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1. Introduction 
 
Morality & Mathematics (Clarke-Doane, 2020) opens with a characterization of “a common 
naturalist position among philosophers and scientists,” which “combines realism about 
the sciences with anti-realism about value.” As evidence of the latter, a quote from a 
representative physicist (me) is provided, blithely proclaiming that “There are not 
objective moral truths.” 
 
Then on the following page, we are told that “an empirical scientific realist would seem 
to need to be a mathematical realist as well,” since “a typical empirical scientific theory, 
rigorously formulated, presupposes pure mathematical facts as well.”  Indeed, “If a 
naturalist like Carroll were to declare that he is a realist about, for example, the standard 
model of particle physics, but not about mathematics, then it would not even be apparent 
what he meant.” 
 
Strictly speaking, I am not a realist about “the standard model of particle physics.” The 
standard model is a partial description, a representation that captures some aspects of 
how reality behaves, and only an approximate representation at that – extremely accurate 
within a certain domain, but completely inapplicable in others. What I am a realist about 
is reality, by which I mean the totality of the physical universe. The standard model of 
particle physics, like general relativity or Newtonian mechanics, provide useful ways of 
talking about reality in certain circumstances, but I would not describe them as 
fundamentally “real.”1 The same, I would argue, goes for mathematics generally, about 
which I am not a realist.2 
 
The purpose of this paper is to make apparent what might be meant by that.3 
 

2. Reality By Itself 

 
1 The view I am defending is thus related to a kind of structure realism, as elucidated for example in Ladyman et al. 
(2007). But my claims are narrower than a defense of any specific variety of structural realism. 
2 I do not mean to claim that almost all or even most physicists think this way, although I suspect many of them do. 
Most working physicists try not to think about philosophical issues regarding “reality” at all. And some are 
undeniably realists about both mathematics and the laws of physics. One of these is Nobel Laureate David Gross. I 
once asked him if he could point to Einstein’s equation of general relativity out there in the world. He picked up a 
book, let it fall to the ground under the force of gravity, and announced, “There you go.” 
3 There are of course others who have defended scientific realism while denying mathematical realism. See e.g. 
Field (1980), Azzouni (2004), or Szabó (2022). The present essay is offered as the perspective of a particular 
physicist, rather than a comprehensive examination of the issues. 



 
Let me start by laying out the picture to be defended, before getting into possible 
objections and responses to it. The intuition we’re trying to develop is that there is 
something called “reality,” or “the world,” or “the universe,” or “nature” – the totality of 
existence. And the world is sui generis – it exists, in a way that no other kinds of things 
exist. (We can discuss along the way whether we should think that other kinds of things 
exist in other ways, or whether it’s better to save “existence” as something that only 
applies to the world.) The world being described is supposed to be our actual world, but 
we will talk about it using language that is intentionally noncommittal concerning 
fundamental ontological questions, as those remain incompletely answered. There can of 
course be subsets of the world, or collections of such subsets, which may rightfully 
thought of as existing as well. I’m on the side of saying that tables and chairs exist, 
recognizing that is contentious in some circles. 
 
Consider the world from the perspective of an omniscient outside observer. No such 
observers are imagined to actually exist, but thinking about what they would say if they 
did provides a convenient stepping-stone to the more realistic perspective of observers 
inside the world.  
 
Our external observer notices that the world is not structureless; there are patterns 
relating different parts of it. The world can be fully described in a more efficient way than 
simply listing every part of it and that part’s relation to other parts. The state of the world 
is algorithmically compressible; given the patterns within it, facts about certain parts of 
the world imply facts about other parts. These patterns might be called the “laws of 
physics.” 
 
We’ll be a little vague about what the laws of physics actually are, because physics isn’t 
done yet and there are presumably laws yet to be discovered. But we don’t need to restrict 
the label to some aspirational theory of everything that applies at the most fundamental 
level and in all circumstances; there are patterns that emerge at higher levels that still 
deserve being called laws of physics (Dennett 1991; Carroll 2016). 
 
