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Abstract: According to Jago (2014a), logical omniscience is really part
of a deeper paradox. Jago develops an epistemic logic with principles of
indeterminate closure to solve this paradox, but his official semantics is
difficult to navigate, it is motivated in part by substantive metaphysics, and
the logic is not axiomatized. In this paper, I simplify this epistemic logic
by adapting the hyperintensional semantic framework of Sedlár (2021). My
first goal is metaphysical neutrality. The solution to the epistemic paradox
should not require appeal to a metaphysics of truth-makers, situations, or
impossible worlds, by contrast with Jago’s official semantics. My second
goal is to elaborate on the proof theory. I show how to axiomatize a family
of logics with principles of indeterminate epistemic closure.
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1 Introduction

On the face of it, logical omniscience is just an artifact of certain semantic
techniques (see, e.g. Hintikka 1962). In order to avoid this problem, we just
need to find a semantics for knowledge that is not so crude.

If knowledge is not closed under all logical consequences, then a natural
follow-up question is whether it is closed under some restricted class of
logical consequences.1 We might be tempted to think about this as follows.
Some logical consequences are obvious to all epistemic subjects, in virtue
of their capacity for rational thought. Call them trivial consequences. The
inference from “' and  ” to its conjunct ' could be a plausible example of
triviality. Knowing the individual conjunct seems like it is part of knowing
the whole conjunction.2 It just comes along for free. Although it is difficult
to precisely define triviality, the primitive rules of proof theory seem to fall
into this category because they are the simplest deductive inferences.

1Cf. Duc (1995) and Jago (2006) on ‘logical ignorance’.
2Yablo (2014) and Hawke, Özgün, and Berto (2020) defend this claim.
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According to Jago (2014a), however, this reveals that logical omniscience
is actually part of a deeper problem. On the one hand, we want to deny
that knowledge is closed under all logical consequences. On the other hand,
we want to assert that knowledge is ‘trivially closed’, i.e. it is closed under
consequences that are derivable by a single use of any primitive rule. The
problem is that this is paradoxical: any logical consequence is derivable by a
chain of primitive rules, so trivial closure implies full closure.

Jago’s solution is a theory of Indeterminate Epistemic Closure (IEC),
viz. the view that knowledge closure is only partially determinate and trivial
consequences are borderline cases where this determinacy breaks down. On
this view, the following principle should hold in an epistemic logic enhanced
with operator � to be read ‘it is determinate that. . . ’ (Jago, 2014a, p.251).

(IEC) If '1, . . . ,'n ✏  is trivial, �K'1, . . . ,�K'n ✏ ¬�¬K 

We can gloss IEC as follows: with respect to any trivial inference, it is
impossible for ‘the break down of knowledge closure’ to be determinate.
More carefully, it is impossible for a subject to determinately know the
premises and determinately fail to know the conclusion of a trivial inference.
This notion of determinacy is supposed to be something like the notion used
in discussions of vagueness.3 For Jago, the philosophical importance of this
concept largely comes out as a norm of assertion: “. . . we can never rationally
assert that such-and-such is an epistemic oversight. . . Such cases are always
indeterminate cases and as such do not rationally support assertions about
them in the way that clear cases do.” (Jago, 2014a, p.19)

On this view, when knowledge closure does break down over a trivial
inference step, it is unassertible that it breaks down there. This yields a
diagnosis of the paradox as follows. Assuming that the role of triviality is
captured by IEC, we should recognize that for any trivial inference, it is
indeterminate that knowledge closure breaks down at that step. We might
then assert: closure does not break down at that step! This is a mistake, but
an easy one to make because this can sound very similar to IEC itself.4 Once
we fall prey to this mistake, however, it compels us to think that knowledge
is trivially closed and thereby draws us into the paradox.5

3Where it often used to define borderline cases, i.e. where it is borderline ' if, and only if, it
is neither determinately ' nor determinately ¬'.

4The mistake consists in sliding from a claim of the form ¬�� that says there is a certain
failure of assertibility, to a claim of the form �¬� which says there is an assertible failure.

