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Some Properties of the Dissipative Model1

of Strain-Gradient Plasticity2

C Carstensen1, F Ebobisse2, AT McBride3, BD Reddy?,2, P Steinmann4
3

Abstract4

A theoretical and computational investigation is carried out of a dissipative model of rate-independent5

strain-gradient plasticity and its regularization. It is shown that the flow relation, when expressed in6

terms of the Cauchy stress, is necessarily global. The most convenient approach to formulating the flow7

relation is through the use of a dissipation function. It is shown, however, that the task of obtaining the8

dual version, in the form of a normality relation, is a complex one. A numerical investigation of problems9

in two space dimensions casts further light on the response using the dissipative theory in situations10

of non-proportional loading. The elastic gap, a feature reported in recent investigations, is observed11

in situations in which passivation has been imposed. The computational study indicates that the gap12

may be regarded as an efficient path between a load-deformation response corresponding to micro-free13

boundary conditions, and that corresponding to micro-hard boundary conditions, in which plastic strains14

are set equal to zero on all or part of the boundary.15

1 Introduction16

There has been steady progress in the development of strain-gradient theories of plasticity for17

over three decades, since the early contribution by Aifantis [1]. The motivation for such theories18

lies in their ability to capture length-scale dependent effects, which conventional theories are19

unable to do. Some key works include those by Gao, Huang, Nix and Hutchinson [13, 14], who20

argue for the inclusion of gradients of plastic strain as a way of accounting for geometrically21

necessary dislocations, and Fleck and Hutchinson, Gudmundson, and Gurtin and Anand [7, 15,22

16], who develop such theoretical models.23

This work concerns the small-strain, rate-independent theory of strain-gradient plasticity. The24

model is based on that proposed for rate-dependent materials by Gurtin and Anand [16] and25
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Gudmundson [15], and subsequently developed for the rate-independent case by Reddy and26

coauthors [20, 21], who also carried out an analysis of well-posedness of the problem. The works27

by Fleck and Willis [10, 11] present and analyze closely related rate-independent and -dependent28

theories.29

In the models referred to above, gradient effects are accounted for either through their inclu-30

sion in the free energy, or in an extension of the flow law, or both. These first two cases31

are referred to respectively as energetic and dissipative models, and are both present in many32

treatments of gradient plasticity. They differ substantially though in their implications for the33

theory. Fleck, Hutchinson and Willis [8], for example, point out that it is particularly in cases34

of non-proportional loading that the energetic and dissipative models lead to quite distinct be-35

haviour. These authors refer to these respectively as incremental and non-incremental theories:36

their nomenclature stems from the observation that, for energetic (or incremental) theories it is37

possible to express increments in the microscopic stresses that form part of the description of38

the model in terms of increments in plastic strain and strain gradients. On the other hand, at39

least when expressed in local form in a manner that mimics the classical associative flow law,40

the dissipative model leads to the expression of microscopic stresses – not their increments – in41

terms of plastic strain and strain gradient increments. These differences in the models are ex-42

plored and highlighted in [8] in analyses of two problems that involve non-proportional loading.43

The main distinguishing feature in the two examples is, in the case of the dissipative theory, an44

elastic gap: that is, elastic behaviour associated with non-proportional loading following loading45

into the plastic range. This phenomenon has been further investigated by Fleck, Hutchinson46

and Willis in [9]. Size effects within a one-dimensional dissipative theory of gradient plasticity47

due to Anand et al. [2] have been analyzed recently by Chiricotto et al. [4].48

Fleck and Willis [12] have carried out an analysis for one of the examples studied in detail in49

[8, 9], viz. the plane-strain tension problem of a strip subjected to passivation of the lateral50

boundaries at some stage during the loading process. Their analysis shows the existence of the51

elastic gap for the dissipative problem, and determines theoretically the manner in which plastic52

flow resumes. A further important outcome of their analysis is the demonstration that the53

presence of energetic terms has no effect on the size of the elastic gap. Further recent numerical54

investigations into the appearance of an elastic gap during non-proportional loading include the55

works by Bardella and Panteghini [3, 19].56

The yield criterion and associative flow law for the strain-gradient problem gives the plastic57

strain-rate (or increment) and its gradient in terms of a normality condition that involves the58

yield function as a function of the microscopic stresses. Unlike the Cauchy stress these are not59

known a priori in terms of current displacement and plastic strain and therefore cannot be used60

to determine whether yield has occurred locally, as has been discussed in [10, 11]. It has been61

shown in [20] however that the microstresses can be eliminated in favour of the Cauchy stress in62

the flow relation by resorting to a weak or global form of the flow law. This global form is most63
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directly derived and formulated in terms of the dissipation function. The corresponding elastic64

region, yield function and normality relation can then be derived in principle from a dualization65

procedure. Knowledge of the current yield surface would in turn provide information relevant66

to the existence of an elastic gap, whose occurrence must correspond to the stress state lying67

inside the current elastic region rather than on the yield surface.68

The objective of this work is to explore various aspects of the dissipative strain-gradient theory,69

with a view to shedding further light on features of the theory that include those explored in70

[8, 9, 12]. The global nature of the flow relation, at least when formulated in terms of the71

Cauchy stress, is shown. The task of determining the corresponding global yield function and72

normality relation is found not to be readily derivable in closed form. Further insight into73

the global relation is obtained by analyzing its discrete form, obtained for example from time-74

discretization combined with finite element approximation in space. Remarkably, even for the75

discrete problem it is not possible to find in closed form the yield function corresponding to76

the discrete dissipation function. Rather, an upper bound for the yield function is obtained.77

These and related issues are examined in further detail in a numerical study using two examples:78

biaxial deformation of a thin plate, and extension of a circular cylindrical rod. Both are two-79

dimensional in nature: this allows for an investigation of some features that are not present in the80

one-dimensional problems in earlier studies. For example, non-proportional loading is effected81

through the application of passivation, that is, imposition of zero plastic strain increment on82

part of the boundary, and the resulting yield surface in the multidimensional stress space is83

explored.84

An interpretation, from a mathematical perspective, of the elastic gap is given by appealing to85

the expression for the yield function as a maximum, taken over all admissible plastic strain incre-86

ments, of a function involving the dissipation. Numerically, the elastic gap appears to constitute87

an efficient transition from stress-strain behaviour corresponding to a micro-free or Neumann88

boundary condition, to that which is obtained assuming micro-hard or Dirichlet boundary con-89

ditions.90

The plan of the rest of this work is as follows. We summarize the relevant governing relations in91

