world-line, which can be oriented as the x( axis (so that Z( is positive) or in the
opposite way; the latter choice corresponds to a comoving clock turning counterclockwise.
From the physical point of view, obviously both choices are perfectly equivalent, and this
corresponds to the fact the equations of motion are unchanged by the inversion s — —s.
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From the mathematical point of view, the nonuniqueness in the choice of the world—line
orientation is due to the fact that the very definition of the proper time is given by
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Now a problem arises when it occurs that in a single world-line both orientations
are present, for example with 2y positive in an interval of s and negative in an adjacent
one, because in the latter interval the particle travels backward in time. This seems to
naturally lead to the conclusion that world-lines of such a type are not physical, and
cannot be observed in nature.

On the other hand Feynman showed, in a very simple example that will be recalled
below, that world—lines of such a type can occur as solutions of relativistic equations of
motions, and interpreted those world-lines, in a way suggested to him by Wheeler (see for
example [1], and the review articles [2],[3]), as describing pair production or annihilation.
Similar considerations were also made by Stueckelberg 4l and Havas[®!. Feynman’s example
can be described essentially as follows. Consider a particle on a line (the z; axis for
example), impinging on a potential barrier V(z1) of height V), and as usual let proper
time be initially oriented as time zg, i.e. let g > 0. From conservation of energy F
(which, we recall, is defined by E = mc?®i + V, where m is the particle’s rest mass) one
has

which allows for both

and

2. 2.+
mc Ly, =mc 'ty + W ,

i.e. v
-+ . 0
Ty =%y — —5
0 O me2”’
where we have denoted by , and :irar the values of ©¢ before and after collision with the
barrier respectively. So, if Vp > 2mc? and @ is sufficiently small (but obviously greater
than 1), one has

i < -1,

i.e. a reversal of the orientation of the world-line at the collision point. Thus, if one has
stipulated that, before collision, the particle is moving forward in time, then after collision
the particle has to move backward in time, which might appear to be absurd. But Feynman
suggests instead to overcome the problem by insisting in considering time always increasing
with s; and this naturally leads to consider the pieces of a world-line with negative slope as
representing the world—line of another particle (i.e. an “antiparticle”), just moving forward
in time with 4-velocity —z,. In the very words of Feynman, with reference to a path in
spacetime from point 1 (at the left of the barrier) to point 2 (right), impinging with the
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barrier at points P (left) and @ (right) respectively, where the time of P is larger than
the time of Q: “How would such a path appear to someone whose future gradually becomes
past through a moving present? He would first see a single particle at 1, then at () two
new particles would suddenly appear, one moving into the potential to the left, the other
out to the right. Later, at P, the one mouving to the left combines with the original particle
at 1 and they both disappear. We therefore have a classical description of pair production
and annihilation. ” Now, it is clear that in the framework of pure mechanics Feynman’s
interpretation might appear arbitrary and with no foundation. But the situation changes
if one considers the particle in self-interaction with the electromagnetic field. Indeed,
suppose one is given a current ex, with a given charge e and with ¢y < 0 in an interval.
If, following Feynman, we stipulate that we are describing an antiparticle with velocity
vy = —Z, i.e. with vp > 0, then this can be done by leaving the current unchanged, if one
assigns to the antiparticle a charge —e. Thus, in the context of electrodynamics Feynman’s
interpretation turns out to be not only fully legitimate, but in a sense forced by the theory
itself.

Feynman claimed that the “curious feature” described above appears (even in presence
of a smooth potential) in a nonstandard version of electrodynamics considered by him,
where the interaction between charges occurs not along light cones, but over a narrow
range about them, as in a theory previously proposed by Bopp!®l. But, in the quoted
article, the computations are not explicetly exhibited. Hence it seems to be of a certain
interest to check whether kinematical world-lines of the type conceived by Feynman also
occur in the framework of standard classical electrodynamics, for example in one of its
simplest forms, namely that in which the particle motion is described as a solution of the
Abraham—Lorentz—Dirac equation in an external force field. In the present paper we show
that this is indeed the case.