5Another option to consider is a non-classical approach to K, where the degree of truth
of K' is low but non-zero for any conclusion ' of a trivial inference. This would model
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In this paper, I will explore a family of IEC logics with two main goals.
My first goal is metaphysical neutrality. The problem and solution described
above made perfectly good sense without any metaphysical assumptions.
In particular, it did not seem to involve any mention of entities such as
impossible worlds (as used in Jago’s semantics). I will show that a simple
semantics is available without appeal to substantive metaphysical categories.
This is not because I believe that impossible worlds are problematic in
principle, but simply because it seems to me that the formal solution to the
paradox is conceptually independent of our metaphysical commitments.

My second goal is to elaborate on the proof theory. Although some
properties of the knowledge operator and determinacy operator are clear
from Jago’s exposition, he has not given a systematic proof theory for IEC
logics. I will take a step in that direction. To achieve these ends, I will
leverage some recent work on hyperintensional semantics by Sedlár (2021).
In the next section, I present an overview of this framework.

2 Sphere models for determinate knowledge

What are the target properties of this epistemic logic? I will start with some
negative properties. For one thing, knowledge ought not be closed under
replacement of necessary equivalents, i.e. it is a hyperintensional context.
Similar intuitions to those that lead us to reject omniscience in the first place
should also lead us to reject closure under logical equivalence. For another
thing, determinate truth ought to be stronger than ‘mere truth’.

• '$  2 K'$ K 

• ' 2 �'6

As for positive properties: both operators are factive, and the determinacy
operator is a normal modality (e.g. tautologies are determinately true).

• K' ✏ '

• �' ✏ '
indeterminacy from the metalanguage, instead of adding a marker for determinacy to the
classical object-language. Thanks to the editor for this thought.

6This is one respect in which the present treatment of determinacy differs from that of
supervaluationist logics (see, e.g. Fine 1975). There is also a subtle conceptual difference in
that we have in mind an objective rather than subjective kind of determinacy.
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• ✏ ' implies ✏ �'

In the semantics below, I will follow Jago’s lead and treat the determinacy
operator as a strong normal modality like the S5 necessity operator, but in
principle it could be understood as some kind of weaker operator.

To articulate an elegant semantics that combines these two operators, I
will adapt the hyperintensional semantics of Sedlár (2021). Every sentence
has both a fine-grained content (FGC) and a coarse-grained content (CGC) in
this semantic framework. These divide the traditional work of a proposition.
The CGC of a sentence is simply a set of possible worlds or a ‘truth set’,
which can be used to define logical properties like validity.

The FGCs of sentences, on the other hand, are genuine primitives in
the sense that they are not inter-definable with other components of the
framework. As a type of content, a FGC partitions worlds into those where
it is true and those where it is not, but it is distinct from this corresponding
‘truth set’. This allows for a two-level, composite analysis of the contents
of sentences, whereby sentences are first assigned a FGC, and this in turn
determines the ‘truth set’ or CGC of that sentence.

This is a generalization of neighborhood semantics. The hyperintension

function H maps each sentence to a FGC, which the intension function I

then maps to a CGC, and their composition satisfies classical operations on
‘truth sets’ such as I(H(¬')) = W \ I(H(')). The knowledge operator
is then interpreted along the lines of a modal operator from neighborhood
semantics, i.e. there is a neighborhood function that has the job of assigning
a set of ‘known contents’ to the designated agent. However, this is not a set
of CGCs as in traditional neighborhood semantics, but a set of FGCs.

To extend this framework with a (normal) determinacy operator, we note
that the access relation R of a Kripke model could always be replaced with
a function S(w) = {x : wRx} that outputs a sphere of alternatives to w.
We assume that some truths are not determinate. This is represented by the
existence of worlds in the sphere that disagree with each other. Determinate
truths are those that hold the same in all worlds throughout this sphere.

A case of the IEC principle can then be captured by roughly the following
modeling condition: whenever the FGC of ' is in the knowledge set of all
worlds in the sphere of w, the FGC of  is in the knowledge set of some
world in the sphere of w. This ensures that the agent determinately knows '
only if it is indeterminate that they fail to know  . Does this mean that this
semantic method requires us to define the class of trivial consequences, once
and for all? Fortunately not, as I will explain later.
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Let me first give the basic semantics for the following signature.

| pi | ¬ | ? | ! | K | � |

Definition 1 (Sphere Models) A sphere model M = hW,C,H, I,N, Si is

a six element structure such that. . .