Section 2 and derive the flow law in global form, in terms of the dissipation function and involving92

the Cauchy stress. A mixed formulation, obtained by introducing an auxiliary variable for the93

plastic strain gradient, is presented in Section 2.2. Section 3 explores the implications of a94

regularized theory. The dissipation function is not smooth at the origin, and is approximated95

in Section 3 by one that is smooth. One consequence is that inequalities corresponding to the96

flow relations are replaced by local or global equations. In Section 4 time-discretization allows97

the global flow relation to be formulated as one involving plastic strain increments, and for the98

problem to be formulated as a minimization problem. Such a formulation is not possible for the99

original problem. In Section 5 we approach the issue of finding the yield function by replacing100

the original global problem with its fully discrete approximation, and derive an upper bound for101
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the corresponding yield function. Section 6 is devoted to the numerical investigation. Finally,102

Section 7 discusses the key results and observations and their implications.103

2 Governing equations and inequalities104

The model of strain-gradient plasticity that forms the basis of this study is that proposed by105

Gurtin and Anand [16], with the specialization to rate-independent plasticity by Reddy [20].106

Small strains are assumed. The displacement is denoted by u, the total strain by ε, and the107

stress by σ. The strain is decomposed into elastic and plastic components εe and εp according108

to109

ε = εe + εp . (2.1)

The strain-gradient theory makes provision for a 2nd-order microscopic stress tensor π and110

a 3rd-order microscopic stress Π. The quantity π is symmetric and deviatoric, while Π is111

symmetric and deviatoric in its first two indices, in the sense that Πijk = Πjik, Πppk = 0. Here112

and elsewhere the summation convention on repeated indices is invoked, with partial derivatives113

denoted by a subscript following a comma.114

We define the generalized stress S and plastic strain Γ to be the ordered pairs115

S = (π, `−1Π), Γ = (εp, `∇εp) . (2.2)

Here ` is a length parameter, and the inner product of the two generalized quantities is denoted116

by117

S � Γ := π : εp + Π ◦ ∇εp = πijε
p
ij + Πijkε

p
ij,k .

Assuming quasistatic behaviour, the equation of macroscopic equilibrium is given by118

−divσ = b , (2.3)

where b is the body force. In addition, the stress and microscopic stresses are related to each119

other through the microforce balance equation120

devσ = π − div Π or, in index form, (devσ)ij = πij −Πijk,k . (2.4)

Equations (2.3) and (2.4) are required to be satisfied on the domain Ω. The macroscopic121

boundary conditions on the problem are122

u = ū on ∂Ωu , σn = t̄ on ∂Ωt , (2.5)

where ∂Ωu and ∂Ωt are complementary parts of the boundary ∂Ω with unit outward normal123

n, and ū and t̄ are respectively a prescribed displacement and surface traction. In addition we124
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assume homogeneous micro-hard and micro-free boundary conditions on complementary parts125

∂ΩH and ∂ΩF of the boundary; that is,126

εp = 0 on ∂ΩH , Πn = 0 on ∂ΩF . (2.6)

Of particular interest is the weak form of the microforce balance equation (2.4). For this purpose127

we introduce the space W of plastic strains, defined by128

W = {q | qij = qji, qii = 0, qij ∈ L2(Ω), qij,k ∈ L2(Ω), qij = 0 on ∂ΩH} .

Taking the inner product of (2.4) with arbitrary q ∈W , integrating by parts, and imposing the

microscopic boundary conditions (2.6), we obtain the weak formulation∫
Ω

devσ : q dx =

∫
Ω

[π : q + Π ◦ ∇q] dx

=

∫
Ω

S � Q dx , (2.7)

where Q = (q, `∇q).129

Given the free energy ψ, the energy imbalance takes the form130

ψ̇ − σ : ε̇e − π : ε̇p −Π ◦ ∇ε̇p ≤ 0 . (2.8)

Since we are concerned in this work with the consequences of a dissipative gradient plasticity131

formulation we restrict attention to free energy functions of the form6
132

ψ = ψe(εe) = 1
2ε

e : Cεe , (2.9)

in which the elasticity tensor C is given, for isotropic materials, by133

Cε = λ(tr ε)I + 2µ ε . (2.10)

Here λ and µ are the Lamé parameters, and I is the second-order identity tensor. We note also134

for future reference that the deviatoric part of this relation is given by135

devCε = 2µ dev ε . (2.11)

Substitution of (2.9) in (2.8) and the usual Coleman-Noll procedure lead to the elastic relation136

σ =
∂ψe

∂εe
= Cεe (2.12)

and the reduced dissipation inequality137

π : ε̇p + Π ◦ ∇ε̇p ≥ 0 or S � Γ̇ ≥ 0 . (2.13)

6More generally, one considers a free energy that depends in addition on the plastic strain, the plastic strain

gradient and, possibly, hardening internal variables. Details may be found, for example, in [20].
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2.1 Flow relation138

Based on the reduced dissipation inequality (2.13) we postulate the existence of a yield function

f , which is a function of the generalized stress S, and a flow relation that takes the form of a

normality law: that is,

f(S) ≤ 0 , (2.14a)

Γ̇ = λ
∂f

∂S
, (2.14b)

λ ≥ 0, f ≤ 0, λf = 0 . (2.14c)

139

Equivalently, as shown schematically in Figure 1,

Γ̇ � (T− S) ≤ 0 for all T ∈ E := {T | f(T) ≤ 0}, (2.15)

where E is the convex elastic region.140

�̇

|�̇|
=

S

|S|

�̇

S

f(S) = 0

T

T� S

E

IE = 0

IE = +1

f(S) < 0

Figure 1: The yield surface and normality relation in generalized stress space

The dissipation function D may be defined using a generalization of the postulate of maximum141

plastic work in the form142

D(Γ̇) = sup{S � Γ̇ | f(S) ≤ 0} . (2.16)

Note that D is convex and positively homogeneous, the latter being defined as D(αΓ̇) = |α|D(Γ̇)143

for any real number α.144
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Example For the special but important case in which145

f(S) = |S| − Y =
√
|π|2 + `−2|Π|2 − Y ≤ 0, (2.17)

where Y is the yield stress, it follows from (2.14b) that at yield (f = 0)146

λ = |Γ̇| =
√
|ε̇p|2 + `2|∇ε̇p|2 .