One such pattern might usefully be labeled “evolution through time.” The world can be 
divided into “moments of time,” which have a relationship of being either nearby or far 
away. Nearby moments are related to each other in somewhat predictable ways; indeed, 
the persistence of certain kinds of collective structures over time is what inspires us to 
think of those structures as “existing” in their own right. There is nothing necessarily 
fundamental or absolute about time or evolution; at this level, it is simply a useful, 
perhaps approximate and limited, way of relating some parts of the universe to other 
parts. 



 
In this picture, there is nothing extra that exists. There are no extra-physical beings or 
essences. The laws of physics, in particular, are not existing things that bring about the 
world or govern its behavior; they are simply convenient summaries of what exists. We 
are therefore being Humean about the laws of nature, in contrast with an anti-Humean 
perspective that would grant the laws both existence and powers (Maudlin 2007). The 
world as we have described it is something like David Lewis’s “Humean mosaic” of 
events (Lewis 1986), although Lewis granted primacy to spatiotemporal relations in a 
way that seems unnecessary (and likely just wrong, at a fundamental level, if spacetime 
itself is emergent). 
 
There may be any number of useful ways of describing or talking about the world, whether 
from an external perspective or from within the world. Some of these ways might involve 
mathematics, even though mathematics does not exist in the same way the physical 
world does. The reality-realist view considers mathematical statements in a way that a 
Humean considers laws of nature: as compact summaries of things that happen in the 
world. We might then want to extend our discussion of such statements beyond their 
world-based origins, but we should be cautious about overinterpreting the results of such 
exercises. 
 
To see how this picture might work, let’s abandon the external perspective and ask what 
the world seems like from the inside. There can be subsets of the world that are usefully 
identified as “agents” – persistent patterns over time that interact with the rest of the 
world in such a way as to construct within themselves (partial, imperfect, fallible) models 
of the world, models that include the agent itself. That is, there is some substructure of 
the agent that represents patterns that an external observer would recognize as 
characterizing the world. Such an agent can “perceive” and “think,” by which we indicate 
processes within the agent that gather information (leading to correlations between part 
of the agent’s internal state and the state of the external world) and process it (physically 
manipulate information-bearing parts of itself so as to generate predictions about itself 
and the world). All such operations are imagined to be purely physical, compatible with 
the patterns we recognize as the laws of physics. 
 
An agent might, for example, draw the distinction between having an object (let’s say an 
apple) in their possession, and not having any such object. Then a further distinction 
could be drawn between the state of having one apple, and the state obtained by 
acquiring another apple when already in the possession of an apple. The agent could 
recognize similarities between these situations and analogous situations involving 
oranges instead of apples. This might inspire them to label each situation with a 
“number,” where possessing the same number of apples and oranges implies that the 



groups of fruits can be put into correspondence with each other. These physical 
occurrences could inspire our agent to abstract away from the notion of collections of 
things to an abstract notion of quantity. And the numbers, measures of how many objects 
one possesses, could be found to obey patterns of their own: every time an agent 
possessed two things, and was given two more of the same kind of things, they now 
possess four of those things, no matter what kinds of things are involved. That kind of 
awkward construction can be simplified to “2+2=4.” Then the agent (or many agents, 
working over time and sharing knowledge) could invent a set of axioms and rules that 
would generate reliable statements about numbers, as well as about other abstract 
mathematical objects.  
 
All of this new mathematical knowledge, however, starts out as no more or less than a 
convenient way of talking about physical things happening in the world. The abstract 
proposition that 2+2=4 is not a reflection of an independently existing truth. It is a bit of 
formalism that happens to find use as a way of indicating certain features of physical 
reality. 
 