• W 6= ; is a set of possible worlds

• C 6= ; is a set of fine-grained contents or FGCs

• H : Sent ! C is a hyperintension function

• I : C ! }(W ) is an intension function

• N : W ! }(C) is a neighborhood function, such that

– If c 2 N(w), then w 2 I(c).

• S : W ! }(W ) is a sphere function, such that

– Spheres are centered and jointly partition W .

In addition, the coarse-grained content or CGC of ' in model M , given by

the function J'KM = I(H(')), must satisfy the following constraints.

• JpKM = I(H(p)) for atomic p

• J?KM = ;

• J¬'KM = W \ J'KM

• J'!  KM = (W \ J'KM ) [ J KM

• JK'KM = {x 2 W : H(') 2 N(x)}

• J�'KM = {x 2 W : S(x) ✓ J'KM}

The functions H and I can be naturally extended to sets of sentences and
their contents, e.g. H(�) = {H( ) :  2 �}. For any given world w 2 W

of a model, I refer to N(w) as the knowledge set of that world. This is a
framework for single-agent knowledge claims, but it can easily be extended
to a multi-agent setting by parameterizing K and N to a set of agent names.
Since this does not illuminate anything particularly interesting about the
solution to the epistemic paradox, I leave aside such details.
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The truth-conditions of a sentence are reflected in their CGCs, so we have
that K' is true iff the FGC of ' is in the knowledge set according to w, and
�' is true iff ' is true throughout the sphere of w. The modeling condition
on the neighborhood function, which coordinates known contents in N with
intensions assigned by I , ensures factivity.

Here is a partial representation of a sphere model M to illustrate the main
ideas of the semantics. In this model we have a four element Boolean algebra
over a set of contents C = {c1, c2, c3, c4} and we have a set of two worlds
W = {w1, w2} with ‘universal’ spheres S(w1) = W = S(w2).

c1

c2

c3

c4

w1

S

w2

N

I

I

In a language of two atoms, we will let H(p) = c1 and H(q) = c2

and H(¬p) = c3 and H(¬q) = c4, with conjunctions and disjunctions
assigned meets and joins of contents. Let H(Kp) = c2 and H(Kq) = c3

and H(�Kp) = c3. So, the top element is the FGC of p, the right is the
FGC of q and Kp, and the bottom is the FGC of Kq and �Kp.

The intension function maps I(c1) = W = I(c2) as indicated in the
diagram, but also I(c3) = ; = I(c4) which is not drawn. Finally, the
neighborhood function maps N(w1) = {c1} as indicated in the diagram, but
also N(w2) = ; which is not drawn. At world w1, both p and q are true,
but they are epistemically distinct because only p is known, furthermore the
knowledge of p is not a determinate fact at w1 because there is another world
in its sphere w2 where p is not known. Formally, we have:

• JpKM = W

• JqKM = {w1}

• JKpKM{w1}

• JKqKM = ;

• J�KqKM = ;
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In addition to reading them as truth-conditions, we also use the CGCs of
sentences to define logical consequence as (local) truth-preservation.

Definition 2 (C-Consequence) The consequence relation of a class C of

sphere models is defined by: � ✏C ' iff J�KM ✓ J'KM in all M 2 C.

This achieves many of our desiderata. On this semantics, knowledge
is not closed under replacement of necessary equivalents. Since logical
equivalence just consists in J'KM = J KM in all models, we can model
equivalent sentences as having distinct FGCs, so one can be known without
the other. Notably, this ‘fine-graining’ is achieved without appeal to the
metaphysics of truth-makers, situations, or impossible worlds. In addition,
the knowledge and determinacy operators are factive and the determinacy
operator is ‘S5-like’. The modeling conditions on the sphere function ensure
this because ‘. . . is in the sphere of. . . ’ is an equivalence relation.7 These
facts about sphere semantics are recorded below.

Remark 1 In the class C of all sphere models we have:

• '$  2C K'$ K (K-Hyperintensionality)

• ' 2C �' (�-Strength)

• K' ✏C ' (K-Factivity)

• �' ✏C ' (�-Factivity)

• ¬�¬' ✏C �¬�¬' (�-Euclidean)

• �('!  ) ✏C �'! � (�-Distribution)

• ✏C ' implies ✏ �' (�-Necessitation)

What this does not yet achieve is the coordination of determinacy and
knowledge operators that is required to validate the IEC principle. In the
next section, I will explain how we can achieve this without actually defining
the class of trivial consequences in advance, once and for all. The vagueness
of triviality regulates this concept in a way that can be formally modeled.