Furthermore, for non-zero Γ̇,147

Γ̇

|Γ̇|
=

S

|S| ⇐⇒ S = Y
Γ̇

|Γ̇|
. (2.18)

From (2.16) it is easily seen that for this example148

D(Γ̇) = Y |Γ̇| . (2.19)

2149

There is an important duality between the flow relation written in terms of the yield and150

dissipation functions. To present this we need the notion of the subdifferential ∂F of a convex151

function F , defined here on a finite-dimensional space X such as Rd (see Figure 2).7 Returning

4.1 Some Results from Convex Analysis 99

f⇤(x⇤) := sup
x2X

{hx⇤, xi � f(x)}, x⇤ 2 X 0. (4.8)

From this definition it is easily seen that the support function is conjugate to
the indicator function:

I⇤S = �S . (4.9)

Furthermore, if f is proper, convex, and l.s.c., then so is f⇤, and in fact,

(f⇤)⇤ := f⇤⇤ = f. (4.10)

In particular, if S is nonempty, convex, and closed, its indicator function IS

is proper, convex, and l.s.c. So for such a set S,

IS = �⇤
S = I⇤⇤S . (4.11)

Given a convex function f on X, for any x 2 X the subdi↵erential @f(x) of f
at x is the (possibly empty) subset of X 0 defined by

@f(x) := {x⇤ 2 X 0 : f(y) � f(x) + hx⇤, y � xi 8 y 2 X}. (4.12)

A member of @f(x) is called a subgradient of f at x. According to the defini-
tion, when f(x) = +1, @f(x) = ?. In the context of functions on Rd, if f is
di↵erentiable at x, then

@f(x) = {rf(x)}.

At a corner point (x0, f(x0)), the subdi↵erential @f(x0) is the set of the slopes
of all the lines lying below the graph of f and passing through the point
(x0, f(x0)). This is illustrated in Figure 4.3. For the special case of the indi-

x0

f

@f(x0)

Fig. 4.3. Subgradient of a nonsmooth, convex function of a single variable

F

@F (x0)

x0

Figure 2: The subdifferential ∂F (x0) of a convex function F at x0

152

7The subdifferential ∂F of a convex function F is defined by

∂F (x) = {p | F (y)− F (x)− p · (y − x) ≥ 0, for all y ∈ X} . (2.20)

That is, ∂F is the set of tangents at the point x. If F is smooth at x then ∂F comprises a single member, viz.

the tangent ∇F (x) to F at x, or equivalently the gradient or normal to the level set F = constant. For this and

other concepts from convex analysis, see for example [17].
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to plasticity, we define the indicator function IE of a set (in this case the elastic region (2.15))153

by154

IE(S) =

{
0 if S ∈ E ,

+∞ otherwise .
(2.21)

This is a convex function. Furthermore, from the definition (2.20) the subdifferential of IE reads155

∂IE(S) = {Γ̇ | Γ̇ � (T− S) ≤ 0 for all T ∈ E} . (2.22)

When compared with (2.15) we see that this is simply the normality relation, albeit valid for a156

nonsmooth yield function. We use the notation157

NE(S) for ∂IE(S) , (2.23)

given its geometrical interpretation, and refer to NE as the normal cone to E at S. From the158

definition NE = {0} if S lies in the interior (that is, the elastic domain) of E : as expected, the159

generalized plastic strain rate is zero if the generalized stress lies inside the elastic region.160

From an important result in convex analysis we have the duality relation161

Γ̇ ∈ NE(S) ⇐⇒ S ∈ ∂D(Γ̇). (2.24)

The left-hand form of the normality relation has already been established. The equivalence162

(2.24) and the definition (2.20) indicate that it may also be written as163

D(Q)−D(Γ̇)− S � (Q− Γ̇) ≥ 0 , (2.25)

as depicted in Figure 3. If D is differentiable at Γ̇ then (2.25) reduces to the equation164

S =
∂D

∂Q

∣∣∣∣
Q=Γ̇

(2.26)

(replace Q by Γ̇± εQ and take the limit ε→ 0).165

Two important examples of dissipation functions are166

D1(Γ̇) := Y
[
|ε̇p|+ `|∇ε̇p|

]
(2.27)

and167

D2(Γ̇) := Y |Γ̇| = Y
√
|ε̇p|2 + `2|∇ε̇p|2 . (2.28)

The function D2 corresponds to the definition (2.17) of the yield function. For Γ̇ 6= 0, from168

(2.26) with D = D2 we recover the relation (2.18)2. Figure 4 shows the level sets corresponding169

to the dissipation functions D1 and D2. It is seen that D2 is smooth, and so is the corresponding170

yield function, while D1 and its corresponding yield function are piecewise smooth.171

The dissipation function D1 is of more than theoretical significance: Evans and Hutchinson172

[6] have shown that theories based on such a dissipation give results that correlate well with173
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D(Q)

D(�̇)

�̇ Q

S
Q � �̇

S
⇧(

Q
�

�̇
)

D
(Q

)
�

D
(�̇

)

D(Q) � D(�̇) � S ⇧ (Q � �̇) � 0

Figure 3: Graphical interpretation of the subdifferential of a convex function D

Y

Y

D1 = const

D2 = const

"̇p

`
d"̇p

dx

Figure 4: The level sets corresponding to the dissipation functions D1 and D2

experiments on bending. The yield function corresponding to D1 is shown in [20] to be piecewise-174

smooth or Tresca-like in structure.175

We now obtain a weak or global form for the flow relation with a view to eliminating S from it.176

Integrate (2.25) to obtain177 ∫
Ω

[
D(Q)−D(Γ̇)− S � (Q− Γ̇)

]
dx ≥ 0 (2.29)
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and add to this the weak form of the microforce balance equation (2.7) to get178 ∫
Ω

[
D(Q)−D(Γ̇)− devσ : (q− ε̇p)

]
dx ≥ 0 (2.30)

or179 ∫
Ω

[
D(Q)−D(Γ̇)− Σ � (Q− Γ̇)

]
dx ≥ 0 , (2.31)

where180

Σ := (devσ,0) .