Similar considerations apply to morality. Those agents that tend to survive and pass on 
their heritage (biological and cultural) to subsequent generations will tend to, in some 
sense, care about the world and what happens in it. (Caring about what happens confers 
greater survival probability than complete indifference; it leads one to expend energy to 
run away from hungry tigers, for example.) Such caring manifests itself in correlations 
between internal states of the agents and events in the outside world: states that we can 
recognize as “approval” and “disapproval” as well as related feelings. Intelligent agents 
will naturally work to systematize these feelings, assigning properties of ”right” or 
“wrong” to different actions that occur or might occur. All of this is nearly inevitable 
given the basic facts of biology and evolution as we find them in our own world, without 
any need to assume any independent reality for such moral judgments. The burden 
would be on those who believe in such independent reality to explain why those moral 
facts often align so conveniently with the personal judgments we would naturally expect 
agents to develop over time.4 
 

3. How Mathematics Fits In 
 
Let us relate this reality-realist picture to standard ideas about mathematical realism. In 
the picture sketched here, “2+2=4” is not meant as a true statement about objectively-
existing objects “2,” “+,”, “=,” and “4”; rather, it is a summary of multiple facts about the 

 
4 I am not explicitly commenting on the “evolutionary challenge” to moral or mathematical realism, but I agree 
with Clarke-Doane (2012) that the two cases are highly analogous. 



physical world, along the lines of “every time I have two apples and someone gives me 
two more apples, I wind up with four apples.” The mathematical realist, by contrast, 
tends to think of this statement as an objective truth about things called “addition” and 
“the integers,” which exist independently of the physical stuff from which the universe 
is made. 
 
In Morality & Mathematics, Clarke-Doane provides a list of features that a field should 
have in order that we should be realist about it. These include Aptness (typical sentences 
are true or false), Belief (sentences conventionally express beliefs), Truth (some atomic 
sentences are true), Independence (truths are independent of human minds), and Face-
Value (sentences should be interpreted at face value). Interpreting “2+2=4” and analogous 
statements as summaries of physical facts would seem to be straightforwardly 
compatible with Aptness, Belief, and Truth. (It is true that two apples, augmented by two 
more apples, leaves us with four apples.)  
 
One could worry about Independence – the convenient summaries provided by 
mathematical statements are convenient for humans, after all. An omniscient and 
omnipotent observer wouldn’t need recourse to any kind of summaries; they could just 
know and reason about all of the physical facts. But the facts that underwrite the 
summaries are still there, whether any agents notice them or not. An absence of human 
minds doesn’t affect the combination properties of apples. So Independence appears to 
be satisfied. 
 
Face-Value is another matter. This criterion requires that mathematical statements about 
certain kinds of things (e.g. “even numbers”) actually refer to honest things of that form. 
But we are suggesting that there are no “things” corresponding to the category of “even 
numbers.” There are things corresponding to the category of “apples,” and we might 
consider a collection of apples including an even number of them, but the number itself 
is not a thing. This view therefore fails at being realist about mathematics, as expected. 
 
In this picture, then, mathematics comes pretty close to satisfying the conditions for 
realism, but falls just a bit short. This is why it is reasonable to contemplate invoking 
different senses of “reality.” Mathematics is incredibly useful in describing the world, 
and we think that conclusions derived mathematically can be extremely reliable, but it’s 
not real stuff in the way the world is.  
 
This, in turn, is related to the Benacerraf-Field problem (Benacerraf 1973, Field 1989), 
which highlights the lack of causal influence of mathematics on the physical world. From 
our perspective that makes perfect sense; descriptive tools don’t necessarily affect the 
things they are describing. The world simply is, whether or not scientists and 



philosophers and mathematicians ever come along to talk about it in mathematical terms. 
At the same time, we do believe that mathematical statements express truths, and do so 
in a way that is independent of human minds. One can decide for oneself whether those 
properties qualify for a kind of “existence.” 
 