7By the centering requirement, we always have w 2 S(w), and since a sphere is part of a
partition, if x 2 S(w), then x and w simply have the same sphere S(x) = S(w).
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3 Respecting and regulating triviality

As a warm-up, I show how to validate an arbitrary case of IEC, assuming
that we have identified a particular inference form as trivial. An inference
form is a SET-FML pair. Suppose that the inference form h�,'i is trivial.
Call the following condition the �-' respect schema (schematic over w).

(�-'-RS)(�-'-RS)(�-'-RS) H(�) *
\

{N(x) : x 2 S(w)} or H(') 2
[

{N(x) : x 2 S(w)}

If this holds at a given world w where it is a determinate truth that all the �s
are known, then it is indeterminate, at w, that knowledge of ' fails. This will
be spelled out more carefully below. The upshot is that when this condition
holds globally in a class of models, they validate the h�,'i case of IEC.

Theorem 1 (The �-' Respect Theorem) For any given inference form

h�, i, define a class C of sphere models as follows: M 2 C iff (�-'-RS)
holds at all w 2 W of M . Then {�K :  2 �} ✏C ¬�¬K'.

Proof. Let M 2 C and M = hW,C,H, I,N, Si. Let w 2 W and, for all
 2 �, let w 2 J�K KM . Then, for all  2 � and all x 2 S(w), we have
x 2 JK KM , equivalently, we have H( ) 2 N(x). So, for all x 2 S(w),
we have H(�) ✓ N(x). In that case, H(�) ✓

T
{N(x) : x 2 S(w)} and so

the condition (�-'-RS) implies that H(') 2
S
{N(x) : x 2 S(w) holds. It

follows that H(') 2 N(x) for some x 2 S(w). So, x 2 JK'KM for some
x 2 S(w). Thus, S(w) * J¬K'KM and so w 2 J¬�¬K'KM .

The question, then, is whether we can say anything more interesting
about the logical role of triviality. Hypothetically, one could argue that we
have an adequate solution to the paradox so long as we understand what it
looks like to establish a modeling condition (�-'-RS) for whatever inference
forms h�, i are trivial. Perhaps the question of which inference forms are
genuinely trivial is only suited to informal philosophical debate.

This attitude, however, is unsatisfying if we want to develop the proof
theory of IEC logics. If we leave ‘trivial consequence’ completely unsettled,
it makes no sense to even try to axiomatize the relevant cases of the IEC
principle (what are the relevant cases?). For this reason, I will attempt a
more formal treatment of triviality. The trouble is that triviality is a vague
concept. When applied to deductive inferences, ‘trivial’ connotes something
like ‘undeniably obvious’. There may be paradigm cases of this phenomenon,
but there are also many contestable, borderline cases.
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At the outset, I suggested that primitive rules represent paradigm cases of
triviality. Jago (2014a, p.11 and p.163) also endorses this claim and argues
that it underwrites a ranking of candidate extensions of triviality. On the
one hand, this implies that proof-theoretic factors constrain the concept of
triviality. On the other hand, this claim does not take any official stand on
the correct extension of the concept. I will show that this ranking approach
does all of the work we need to axiomatize IEC logics.

In more detail, the ranking approach works as follows. Derivations are
recursively defined. Longer derivations are formed by extending shorter
derivations with a single application of one of the primitive rules. The rank

of a consequence is the length of its shortest derivation. For each n 2 N,
this gives us a precise candidate extension for the concept of triviality, by
collecting all of the valid inference forms of lower ranks.8

The idea is that the proof theory of the base logic (without K and �)
grades logical consequences. Semantics alone is not suited to this task
because it only classifies inference forms as valid or invalid, without further
distinctions. The gradation can be seen as a proxy for relative opacity: higher
ranking consequences are those that are harder to recognize, so they are less
fitting candidates for triviality.9 What is interesting about this analysis is that
it implies nothing about the correct extension of the concept of triviality, it
merely tells us that there is a smooth transition from one candidate extension
to another (which reflects the vagueness of triviality).