Now, in searching for Feynman-type solutions of the Abraham-Lorentz-Dirac equa-
tion one meets with a difficulty of an analytical character. Indeed, it is obvious that
world—lines describing pair production or annihilation necessarily cannot be smooth and
must present angular points (otherwise they would be space-like in an interval of s), while
on the other hand the solutions of the Abraham-Lorentz-Dirac equation are regular
everywhere the external force is. So one is forced to consider force fields having at least a
singular point; in fact, the world-lines presenting a discontinuous derivative at some value
of s correspond precisely to solutions falling on the singular point in a finite time. Thus,
the mathematical problem arises of exhibiting global solutions to the Abraham-Lorentz—
Dirac equation having discontinuous derivatives at some points. Notice that, in principle,
one could consider two solutions, one of which springing out from the singular point at a
given time zy, and the other one falling on the singular point at the same time z, but the
function obtained by considering the first solution for times greater than xy and the second
one for times smaller than zy, cannot in general be considered as a global solution to the
equation of motions, even though the world line built up in such a way were a continuous
one.

The problem of looking for global solutions presenting angular points was rather easy
in the nonstandard theory of Bopp considered by Feynman; indeed, such a theory was
based on the action principle so that the problem of defining global solutions presenting
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angular points was reduced to searching for minima of the action integral, in the class of
continuous functions with piecewise continuous derivative. But, at least to the author’s
knowlewdge no variational principle is available for the Abraham-Lorentz-Dirac equation,
and so it is not possible to define global solutions through a prescription analogous to that
of Feynman. However, use can be made of the property of analytic continuation of the
solutions, at least in the case of an analytic external field of forces. We proceed as follows.
We take the complex extension of the force field to complex values of its argument in the
familiar way, and consider the Abraham-Lorentz-Dirac equation for complex values of
the proper time too. As a result, the solution z,(s) of that equation will be an analytic
function of the proper time s, having singularities for those values of s for which the particle
falls on the singular points of the force field, and being well defined for all other values of
s. In particular, the solutions will be well defined for real values of the proper time; thus,
if a solution z,(s) will be real for real values of the argument (which is not guaranteed
for a generic singularity), it should be considered as a global solution to the Abraham-—
Lorentz-Dirac equation. Consequently, if the world-line meets Feynman’s kinematical
requirements, it can be considered as representing a phenomenon of pair production or
annihilation.

In this paper we implement such a procedure for a particular potential, by giving
the solution as a series expansion in proper time, and showing that such a series has a
well defined radius of convergence. The paper is organized as follows. In Section 2 the
Abraham-Lorentz-Dirac is put, by a suitable change of variables, in a convenient form. In
Section 3 some formal solutions are introduced having the kinematical properties required
to describe pair production. Some technical estimates needed to prove that such formal
solutions are actual solutions to the Abraham-Lorentz-Dirac equation are deferred to
the Appendix. Some further remarks are given in Section 4.
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2. The Abraham—Lorentz—Dirac equation. As is well known, in Cartesian coor-
dinates x,, with gy = 0,---,3, where as usual o denotes time and zy, k¥ = 1,2, 3 are the
spatial coordinates, the Abraham-Lorentz Dirac equation!” has the form
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Here F),, represents an external electromagnetic field tensor, while the second term at the
r.h.s. is the “force” due to the selfinteraction of the particle with the field. In the rest of
the paper we consider a tensor F),, which corresponds to a static external electric field
E(x), so that one can think of F},, as a an external mechanical force. To simplify the
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discussion we consider the particular case of an electric field E having a fixed direction,
say the z; direction; thus, by considering appropriate initial data (i.e. with vanishing &5,
Z9, 3 and Z3), one can actually consider the system as being spatially one-dimensional,
namely having as unknowns ounly the two functions z¢(s), z1(s). In place of the full system
(4) one has thus the reduced one

; e . 2e2 . 2@t -—i?
o = —2E(.’171).’171+ 3($0+ 02 1117())
mc 3Imc c (5)
. e . 2e2 . c2Et—i?
= EE(:cl):co -+ 3l (1 + Tazl) }

This system was often investigated also for singular force fields. In particular, for attrac-
tive fields (see for example [2], [8],[9], [10] and the references there quoted), the problem
was debated whether it is possible for the particle to fall on the singularity or not. In
consideration of the fact that, strangely enough, there is no general agreement between
different authors on this point, we prefer to concentrate our attention on the case of a
repulsive force. In such a case we are able to find solutions which do indeed fall on the
center of force, and to express them as suitable power series.