Concepts such as the subdifferential defined earlier for vectors or tensors at a point (in essence,181

defined on Rd) have a broader definition that extends to functionals. Thus, if we define the182

functional183

j(Γ̇) =

∫
Ω
D(Γ̇) dx, (2.32)

then the subdifferential of j at Γ̇ is defined to be the set of functions184

∂j(Γ̇) =
{

Σ| j(Q)− j(Γ̇)−
∫

Ω
Σ � (Q− Γ̇) dx ≥ 0

}
. (2.33)

So we see that (2.31) corresponds to the global statement that185

Σ ∈ ∂j(Γ̇) . (2.34)

Furthermore, as in the local case the dual of this relation gives a global normality relation, which186

we write as187

Γ̇ ∈ NEglob(Σ) . (2.35)

The relation (2.35) is equivalent to finding the global form of the normality relation and the188

corresponding yield function. This is not a trivial task, as we shall see in Section 5.2 where,189

even for a discrete and therefore finite-dimensional approximation to the problem, at best it is190

possible to find only an upper bound to the yield function.191

Remark Note that the microstress S has been eliminated from the global flow relation. This192

will be important in interpreting the flow relation for the gradient problem, as the local form193

(2.14) involves S, which is indeterminate in the elastic region.194

2.2 A mixed formulation for the dissipation function D1195

If the dissipation function D were a function of two independent variables, it would be feasible to196

obtain the corresponding yield function and normality law (2.35) by appealing to standard results197

from convex analysis. The arguments in D are however the plastic strain and its gradient, and198

this relationship between the two variables complicates the task of finding the yield condition.199

With this in mind we explore a mixed approach in which the plastic strain gradient is treated200

as an independent variable.201
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For convenience we make use of the dissipation function D1 defined in (2.27), and introduce the202

auxiliary variable P, a third-order tensor defined by203

P = `∇εp . (2.36)

The dissipation function is now a function of two independent variables and can be written

D1(εp,P) := D10(εp) +D01(P)

= Y |εp|+ Y |P| . (2.37)

The corresponding flow relation reads204

(π,Π) ∈ ∂D1(ε̇p, Ṗ) . (2.38)

Since the two arguments of D1 are now independent we may use an identity ([5], (Ch. III, eqn

(4.17), page 61)) to obtain

IE(π,Π) = IE10(π) + IE01(Π) . (2.39)

Here IE is the indicator function for the set E , E10 = {π | |π| ≤ Y } and E01 = {Π | |Π| ≤ Y }.205

Thus the use of a mixed approach allows the corresponding elastic region to be obtained easily.206

The flow relation (2.38) is207 ∫
Ω
D1(q,Q) dx−

∫
Ω
D1(ε̇p, Ṗ) dx−

∫
Ω

[
π : (q− ε̇p) + Π ◦ (Q− Ṗ)

]
dx ≥ 0 , (2.40)

where q and Q are respectively an arbitrary plastic strain and auxiliary variable. Set q = q− ε̇p208

in (2.7) and add to (2.40) to obtain209 ∫
Ω
D1(q,Q) dx−

∫
Ω
D1(ε̇p, Ṗ) dx−

∫
Ω

[
Π◦[(∇q−Q)−(∇ε̇p−Ṗ)

]
dx−

∫
Ω

devσ : (q−ε̇p) dx ≥ 0 .

(2.41)

By setting first Q, and then q, equal to zero, we extract the two variational inequalities∫
Ω
Y |q| dx−

∫
Ω
Y |ε̇p| dx−

∫
Ω

Π ◦ ∇(q− ε̇p) dx−
∫

Ω
devσ : (q− ε̇p) dx ≥ 0 , (2.42a)∫

Ω
Y |Q| dx−

∫
Ω
Y |Ṗ| dx+

∫
Ω

Π ◦ (Q− Ṗ) dx ≥ 0 . (2.42b)

To these must be added the weak form of (2.36), that is,210 ∫
Ω

P ◦Q dx−
∫

Ω
`∇εp ◦Q dx = 0 for all Q , (2.43)

and the weak form of the equilibrium equation (2.3) together with the boundary conditions211

(2.5): that is,212 ∫
Ω
σ(u, εp) : ε(v) dx =

∫
Ω

b · v dx+

∫
∂Ωt

t̄ · v ds , (2.44)

in which the test functions v satisfy the homogeneous boundary condition v = 0 on ∂Ωu. We213

omit details of the (standard) function space setting for the set of weak equations.214

Equations (2.42), (2.43) and (2.44) constitute a mixed problem for u, εp, P and Π. This appears215

to be a nonstandard mixed problem.216
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3 The regularized problem217

Later, when developing a computational approach we will focus on the dissipation function D2,218

which is an elliptical cone and therefore smooth everywhere except at the origin. It will be219

convenient to replace D2 by a regularized approximation D2η, defined for η > 0 by220

D2η(Γ) = Y
√
|εp|2 + `2|∇εp|2 + η2 . (3.1)

⌘

⌘ = 0

D2⌘

�̇

Figure 5: The regularized dissipation function D2η

221

The function is shown in Figure 5. The local flow relation corresponding to D2η becomes, with222

the use of (2.26),223

S = ∇D2η(Γ̇) ⇐⇒


π =

∂D2η

∂q

∣∣∣∣
q=ε̇p

=
Y 2ε̇p

D2η
,

Π =
∂D2η

`∂∇q

∣∣∣∣
∇q=∇ε̇p

=
Y 2∇ε̇p
D2η

.