4. Mathematics and Physics 
 
With that in mind, we can turn to some conventional defenses of mathematical realism. 
One, alluded to in the opening, is the “unreasonable effectiveness” of mathematics in 
physics, to use Wigner’s (1960) phrase. Empirically, successful scientific theories are 
formulated in mathematical language, and the most precisely tested ones tend to be the 
most mathematical. To accept the success of something like the Standard Model of 
particle physics, which is quintessentially mathematical to its core, might naturally imply 
that math itself is real.  
 
But as mentioned above, there is an important distinction between “the Standard Model 
is real” and “the Standard Model represents real things.” The scientific realist must be 
committed to the reality of nature, not to any particular representation of it. The Standard 
Model is not reality, it is – as the name indicates – a model of it. It would be a mistake to 
attribute reality to any tools we might use to describe reality. 
 
Nevertheless, theories of modern physics are so very mathematical that one is tempted to 
wonder whether they even make sense in the absence of mathematical realism. As noted 
in Section 3.5 of Morality & Mathematics, following Putnam (2012), when we talk about 
quantum states as superpositions of possible experimental outcomes (like the number of 
electrons in a box), that description is so extremely far from our everyday experience of 
stuff in the world that the mathematics seems indispensable. 
 
Here I would blame our paltry human intuition, rather than perceiving a need for an 
entirely new ontological category. When we say “the state of the electrons in the box is in 
a superposition,” what nature hears is simply “the contents of the box are in this 
particular quantum state.” There is nothing metaphysically special about having definite 
numbers of electrons in the box, nor metaphysically suspect about superpositions thereof. 
Once again, we find it convenient to reach for mathematical descriptions when talking 
about such quantum states, but there is nothing intrinsically more “mathematical” about 
them than there is about more familiar classical configurations. 
 
In this context, it is worth mentioning that the Standard Model, like other successful 
theories of modern physics, is not presumed to be completely fundamental, nor 
completely comprehensive (i.e. there are physical situations, like near the singularity 



inside a black hole, where the model isn’t even supposed to apply). It is an “effective” 
theory, applicable only within a well-defined domain, and that domain doesn’t include 
important phenomena such as dark matter and for that matter gravity (Carroll 2022). 
Most physicists expect the Standard Model to be eventually superseded by a more 
fundamental theory. That more fundamental theory is likely to also be formulated in 
mathematical terms, but the specific math being used could be utterly different. (Perhaps 
it will be a discrete theory, in which case real and complex analysis might be beside the 
point.) In that case, it’s hard to know which mathematical concepts should be granted 
“reality.” Is it only the most fundamental ones, or do concepts that are useful in emergent 
approximations qualify as well? How precise does an approximate theory have to be 
before it qualifies? If scientists happen not to stumble on a particular theory, is its 
mathematics rendered unreal? 
 
Presumably the mathematical realist doesn’t want the reality of certain parts of 
mathematics to depend on their usefulness within science. Rather, the idea should be that 
the usefulness of some mathematics provides evidence for the reality of mathematical 
ideas more generally. Indeed, there are examples where incompatible mathematical ideas 
find homes in different parts of science – Euclidean geometry is central to some theories, 
and non-Euclidean geometry to others. So it must somehow be the general idea of 
mathematical realism, rather than specific concepts, that gains credence from the success 
of quantitative empirical science. 
 
But it is unclear how the usefulness of, say, matrices in quantum mechanics provides 
evidence for the reality of, say, homotopy groups. I would argue that what actually gains 
credence is the reality of the subject matter of quantitative empirical science – i.e., the 
world – rather than the tools we use to describe it. This view saves us from awkward 
decisions about which parts of mathematics are supposed to be real, and which parts of 
science support them.  
 

5. Mathematics Without Physics 
 
If one argument for mathematical realism leans on the importance of mathematics to 
scientific theorizing, another takes an orthogonal tack: we should take mathematical 
realism seriously because mathematical truth doesn’t depend on physical facts. The 
statement “there is no largest even number” is true whether or not there are collections 
with an even number of apples, and it was true before any person invented the concept. 
In a sense this strategy tries to argue for realism solely from Independence, the fact that 
mathematical truths are independent of human minds. 
 