We begin our analysis by recalling the well known fact that system (5) admits the
costant of motion 243 — @2 = ¢2, as follows from the very definition of proper time; one
can then introduce a new variable[®" z such that £y = Chz, &1 = cShz, so that one is

led to the system

E
es = 5 - @)
mc

1 =cShz,

where we have introduced the standard parameter ¢ = 337‘;23. By the way, this system

closely resembles the nonrelativistic version of the one-dimensional Abraham—Lorentz—
Dirac equation, which is in fact obtained by taking the limit z — 0.

The appearance of trascendental functions is avoided if one introduces new variables
a and v by 2 = a and v = €*, so that Shz = (v—1/v)/2 and Chz = (v+ 1/v)/2; choosing
moreover the electric field so that % = 1/x3, the system takes the form which we will
actually study, namely

. 1

601—0/—?

U= av (6)
c 1

"L.__(/U_;)a

where, for notational simplicity, we have denoted x; by of .
Notice that 2y has actually disapperared from system (6), and could be recovered by
just integrating the relation

) 1
To = 5(”"‘1/0) ;

however this is not required for our purposes, because it is sufficient to remark that the
sign of &g is equal to that of v. Thus the solution describes a particle or an antiparticle
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according to whether v is positive or negative respectively. We can thus conclude that an
angular point of the world-line, and consequently an event of pair creation or annihilation,
occurs in correspondence with a zero of v or of 1/v.

3. Special solutions corresponding to a pair production. We thus look for
solutions falling on the singularity, and this naturally leads to make the ansatz that there
exists a solution behaving asymptotically as z ~ £¢s®, v ~ v9s?, and a ~ ags” for s — 0.
Inserting such expressions into (6), and retaining only the leading terms in the limit s — 0,
the six free parameters «, g, B3, vg, 7, ag are easily determined, and turn out to be given by
two sets: the first one is o = %, Ty = f/%, B = —%, vo = 4z¢/3c, vy = —1 and ag = —1/3,
while the second one is a = %, xo = +/—3/e, B = %, vo = —3c¢/4xo, v = —1 and ag = 1/3.
Notice that, if there exists a solution with the considered asymptotic behaviour, it turns
out that v in the former case, and 1/v in the latter, have a zero at s = 0. As mentioned
at the end of the previous section, this means that the world line has an angular point at
x = 0; moreover this is easily checked to correspond to a pair production.

Guided by this ansatz, we look for solutions being analytic as functions of s%; more
precisely we write

+oo 4o —+o0o . +oo s
z(s) = ansT , v(s)= ZvnsT , a(s) = ZansT _ (7)
n=0 n=0 n=0

The leading terms of the expansion (7) correspond to the first of the two sets of values
for the parameter just determined; in the same way it would be possible to write down an
expansion, the leading terms of which are given by the second set of values. In the rest
of the paper we concentrate on the expansion (7), but we note that the other expansion
gives actually a second solution of (6) which obviously differs from (7), but still represents
a phenomenon of pair production.

Multiplying the first equation of (6) by 23, and inserting into the resulting system the
expansions (7) and the corresponding expansions for the derivatives, one finds

“+o0 k 400

n 1 nt3 .
E s3 E e(g — 1)ak, Thop Tk Ty — E 53 E Ak, Thy Ths Ths — 1 =0
n=0 " N k;=n n=0 S ki=n

+oo 4o n
n—4 M — ]_ n—4
E s 3 3 Up — s 3 g apVp_r =0
n=0 n=0 k=0
I n—2 n k + 2 I n—2 n
E s 3 E 2 3 TrVp_k — C s 3 g VgUn—k +¢c=0.
n=0 k=0 n=0 k=0