(3.2)

Moreover, the inequality (2.29) becomes the equation224 ∫
Ω

[
∇D2η(Γ̇)− Σ

]
� Q dx = 0 , (3.3)

or225 ∫
Ω

[( Y 2

D2η
ε̇p − devσ

)
: q +

Y 2

D2η
`2∇ε̇p ◦ ∇q

]
dx = 0 . (3.4)

Assuming sufficient smoothness, integrating by parts and making use of the boundary conditions226

(2.6), we obtain the weak equation227 ∫
Ω

[( Y 2

D2η
ε̇p − devσ

)
− `2div

( Y 2

D2η
∇ε̇p

)]
: q dx = 0 . (3.5)

12



This leads to the pointwise relation228

devσ =
Y 2

D2η
ε̇p − `2div

(
Y 2∇ε̇p
D2η

)
. (3.6)

We note that (div∇ε̇p)ij = ε̇pij,kk and that this quantity is deviatoric if ε̇p is. Equation (3.6),229

which will form the basis of the computational investigation reported in Section 6, could have230

been obtained directly by substituting the regularized version of the flow relation (3.2) in the231

microforce balance equation (2.4). Indeed, the first and second terms on the right-hand side of232

(3.6) correspond respectively to π and −div Π.233

4 A time-discrete minimization problem234

The global problem (2.31) does not have an equivalent minimization problem. However, the235

corresponding time-discrete problem may be posed as a minimization problem. We discretize236

in time by partitioning the time interval [0, T ] as 0 = t1 < t2 < · · · < tn < · · · tN = T , set237

wn := w(tn) and ∆w = wn+1 − wn for any function w, and replace the time derivative ẇ by its238

backward Euler approximation ∆w/∆t. Then (2.31) becomes239 ∫
Ω

[
D(Q)−D(∆Γ)− Σn+1 � (Q−∆Γ)

]
dx ≥ 0 . (4.1)

Here we have multiplied throughout by ∆t, made use of the positive homogeneity of D, and

replaced the arbitrary Q∆t by Q. Now from (2.11), and noting that ∆εp is deviatoric,

devσn+1 = dev [C(εn+1 − εpn −∆εp)]

= σtr − 2µ∆εp, (4.2)

where

σtr := dev [C(εn+1 − εpn)]

= 2µ(dev εn+1 − εpn) (4.3)

is a deviatoric trial elastic stress; that is, the deviatoric stress corresponding to purely elastic240

behaviour in the time step tn → tn+1. Thus (4.1) becomes241 ∫
Ω

[
D(Q)−D(∆Γ) + 2µ∆εp : (q−∆εp)− σtr : (q−∆εp)

]
dx ≥ 0 . (4.4)

This is equivalent to the minimization problem242

∆εp = argminQL(Q), (4.5)

where243

L(Q) :=

∫
Ω

[
D(Q) + µ |q|2 − σtr : q

]
dx , (4.6)

for given σtr where as before Q = (q, `∇q). Note that, unlike the classical case, this is a global244

problem which cannot be reduced to a local or pointwise one, given that Q involves q and its245

gradient.246
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5 The spatially discrete problem247

5.1 Discrete flow relations248

In this section we examine features of the spatially discrete problem. We also discretize in time249

as in Section 4. The domain, assumed polygonal (in two dimensions) or polyhedral (in three)250

for convenience, is covered by a mesh comprising251

NE elements and NN nodes (5.1)

where NN excludes those nodes at which the plastic strain is prescribed. The number of plastic252

strain degrees of freedom at each node is, taking into account the symmetry of εp and the plastic253

incompressibility condition tr εp = 0,254

ndofs = d(d+ 1)/2− 1 (5.2)

for a d-dimensional problem (d > 1).255

Denote the global degrees of freedom of εp by p and those of the displacement by d, and assume256

conventional conforming approximations. Then257

εp = Np , ∇εp = Bp , u = Nd, ε(u) = Bd, (5.3)

where N and N are matrices of shape functions and B and B matrices of shape function deriva-258

tives.259

Here and elsewhere we drop the subscript n that denotes quantities at time tn.260

Since261

|εp| =
√

pTNTNp and |∇εp| =
√

pTBTBp ,

we have, from (2.27),262

D1(p) = Y
[√

pTNTNp + `
√

pTBTBp
]
, (5.4)

which is homogeneous of degree 1 in p. Likewise,

D2(p) = Y
[√

pTNTNp + `2pTBTBp
]

= Y
√

pTKp, (5.5)

where the pointwise matrix K is defined by263

K = NTN + `2BTB .

Next, set264

Ji(q) :=

∫
Ω
Di(q) dx (i = 1, 2); (5.6)
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then (2.30) becomes, for the incremental problem,

Ji(q)− Ji(∆p)− (q−∆p)T s ≥ 0 for all q, (5.7)

where the global vector of nodal stresses s is given by265

s :=

∫
Ω

NTdevσ dx . (5.8)

Thus we have the discrete inclusion266

s ∈ ∂Ji(∆p) (5.9)

and the dual of this is, from (2.24),

∆p ∈ NEi(s) or (∆p)T (t− s) ≤ 0 for all t ∈ Ei , (5.10)

in which Ei is the elastic region, in the space of discrete stresses s, corresponding to the dissipation267

function Ji. As with the continuous problem the inclusion (5.9) is equivalent to a minimization268

problem. First, we have269

s =

∫
Ω

NTσtr dx︸ ︷︷ ︸
str

−
∫

Ω
2µNTN dx︸ ︷︷ ︸

M

∆p, (5.11)

so that the minimization problem is270

∆p = argminq

(
Ji(q) + qTMq− qT str

)
. (5.12)

Thus we have obtained a vehicle to establish the relation between the dissipation function271

corresponding to the global dissipation functions Ji and their corresponding elastic regions Ei.272

5.2 Finding the elastic region273

We have available the global dissipation functions Ji and now seek to construct the corresponding

elastic regions Ei and associated yield functions, which would allow the use of the flow law as

a normality relation, as in (5.10). Now from a result in convex analysis (see for example [17],

page 109), given a dissipation function J , one may construct a yield function φ(s) as a function

of the global nodal stresses with the properties

φ is positively homogeneous and convex , (5.13a)

E = {s | φ(s) ≤ 1} , (5.13b)

φ(s) = sup
q 6=0

qTs

J (q)
. (5.13c)

It follows that the yield function can be constructed if we are able to evaluate the supremum in274

(5.13c).275
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Locally, the relationship (5.13c) is exemplified in the yield and dissipation functions (2.17) and276

(2.28). Unfortunately, determining φ in (5.13c) corresponding to the global functions Ji is not277

a simple task, as will be seen: the best that can be done is to obtain a function that is an upper278

bound for φ. To see this, we focus on the dissipation function J2 and note that this can be279

written, for constant yield stress Y , as280

J2(q) = Y

∫
Ω
|K1/2q| dx .