This argument leans on the intuition that certain mathematical claims are simply true, 
whether or not they are useful or whether anyone has ever thought of them before. The 
truth-value of mathematical statements isn’t located in time, or contingent on human 
imagination. “There is no largest even number” bears truth, and bore truth before anyone 
formulated the relevant concepts. Indeed the same goes for “there is no largest multiple 
of an integer N,” even though there are specific values of N for which no human being 
(or alien) has ever formulated this statement. It is hard, according to this line of reasoning, 
to make sense of such facts absent a commitment to mathematical realism. 
 
In response, we may distinguish between two different kinds of mathematical claims. 
One category is the set of claims that are (or were, or will be) relevant to describing some 
part of physical reality. The concept of an even number is useful when we are discussing 
collections of apples, and the concept of a section of a fiber bundle is useful for field 
theory. In such cases, mathematical statements can be translated into statements about 
physical reality. Propositions about even numbers stand in for facts about apples and 
other collectible objects. Therefore, these examples don’t provide evidence for a separate 
reality for math itself; they merely reflect the reality of the underlying physical world.  
 
But there are also mathematical statements that (at least for a time being) seem to be 
irrelevant to our descriptions of physical reality, and yet there is a strong temptation to 
think of them as “true.” We don’t need the concept of a largest even number, or the 
absence thereof, to actually do physics. But it seems to follow from the rules we have set 
up for dealing with integers more generally. Some mathematical truths can be thought of 
as extrapolations away from physical reality, but still based on the same principles that 
were suggested to us by considering that reality. 
 
Should we consider such truths as evidence for a separate reality for mathematics? One 
consideration might be that if we didn’t accept mathematical realism, we might expect 
there to be different, incompatible “truths” that are based on the same (or equivalent) 
axioms that we deploy in our discussions of physics. 
 
But of course, there are such incompatible “truths,” which appear in a variety of ways. 
One way is simply to consider sets of axiomatic systems that are completely equivalent 
in those cases when they are describing physical reality, but which might diverge when 
we extrapolate them farther. As a somewhat trivial example, we can consider the 
difference between ordinary addition and addition modulo some integer N. If N is 
sufficiently large, there are no physically realizable numbers (or numerical values for the 
quantity of a collection of objects) that we could ever add together to reach it. In that case, 
the two theories would be physically equivalent. There would be no Platonic truth of the 
matter concerning what answer one would get when adding N-1 to itself. One might 



object that “addition modulo N” isn’t what one meant by “addition,” but that is a choice 
you are choosing to make when defining terms, not something that is decided for us by 
reality. 
 
Perhaps a more conventional example is the Continuum Hypothesis, which is famously 
undecidable in ZFC (Zermelo-Fraenkel set theory with the Axiom of Choice). The 
Continuum Hypothesis, which states that there is no set whose cardinality lies strictly 
between that of the integers and the real numbers, sounds like something a realist would 
like to be either true or false (as apparently Gödel did, for example). But it turns out that 
CH can neither be proved nor disproved within ZFC; one is free to add it or to add its 
negation. Unlike the mathematical realist, the reality realist has no trouble with this 
observation. The physical world either does or does not contain structures that can 
usefully be described by numbers with a cardinality in between that of the integers and 
the reals. We don’t know whether it does or not, but in neither case are we forced to 
decide about the pre-existing reality of the mathematical idea. 
 