Nonetheless, this analysis provides a lot of interesting formal structure to
work with. Since the primitive rules of the base logic establish the ranking,
it can be implemented relative to different choices of base logic, so at an
abstract level, this analysis is quite neutral about ‘what is really trivial’. It
does, however, imply that there are constraints on triviality once a base logic
is fixed in the background. To assert that a high-ranking consequence is
trivial implies that any lower-ranking consequence is also trivial.

For my purposes, the most useful aspect of this analysis is that it makes
axiomatization possible. In the next section, I will implement the ranking
approach relative to a Hilbert system and apply that ranking to give a full

8This strategy relates epistemic logic to the topic of proof complexity. Duc (1995) was the
first person to mention this idea. Artemov and Kuznets (2014) use this idea to give a treatment
of omniscience with operators ⇤n meaning ‘. . . is known after n proof steps’.

9To say that one candidate is less fitting than another does not imply that it is unfit as such.
All of these sets can be seen as genuine candidates in the sense that they could conceivably
demarcate the extension of the concept of triviality.
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semantics for a family of epistemic logics. This is best understood as one
fully worked example of the analysis presented above.

4 A family of IEC logics

Consider a list of potential principles relating knowledge closure to certain
valid inference forms of Classical Propositional Logic (CPL). We might ask
ourselves: is knowledge of a tautology such as Excluded Middle indetermi-
nate, or what about knowledge of a conclusion drawn by Modus Ponens?
(we are asking about whether such consequences are trivial or not)

• ✏ ¬�¬K(' _ ¬')

• �K¬¬' ✏ ¬�¬K'

• �K('!  ),�K' ✏ ¬�¬K 

• �K(' _  ),�K¬' ✏ ¬�¬K 

• �K('!  ),�K( ! �) ✏ ¬�¬K('! �)

According to IEC theory, the validity of such inferences is always relativized
to a candidate extension of triviality. Each principle holds relative to some
candidates for triviality, but none hold absolutely.

We can make this precise. To do so, I will use a Hilbert system for CPL
defined over the following signature (with other connectives definable).

| pi | ¬ | ? | ! |

In order to implement the ranking approach, we want to think of derivations
as the products of rules. Hilbert systems also usually have axioms, but we can
capture this by stating a rule with no conditions, (R2) below, that effectively
says that we can freely extend any derivation with any axiom. In the first
instance, any rule-generated extension of the empty sequence of sentences
counts as a derivation. Here are the axioms.

Definition 3 (Axioms of CPL) The set of axioms AXCPL of the background

logic, CPL, is the set of all instances of the following schemata.

(A1) '! ( ! ')

(A2) ('! ( ! �)) ! (('!  ) ! ('! �))
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(A3) (¬'! ¬ ) ! ( ! ')

We use the axioms to define the primitive rules. The format of the rules,
below, may look unusual, but they just re-write the usual defining conditions
of a Hilbert derivation. In this formulation, primitive rules define admissible
extensions of derivations (sequences of sentences).

Definition 4 (Primitive Rules of CPL) A derivation from � in CPL is a

finite (possibly empty) sequence of sentences  1, . . . , n. N.B. in the rules

below, � is used as a variable for such sequences.

(R1) If � is a derivation from � and ' 2 �, then �,' is a derivation from �.

(R2) If � is a derivation from � and ' 2 AXCPL, then �,' is a derivation

from �.

(R3) If � is a derivation from � and there are members of this sequence of

the form  and  ! ', then �,' is a derivation from �.

(R1) is the rule of assumptions, (R2) is the rule of free use of axioms, and

of course (R3) is Modus Ponens. The set of all derivations from � is the

smallest set of sequences closed under (R1)-(R3).

For the definition of derivability per se, we eliminate the empty sequence.
Thus, the simplest inferences that are defined as derivable per se are one step
derivations of assumptions or axioms.

Definition 5 (Derivability in CPL) ' is derivable from � in CPL, written

� `CPL ', iff there is a non-empty derivation from � ending in ', i.e. a

sequence of sentences  1, . . . , n that satisfies the criteria of Def. 4 such

that  n = '. This sequence witnesses that � `CPL '.

This is the familiar derivability relation for CPL, re-written in a slightly
unusual format. It is, however, worth making this explicit in order to clarify
how this proof theory ranks the logical consequences of CPL. If the primitive
rules (R1)-(R3) above, represent paradigm cases of triviality, then a specific
ranking of sets of CPL consequences follows directly.