Taking |Ω| = 1 for convenience we note that

sTq =

∫
Ω

([K(x)]−1/2s)T ([K(x)]1/2q) dx

≤
∫

Ω
|[K(x)]−1/2s| |[K(x)]1/2q| dx

≤ Y −1
(
maxx∈Ω|[K(x)]−1/2s|

)
J2(q) . (5.14)

Hence we have, from (5.13c) and (5.14),

φ(s) = sup
q 6=0

qTs

Y

∫
Ω
|K1/2(x)q| dx

≤ Y −1maxx∈Ω|[K(x)]−1/2s| . (5.15)

We shall now show that the upper bound in (5.15) is not achieved. In order for the expression on281

the right-hand side of (5.15) to be equivalent to the yield function φ, the supremum in the first282

line of (5.15) has to be achieved at this value. That is, assuming the supremum to be achieved283

for q 6= 0, we must have284

qTs∫
Ω
|K1/2(x)q| dx

= maxx∈Ω|[K(x)]−1/2s| ,

or285 ∫
Ω

([K(x)]−1/2s)T ([K(x)]1/2q) dx∫
Ω
|K1/2(x)q| dx

= maxx∈Ω|[K(x)]−1/2s| .

Since this equation must hold for any s, we require that K be constant, which is a contradiction.286

5.3 Illustration of the theory using the problem of a strip in tension287

In order to contextualise the theory and to elucidate the numerical results presented in Section288

6, we briefly review the study by Fleck, Hutchinson and Willis [8, 9] of a strip in tension that is289

subjected to passivation on two lateral surfaces at a certain point in its loading history.290
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The problem is one in plane strain, of a strip (−∞×∞)× (−h, h) that is subjected to a uniform291

applied strain ε11 ≡ ε̄ in the x-direction. The only non-zero plastic strain components are εp11292

and εp22 = −εp11, which follows from plastic incompressibility.293

The surfaces y = ±h are initially traction-free and micro-traction free. At a certain point in the294

loading history beyond that of initial yield these surfaces are passivated, resulting in the plastic295

strain rate being zero on the boundaries from this point onwards. The authors in [8] report an296

elastic gap: that is, purely elastic behaviour following passivation, with plastic flow occurring297

after the load has increased somewhat.298

The strain ε11 = ε̄ is prescribed and increases monotonically. We therefore use the time t as a299

parameter.300

The problem in question is one-dimensional, so for definiteness consider a mesh of uniform 1D301

elements with nodes 1 - 5 located respectively at x = 0 and y = h, h/2, 0,−h/2,−h (Figure 6).302

From symmetry p2 = p4 and p1 = p5.303

The uniform phase304

For time steps t1, t2, . . . , tn, p1 = p5 6= 0 and305

(pi)n ≡ p (i = 1, . . . 5) . (5.16)

Assume that the yield stress Y is given. For the case of uniform deformation ∇εp = 0 and the

+h

�h

x

y

0

(1)

(2)

(3)

(4)

(5)

"11

Figure 6: Finite element mesh for the problem of a strip in uniform tension

306

dissipation and yield functions are the conventional ones.307

The passivation phase308

Consider the first time step following passivation: we now have ∆p1 = ∆p5 = 0 and there are309

only three free degrees of freedom, corresponding to nodes 2, 3, 4. Each ∆pi has one independent310

component since there is no shear, and from plastic incompressibility εp22 = −εp11.311

Some insight into the elastic gap may be gained by making use of the definition (5.13c) of the

canonical yield function φ. Denote by Nunif the number of nodal degrees of freedom of plastic
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strain: this will be equal to the total number of nodes, since the boundary condition is micro-

traction free. Likewise, denote by Npass the number of degrees of freedom in the passivation

phase. We have Npass < Nunif as the plastic strain increment is prescribed to be zero on the

boundary nodes. Assuming for convenience that the difference between the vectors s of nodal

stresses just before and after initiation of passivation is negligible, it follows from (5.13c) that

φpass(s) = sup
sTqpass

J (qpass)

≤ sup
sTqunif

J (qunif)

= φ(sunif) = 1 . (5.17)

Here we have denoted by qunif and qpass arbitrary vectors in the uniform and passivated phases,312

respectively. Also, in the last line we use the assumption that the material is in the plastic range313

in the uniform phase just before passivation. The inequality in the second line follows from the314

fact that dim qpass = Npass < Nunif = dim qunif , so that the supremum is being taken over a315

larger set. From this bound it is clearly possible that φpass < 1, so that the response could be316

elastic in the initial passivation phase. That this is the case for this particular problem has been317

shown theoretically in [12].318

When plastic flow does eventually take place, the inclusion (5.9) gives an explicit expression for

the stress, viz.

sn+1 =
∂D
∂p

∣∣∣∣
∆p

=

∫
Ω

K∆p√
(∆p)TK∆p

dx . (5.18)

Unlike the classical case, it appears not to be possible to obtain a closed-form expression for the319

inverted form of this expression.320

6 Numerical investigation321

We consider fully discrete approximations of the problem, based on weak forms of the equi-

librium, microforce balance, and flow relations, with time-discretization as set out in Section

4, and making use of the regularized form (3.1) of the dissipation function. Assume that the

state of the system is known at time tn and that a backward Euler time-integration scheme is

employed. The weak form of the equilibrium and microforce balances (2.3)–(2.4) for the system

at tn+1 = tn + ∆t (the system of residual equations) are given by

Rd :=

∫
Ω
ε(v) : σn+1 dx−

∫
∂Ωt

v · tn+1 ds , (6.1)

Rp :=

∫
Ω
q : devσn+1 dx−

∫
Ω
q : πn+1 dx−

∫
Ω
∇q : Πn+1 dx , (6.2)
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where as before v and q are respectively displacement and plastic strain test functions, π and

Π are given by (3.2), and

σn+1 = C(ε(un+1)− εp
n+1).