The case for the reality of mathematical propositions might seem most straightforward 
when those propositions are theorems that could be proven from axioms. That is the case 
for things like the non-existence of a largest even number, or analogous but less trivial 
statements. The process of theorem-proving is a purely logical operation, not relying on 
any features of the physical world. But which axioms we are tempted to label as “true” 
does depend on physical reality. The fact that the interior angles of triangles add up to 
180 degrees may once have seemed like an immutable truth, but we now recognize that 
it depends on the axioms of Euclidean geometry, and fails to hold in other equally 
legitimate systems. We are then left with a form of “if-thenism” (Putnam 1967), in which 
true statements are of the form “if these axioms are accepted, this theorem can be 
proven,” but a typical mathematical realist wants the proposition in the theorem to be 
real, not merely the conditional statement. 
 
It is therefore more common for realists to point to statements that cannot be proven from 
agreed-upon axioms. The Continuum Hypothesis is an example, as are various 
statements that cannot be proven or disproven according to Gödel’s incompleteness 
results, as are the “standard” models of something like Peano Arithmetic. In the last case, 
for example, there is a feeling that we know what the “true” model of the integers looks 
like, even though we have theorems guaranteeing the existence of non-standard models 
that satisfy the axioms perfectly well. 
 
As Putnam (1980) points out, this isn’t really a problem for the hard-core mathematical 
realist, who posits an ability (somewhat ill-defined) by which we can “grasp” which 
model is the real one. But it is also, as he goes on to emphasize, not a problem for the 



hard-core anti-realist, who doesn’t believe there is any one “correct” model of any 
particular axiomatic system. For purposes of this issue, reality realism is in the latter 
camp. There is, for sure, what the physical world does; some models might be useful in 
describing that, and some might not. But the set of all models of arithmetic or any other 
axiomatic system are not divided into the intrinsically “true” ones and the “false” ones. 
There is merely the question of which models are useful in talking about reality. 
 

6. Physics and Consistency 
 
A final argument for mathematical realism comes from the conviction that our 
mathematical theories are consistent, or at least there is a fact of the matter about the 
consistency of such theories. Such an argument is given in Sections 3.5 and 6.2 of Morality 
& Mathematics. The idea is roughly this (paraphrased): 
 

If we believe some theory T, we should also believe that T is consistent – that it 
does not lead to a contradiction. But to have opinions about what leads to what 
requires metalogic, which commits us to a theory at least as strong as the natural 
numbers. But we can’t prove that such a theory, say Peano Arithmetic, is 
consistent. In fact it’s much worse: if PA is consistent, so is PA + ~Con(PA), where 
“~Con(PA)” means PA is inconsistent. So if we don’t want to attribute objective 
reality to one system or another, rather treating all axiom schemes as equal, then 
there is no objective fact of the matter as to whether PA, and therefore classical 
logic, is consistent. And that would be bad. 

 
The brief response to this is that the question of whether a given formal theory is 
consistent is not really the important one. What matters, at least to scientists, is whether 
there is a model of that theory that accurately represents reality (or at least, part of the 
model accurately represents part of reality).5 
 
To be clear, reality is consistent, essentially by construction. The real world can be thought 
of as a collection of “things” that “happen,” where scare quotes remind us that we need 
to be a bit vague in the absence of the correct fundamental ontology. As mentioned 
earlier, quantum mechanics might fool us into supposing that reality is not really a set of 
things that actually happen, because e.g. the number of electrons in a box might be 
described by a superposition rather than a definite value. But that’s just a consequence of 

 
5 As recently argued by Azzouni (2022), there is also the issue that theories become meaningful only when 
interpreted in terms of a model, and ~Con(PA) will have different meanings in a model of PA + Con(PA) as opposed 
to a model of PA + ~Con(PA). 



using antiquated notions of “things” and “happen.” There is a quantum state describing 
the box, full stop. Superpositions are perfectly legitimate things. 
 
A formal theory, by contrast, generally posits some axioms and then derives some 
theorems. Sufficiently powerful formal theories will generally have multiple models 
associated with them. The thing that represents reality is an appropriate model, not the 
set of axioms. The existence of inappropriate models shouldn’t bother us all that much. 
 