Definition 6 (Rank of CPL Consequences) By the completeness theorem

for CPL, if � ✏CPL ', then there is a non-empty set of sequences of sentences

W (�,') = {� : � witnesses that � `CPL '}. For each � 2 W (�,'), let its

length len(�) be equal to the number of sentences in the sequence. The rank
of this consequence is #(� ✏CPL ') = min{len(�) : � 2 W (�,')}.
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This ranking is what we care about. In a moment, I will point out how
to use this ranking in an interesting way to generate IEC logics. First, here
is a list of some examples to illustrate how various logical consequences of
CPL are ranked by this system. Remember, this is meant to model relative
opacity: higher ranks are less fitting candidates for triviality.

Remark 2 Ranking some logical consequences of CPL.

• #(� ✏CPL ') = 1 when ' 2 �. (Assumptions)

• #(� ✏CPL '! ( ! ')) = 1 (Axioms)

• #(�,','!  ✏CPL  ) = 3 (Modus Ponens)

• #(�,¬' ✏CPL '! ?) = 5 (Negativity)

• #(�,'!  , ! � ✏CPL '! �) = 7 (Transitivity)

• #(�,'!  ✏CPL '! ( ^ ')) = 9 (Pooling)

Candidate extensions are sets of inference forms. The nth candidate
extension for triviality collects all of SET-FML pairs corresponding to logical
consequences of rank up to n. This candidate is called n-Triviality.

Definition 7 (n-Triviality) Tn = {h�,'i : #(� ✏CPL ')  n} is the

collection of all inference forms classified as ‘trivial’ by the nth candidate

extension for triviality. I will write Tnh�,'i to mean h�,'i 2 Tn.

Lemma 1 (Properties of n-Triviality) The definition of Tn has all of the

properties below, which leads Jago (2014b, p.1165) to refer to n-Triviality

as ‘(a kind of) consequence’ relation.
10

• If Tnh�,'i, then � ✏CPL ' (Classicality)

• Tnh','i (Reflexivity)

• If Tnh�,'i, then Tnh� [ ⌃,'i (Monotonicity)

• If Tnh�,'i, then Tn+1h�,'i (but not vice versa) (Heredity)

• Tnh�,'i and Tnh� [ {'}, i do not imply Tnh�, i (‘Cut’ Fails)

10This may seem odd since ‘Cut’ fails, but recent work on substructural logics makes this
remark more reasonable (see, e.g., Cobreros, Egré, Ripley, & van Rooij, 2012).
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Proof. Straightforward.

All of these properties are important, but Heredity in particular makes
clear how this approach models the vagueness of triviality. It shows that, on
this definition, there is a smooth transition from one candidate extension to
another, which is why there are borderline cases of triviality.

Before returning to the full epistemic logic, we note one more useful
fact. If Tnh�,'i, then from Classicality, and the compactness theorem
and deduction theorem, it follows that there is a finite set of assumptions
{ 1, . . . , m} ✓ � such that `CPL  1 ! (. . . ! ( m ! ')). Call this
associated, derivable, nested implication sentence a reductive implication.

Definition 8 (Reductive Implications) For each candidate extension Tn,

let RIn be the set of all of its associated reductive implications.

Note that an n-Trivial inference form can have more than one reductive
implication. This redundancy is not important. We only need to know that
there is at least one reductive implication for each n-Trivial inference.

We saw that if (�-'-RS) holds at a world of a sphere model, then at that
world, it is indeterminate whether knowledge is always closed under the
inference from � to '. The semantics for an IEC logic ought to globally

respect every inference form that is considered to be trivial. I will use the
precise candidates for triviality defined above to define a family of IEC logics,
each of which respects (some candidate for) triviality.

So, returning to the full signature with operators K and �, and with
sphere models defined as in §2, I will now focus on specific model classes.
This defines not one unique logic, but a family of related logics.

Definition 9 (IEC Model Classes) For each n 2 N, let Cn be the class of

all sphere models that respect the candidate set Tn as follows:

Cn = {M : for all Tnh�,'i, (�-'-RS) holds at all w 2 W of M}

For each candidate Tn above, we see that the IEC principles hold for
just those consequences (considered as trivial) in the model class Cn. The
behavior of ‘determinate knowledge’, thus, depends purely on the structure
of the notion of triviality. (cf. Jago 2014a, p.251, Theorem 8.3)

Corollary 1 If Tnh�,'i, then {�K :  2 �} ✏C ¬�¬K'.