For convenience we make use of the regularized version (3.1) of the dissipation function, so that322

the microstresses are given by (3.2). Equation (6.2) thus incorporates both microforce balance323

and the flow relation, and after discretization is equivalent to the smooth minimization problem324

(5.12). The magnitude of the perturbation η is chosen to be small enough for trends in the325

elastic-plastic behaviour to be captured with sufficient accuracy.326

It has been shown in [20] that a sufficient condition for the existence of a unique solution to the327

purely dissipative problem is that there be some hardening present. Accordingly, we introduce328

a small amount of hardening to avoid pathologies in the numerical solutions; the hardening may329

be viewed as a small perturbation, which does not affect the overall features of the solutions.330

Plastic incompressibility is enforced via the inclusion of the energy term

ψinc =
β

2
(tr εp)2 ,

whose derivative with respect to the vector p is added to Rp, where β > 0 is a penalty.331

The problem is then one of solving equations (6.1) and (6.2) for the displacement un+1 and332

plastic strain increment dεp.333

The displacement and plastic strain fields (and their associated test functions) are approximated

on a mesh of quadrilateral elements with conforming bilinear interpolations. The vector of global

unknowns is denoted by x := (d, p). A global Newton–Raphson procedure is used to linearize

and iteratively solve the system of residual equations. An arbitrary variable evaluated at the

current iteration (i) in time step n + 1 is denoted by (•)(i)
n+1 ≡ (•)(i). The linearized problem

and the iterative update of the solution vector are then given by

∂R

∂x

∣∣∣∣
(i)

·∆x = −R(i) ,

x(i+1) = x(i) +∆x ,

where R := (Rd, Rp).334

The finite element library AceGen [18] is used to implement the finite element interpolation,335

and to compute the residual and tangent contributions using automatic differentiation. This ap-336

proach greatly simplifies the implementation. In addition, an adaptive time-stepping algorithm337

is employed.338

We consider two examples, viz. a thin plate is subjected to biaxial deformation, and uniaxial339

extension of a rod.340
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6.1 Biaxial deformation of a thin micro-plate341

In this example the role of the microscopic boundary conditions on the evolution of the problem342

are of particular interest. The material properties used in this example and the next are listed343

in Table 1, unless stated otherwise.344

Table 1: Constitutive parameters used for the numerical examples unless stated otherwise

First Lamé parameter λ 1.05× 10−1 N/µm2

Poisson’s ratio ν 0.3

Yield stress Y 1× 10−3 N/µm2

Regularization parameter η 5× 10−4

Incompressibility penalty β 1× 106 N/µm2

50 µm

50
µm

O

A B

C

u

u

P

x

z

uz

ux

�+
z

�+
z�+

z
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x

�+
x�0

x

�0
z

Figure 7: The problem of biaxial deformation in a plate and a schematic of the various stages

of loading.

Consider the 50 × 2 × 50 µm plate shown in Fig. 7. The motion of the upper boundary Γ+
z345

and the right boundary Γ+
x is defined in three stages. During load stage O–A (see Fig. 7), Γ+

z346

is displaced in the positive z-direction by a distance u = 2/3 µm while Γ+
x is prevented from347

displacing in the x-direction. During load stage A–B, Γ+
x is displaced in the positive x-direction348

by a distance u while Γ+
z is prevented from displacing in the z-direction. Finally, during stage349

B–C, the loading imposed during stage O–A is reversed by displacing Γ+
z a distance −u in the350

z-direction, while Γ+
x is prevented from displacing in the x-direction. Each loading stage (that351
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is, OA, AB, BC and CA) corresponds to a time of 0.5 s. The plate is free to displace in the352

y-direction.353

The domain is discretized using 2500 elements with one element through the thickness. The354

maximum permissible time-step size is 1× 10−3 s. The length scale is l = 0.1L, where L = 50355

µm.356

The influence of a microscopic boundary condition for the plastic strain evolution on the global357

response is investigated by prescribing Γ+
z to be either (a) micro-free, (b) micro-hard from the358

onset, or (c) micro-free for 0 ≤ t < tpass, and thereafter preventing the evolution of plastic strain.359

The boundary condition (c) is termed passivation. When imposed, passivation will occur at time360

tpass = 0.4 s. The response of a material point in the centre of the specimen P = [25, 1, 25] µm361

is monitored.362

The evolution of the magnitude of the Cauchy stress and stress deviator at the point P for the363

various microscopic boundary conditions is shown in Fig. 8. The macroscopic constraints give364

rise to the volumetric contributions to the stress tensor. For the micro-free (a) and passivated365

(c) boundary conditions, yield occurs at t := tY ≈ 0.38 s when |devσ| = Y (the initial yield366

stress). The onset of yielding at point P is delayed when micro-hard boundary conditions are367

imposed on the upper surface. Unsurprisingly, the presence of Dirichlet boundary conditions368

on the plastic strain changes the global response as the residual expression (6.2) now contains369

additional constraints. As seen in Fig. 8(b) the amount of hardening is minimal. The hardening370

is linear for the micro-free problem but is more complex for the micro-hard and passivated371

boundary conditions due to the contribution of the higher-order terms. Elastic unloading occurs372

at the onset of load stage B–C.373

The yield stress, that is, the stress at which global behaviour undergoes the transition from374

elastic to elastic-plastic, is determined automatically as a result of the perturbed dissipation375

function used in the computations. Thus this approach allows the yield stress to be obtained376

despite a closed-form expression not being available, as discussed in Section 5.2.377

For the passivation problem (c), the microscopic Dirichlet constraints on the plastic strain378

evolution are imposed at tpass > tY . The evolution of the stress state at point P shows that the379

pre-passivation micro-free response transforms to a micro-hard response post-passivation. This380

transition occurs elastically. This is the phenomenon is referred to in [8] as an elastic gap.381

The system evolves to the curve corresponding to the micro-free boundary condition elastically,382

which may be interpreted as the most efficient route.383

The analysis is earlier sections does not allow for a closed-form expression for the yield sur-384

face. This can however be explored numerically with reference to the stress response in σ11–σ33385

space, as shown in Fig. 9. Although not indicated, the micro-free response is identical to that386

obtained using a classical return mapping algorithm (closest-point projection) at the level of the387

21



0.2 0.3 0.4 0.5 0.6
time

9.4

9.6

9.8

10

10.2

10.4

10.6

|T
D
|

#10-4

microfree
microhard
passivation

0 0.5 1 1.5
time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

|T
|

#10-3

microfree
microhard
passivation

0 0.5 1 1.5
time

0

0.2

0.4

0.6

0.8

1

1.2

|T
D
|

#10-3

microfree
microhard
passivation

(a) (b)

|�
|

|d
ev
�

|

O A B C O A B C

0.2 0.3 0.4 0.5 0.6
time

1.2

1.3

1.4

1.5

1.6

1.7

1.8

|T
|

#10-3

microfree
microhard
passivation

AAtpass tpass

see (c)

see (d)