Equating the coefficients of the power of s of the same order, one finds a system of recursive
relations from which all unknown coefficients of the series expansions are computed. The
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recursive relations are easily checked to be

n ]{71
6(5 —1)anzd — 3eapriz, = —¢ Z (? — 1)ag, Thy Tk Thes
> ki=n,ki#n
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n+2 4 k42
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where n > 0 and 6, ; is the usual Kronecker symbol. The case n = 0 is a bit different,
and one finds directly zo = {/3/¢, vo = 420/3c and ag = —1/3. The r.h.s. of (8) depends
only on xk, vr and ay for £ < n. Thus the recursive relations can be considered as a linear
system in the unknowns z,,, v,, and a,, and the system will admit a unique solution if the
matrix of the coefficients has a non vanishing determinant. In other words, the existence
of a (formal) expansion for the solution to (6) in powers of s3 is insured if the determinant
of the matrix

(% —1)exd 0 —e3aord
A, = —p (”T_l — ap) 0 9)
0 (%xo — 2cwy) 2”T+2U0

is nonvanishing for all n. But this is immediately checked to be the case. Indeed, with the
given values for ag, £¢ and vy one finds

) 3
det A, = E;‘;xo (n(n—3)(n+2) +18)
so that one has inf,>; |det A,| = |20evoz]/27| > 0. Thus the power expansion is, at least

formally, well defined. In the appendix it is shown that the expansion is convergent for
. 1 . . .

sufficiently small |s3|, and this concludes the proof that there exists at least one solution

to the Abraham-Lorentz-Dirac equation describing the phenomenon of pair production.

4. Further comments. First we stress that we have chosen the potential 1/x3 just for
the sake of illustration, but it is clear that the phenomenon described here should be quite
general, occurring when the force field diverges at some point. On the other hand, the
solution found here does not depend on any free parameter, and so it corresponds to a
very particular choice of the initial data. In this respect the phenomenon appears as an
exceptional one. The problem of understanding what occurs for generic initial data is still
open, and we leave it for future studies.

APPENDIX
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We prove here the convergence of the series expansion (6). This will be achieved
through a geometric bound on the growth of the coefficients a,, v, and z,,. We remark,
first of all, that the matrix A, ! turns out to be given by

20 dexd exin
. Sn(n —2) 5 —5-
-1 _ 202 2ex2v 2
A = det A, —5 (n+2) 5 (:'} +2)(n—3) €T : (10)
—4“§$° % (n—3) %n(n -3)

On the other hand, the recursive relation (8) can be expressed as z, = A f,,, where we
have denoted (a,, vy, ) by 2y, and the r.h.s of (6) by f,,. Using the cubic norm in R3,
one obtains |z,| < [|A; || .|, with the estimate ||A, || < K1/n, where K ia a suitable
constant. Introducing a sequence of positive numbers m,, defined by m; = 1 and, for
n > 1, by the recursive relation

n—1
My = 3K ( Z My Mgy Mgy M, + Z Mgy Mgy Mz M, +3 Z MgMp—k+0n,2) ,
> ki=n, ki#n > ki=n-3 k=1
(11)
one easily shows, by straightforward algebra, that one has the bound |z,| < m,,. Indeed,
one easily checks by hand that z; = 0, so that obviously |z;| < 1 = my; then one proceeds
by induction. Supposing the bounds to be true for £ < n, one bounds every norm at
the r.h.s. of the inequality |z,| < ||A;!]||f.| by the corresponding quantity mg; using
the estimate ||A || < K1/n one thus obtains the r.h.s. of (11), and it is then clear that
m, gives a bound for |z,|. To prove that the quantity m, has at most a geometrical
growth for increasing n, we use the method of the majorant function, taking as a majorant
M(s) =, 1 Myns". Multiplying (11) by s™ and summing over n, one checks that M|(s)
is the solution of the equation

M — s =3K; ((1 + 83)(M* 4 (3z + yo) M3 + (3zoyo + 623) M?) + 3M? + 32> ,

vanishing for s = 0. The coefficients of this equation are analytic functions of s; furthermore
M = 0 is a zero of first order to this equation when s = 0. It is a well known result that
such a solution depends analytically on s, as s remains in an neighbourhood of s = 0.
Thus the Taylor coefficients of M (s), which coincide with m,,, grow at most geometrically;
this in turn implies that the expansions (6) are convergent. This completes the proof.
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