In the case of PA, as explained in Morality & Mathematics, the worry about consistency is 
partly assuaged by how it actually works. The intuitive concern is that an inconsistent 
theory can prove a contradiction, and from a contradiction we can prove anything at all, 
so the theory is useless. On p. 82 we read: 
 

A model of PA + ~Con(PA) is a model in which there is an infinitely long ``proof’’ 
of a contradiction from PA. I put ̀ `proof’’ in quotes, because a proof must be finite. 
The model is wrong about finiteness. Or that is what we would like to say. 

 
Clarke-Doane goes on to argue that we can’t say that “the model is wrong about 
finiteness” if we think that both PA + Con(PA) and PA + ~Con(PA) are equally valid sets 
of axioms, and the escape is to be a realist who thinks that one of those sets is true and 
the other is not. But there is another escape: not that the model is wrong about finiteness, 
but that it expresses a notion of finiteness which is not the one relevant to describing our 
real world. A model of PA + Con(PA) is more useful for that purpose. 
 
One way to make the consistency worry seem more bothersome is to relate it to allowed 
physical processes. If we physically construct an automated theorem-proving machine 
that starts with seemingly reasonable axioms, will it ever prove a contradiction? Like 
most people, I’m happy to believe that it would not. But by making the worry more vivid, 
we’ve changed it into a question about physical reality. And physical reality is going to 
do what it’s going to do, we just have to live with the consequences. 
 
Although it is somewhat tangential to our concerns here, talking about reality and the 
laws of physics naturally leads one to ask why there are laws of physics at all. This is an 
especially sharp question for the Humean, who thinks that laws of physics are merely 
convenient summaries of sets of facts, rather than independently-existing concepts with 
some causal or governing powers. If the world is a collection of facts, why do those facts 
have so much structure and compressibility? 
 
I have no idea. I bring it up only because it does seem like a legitimate concern for the 
Humean, or for reality realism more generally. It may be that this is a “why” question 



without a distinct answer other than the brute fact of the matter, but that seems 
unsatisfying. The universe never promised to satisfy us, but it’s reasonable to ask whether 
it could before we entirely give up. 
 

7. Conclusions 
 
Thinking through these issues has caused me to reflect on the extent to which many 
working physicists are liable to resist thinking about what is “real.” They care about what 
works, and what can be measured, but will actively avoid questions about what really 
exists. (This attitude has been expressed to me by multiple physicists in more or less just 
these words.) 
 
This is a shame, and is a reflection of the unfortunate divergence between science and 
philosophy. Physicists have, no doubt, been extraordinarily successful at constructing 
models of the world that work and make accurate predictions, even without caring too 
much about the underlying reality. But I would suggest two shortcomings of this 
perspective.  
 
First, reality is intrinsically interesting. I would wager that most physicists first became 
interested in science because they wanted to better understand the real world, not 
because they simply wanted to make successful predictions. The latter attitude is 
inculcated during their training as scientists. There may be an instrumental reason for 
this, focusing attention on practical/solvable problems, but something of the initial 
motivation is lost. 
 
Second, reality is potentially useful. That is, even if one just wants to be a hard-headed 
model-building scientist, there are angles and insights that might only come from 
thinking hard about what is real. The fact that physicists don’t agree on the fundamental 
ontology of quantum mechanics, nearly a century after the formulation of the theory, is 
a case in point. We don’t know for sure, but this lack of agreement could be holding us 
back in the search for a theory of quantum spacetime and ultimate unification. It wouldn’t 
be completely surprising if the nature of reality played an important role in the invention 
of such theories. 
 
The project of Morality & Mathematics is therefore a crucially important one, for reasons 
in addition to the obvious importance of understanding the status of moral claims. We 
need to be able to separate what is real from what is not, and what precisely that means. 
Although I am an anti-realist about both morality and mathematics, I do appreciate the 
force of some of the arguments for realism. I look forward to changing my mind if a 
sufficiently convincing argument comes along.  
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