(c) (d)

Figure 8: The evolution of (a) the Cauchy stress and (b) the Cauchy stress deviator at point P

for the various boundary conditions. The various load stages are also indicated.

integration point for the non-gradient, rate-independent J2 plasticity problem. This confirms388

that the global formulation based on a micro-force balance is essentially equivalent to the local389

formulation in the absence of gradients. It also confirms that for the micro-free condition the390

choice of a primal formulation with the dissipation function D2 is equivalent to the dual problem391

with a von Mises yield surface. The yield surface for the micro-free problem in Fig. 9 can thus392

be seen as the von Mises yield surface corresponding to the classical problem.393

The yield surface for the micro-hard problem is expanded relative to the micro-free one, con-394

sistently with the elastic gap transition reported earlier. Furthermore, due to the gradient395

contributions to the hardening, the expansion is not uniform. The yield surface for the passi-396

vated problem is on the micro-free surface until t = tpass, after which it moves elastically to the397

micro-hard one.398
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Figure 9: The evolution of the Cauchy stress components σ11 and σ33 for the various boundary

conditions.

6.2 Extension of a micro-rod399

Consider a rod having radius 25 µm and length L = 50 µm, and subjected to a prescribed400

displacement in the axial direction of 0.5 µm applied to the upper and lower faces with normals401

e3 and −e3, respectively. The curved side is traction-free. Due to symmetry, only the upper402

quarter of the rod is modelled as shown in Fig. 10. The prescribed displacement is imposed403

incrementally over 0.5 s. The response of the system at a material point labelled A and located404

at [0, 0, 12.5] µm is recorded. The length scale, unless otherwise stated, is l = 0.2L. The domain405

is discretized using 6527 elements.406

As in the previous example, the consequences of choosing different microscopic boundary condi-407

tions on the upper boundary of the domain, denoted Γu, are investigated. The curved side is at408

all times micro-traction free. Passivation occurs at tpass = 0.25 s which is well into the plastic409

range.410

The response at point A for the various choices of the microscopic boundary conditions on Γu411

is shown in Fig. 11. The relation between the magnitudes of the Cauchy stress and the strain,412

shown in Fig. 11(a), clearly contain the same features discussed in the previous example: an413

increase in the perceived yield strength for the micro-hard condition and an elastic gap for the414

passivation problem. Furthermore, the size of the elastic gap increases with increasing length415

scale. This relation between the size of the elastic gap and the length scale was also observed in416

[8].417

The evolution of the quantity φ := |S|/Y , which corresponds to the classical yield function, is418
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Figure 10: Computational domain for the problem of the extension of a rod.

shown in Fig. 11(b). As expected, φ is in the range 0 < φ < 1 in the elastic region, and φ = 1419

during plastic flow for all microscopic boundary conditions. The elastic gap at t = tpass = 0.25420

s is also clearly indicated for the passivation problems as φ drops below unity.421

The evolution of the stress in σ11–σ22–σ33 space is shown in Fig. 11(c). For the micro-free422

condition, the stress state is uniaxial with σ33 the only non-zero stress component. The stress423

state remains at the point on the yield surface where initial yield occurred. The stress state is424

spatially uniform throughout the specimen and there are no plastic strain gradients present.425

For the micro-hard boundary condition the stress evolves symmetrically in the σ11 and σ22426

directions post yield. The micro-hard boundary condition constrains all components of the427

plastic strain, thereby inducing a stress response in directions other than that of the loading.428

Microscopic Dirichlet conditions on the plastic strain result in plastic strain gradients and Cauchy429

stresses in directions other than the loading direction. The yield surface for the passivation430

problem is identical to that of the micro-free problem prior to passivation. The stress state431

at the point of passivation will have only a σ33 component. Upon passivation, the elastic gap432

occurs. For the larger length scale of l = 0.4L the yield surface appears to increase above the433

micro-hard one. It should be noted that post-passivation, the stress components plotted are no434

longer the principal stress components.435
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Figure 11: The evolution of the state at material point A for the rod extension problem for

various microscopic boundary conditions and different length scales. The relation between |σ|
and |ε| is shown in (a). The evolution of the canonical yield function φ and the Cauchy stress

are shown in (b) and (c), respectively. The curve corresponding to the micro-hard boundary

condition is for the length scale ` = 0.2L.

7 Concluding remarks436

A theoretical and computational investigation has been carried out of a dissipative model of437

rate-independent strain-gradient plasticity, that is, one in which gradient terms are accounted438

for only in the flow relation. The global nature of the flow relation, previously reported in [20],439

is reiterated. The most appropriate and effective approach to formulating the flow relation is440

through the use of a dissipation function; this form of the relation is especially useful in the441

context of numerical investigations. Dual formulations in terms of the yield function and a442
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normality relation have been approached using the tools of convex analysis. It is not possible,443

using conventional tools, to invert the flow relation to obtain the yield surface corresponding to444

the global dissipation function. This objective has been investigated further in the context of445

the fully discrete problem, for which an upper bound to the elastic region is found.446

The numerical investigation casts further light on the response using the dissipative theory447

in situations of non-proportional loading due to passivation. Post-yield behaviour has been448

investigated. The elastic gap reported in [8] and analyzed in [12] has been observed in situations449

in which passivation has been imposed. It has been possible to interpret the gap mathematically,450

using the expression for the yield function as a maximum, taken over all admissible plastic451

strain increments, of a function involving the dissipation: the vector of admissible increments452

is necessarily smaller in dimension following passivation, and the corresponding maximum may453

therefore be smaller than that in the step preceding passivation. The elastic gap has also454

been observed to constitute an “efficient” transition from a stress-strain curve corresponding455

to a micro-free boundary condition, to that which is obtained assuming micro-hard boundary456

conditions.457

The dissipative model of strain-gradient plasticity is mathematically well posed [20]. The pres-458

ence of the elastic gap, at least in the case of a change of boundary conditions achieved through459

passivation, is indisputable from theoretical and numerical perspectives, as has been demon-460

strated here and in the works by Fleck, Hutchinson and Willis. The actual physical response461

is one that awaits experimental investigation, as has been emphasized by these authors. Such462

testing would clarify the predictive nature of the theory: for example, as suggested in [12], as a463

theory in which small plastic deformation is approximated as zero plastic deformation.464
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