Proof. By an application of The �- Respect Theorem.
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Since candidates for triviality increase in size Tn ⇢ Tn+1, as per the
previous observation of Heredity, the corresponding model classes decrease
in size Cn+1 ⇢ Cn and their consequence relations subsequently get stronger.
In particular, the stronger logics in this family validate an increasing number
of cases of the IEC principle. For example:

Remark 3 IEC principles for various Cn-Consequence relations.

• �K('!  ),�K' ✏C3 ¬�¬K (3-MP)

• �K¬' ✏C5 ¬�¬K('! ?) (5-Neg)

• �K('!  ),�K( ! �) ✏C7 ¬�¬K('! �) (7-Trans)

• �K('!  ) ✏C9 ¬�¬K('! ( ^ ')) (9-Pool)

By way of illustration, consider the classically valid inference form
of Transitivity and the 7-Trans result. According to these definitions, the
narrowest candidates for triviality do not include Transitivity because it is
not a paradigm case (not derivable by a single primitive rule). There are,
however, more expansive candidate extensions of triviality that do consider
the inference form Transivity to be trivial and for any logic that respects these
candidates, the relevant IEC principle is valid (from C7 and above).

The family of Cn-Consequence relations represent one fully worked
example of the ranking approach to triviality. In this final section of the
paper, I show how to axiomatize this family of logics.

5 Axiomatization

For each rank n 2 N, we can define a logic of indeterminate closure LICn as
an extension of the classical Hilbert system for CPL. These have a shared,
core set of axioms and rules, but they each have different axioms licensed by
(A8) as the relevant versions of the IEC principle.

Definition 10 (Axioms of LICn) For each n 2 N, the set of axioms AXn

is the set of all instances of the following schemata.

(A1) '! ( ! ')

(A2) ('! ( ! �)) ! (('!  ) ! ('! �))

(A3) (¬'! ¬ ) ! ( ! ')
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(A4) K'! '

(A5) �'! '

(A6) �'! ¬�¬�'

(A7) �('!  ) ! (�'! � )

(A8) �K 1 ! (. . . ! (�K m ! ¬�¬K'))
for all reductive implications  1 ! (. . . ! ( m ! ')) 2 RIn

11

Much as before, we use the axioms to define the primitive rules.

Definition 11 (Primitive Rules of LICn) A derivation from � in LICn is a

finite (possibly empty) sequence of sentences  1, . . . , n. N.B. in the rules

below, � is used as a variable for such sequences.

(R1) If � is a derivation from � and ' 2 �, then �,' is a derivation from �.

(R2) If � is a derivation from � and ' 2 AXn, then �,' is a derivation from

�.

(R3) If � is a derivation from � and there are members of this sequence of

the form  and  ! ', then �,' is a derivation from �.

(R4) If � is a derivation from � and there is a member of this sequence '

that does not depend on any  2 �, then �,�' is a derivation from �.

For the definition of derivability per se, we eliminate the empty sequence.

Definition 12 (Derivability in LICn) ' is derivable from � in LICn, written

� `LICn ', iff there is a non-empty derivation from � ending in ', i.e. a

sequence of sentences  1, . . . , n that satisfies the criteria of Def. 11 such

that  n = '. This sequence witnesses that � `LICn '.

The completeness proof now follows by a canonical model construction.
I will only sketch the interesting details. We first relativize the notions of a
consistent and maximal set of sentences to each logic, LICn.

Definition 13 (n-Consistency) Conn(�) iff for all sentences ' we have at

least one of � 0LICn ' or � 0LICn ¬'
11These are the sets RIn from Definition 8, defined only over the signature of the base

(classical) logic. Thanks to an anonymous referee for pointing out the potential ambiguity.
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Definition 14 (n-Maximal-Consistency) MCSn(�) iff Conn(�) and it is

not the case that Conn(� [ {'}) for any ' /2 �

As usual, it follows that inconsistent sets can prove anything, and that
� `LICn ' iff it is not the case that Conn(� [ {¬'}). Maximal sets are
deductively closed, and each logic supports Lindenbaum’s Lemma.

Lemma 2 (Lindenbaum) If Conn(�), then there is some sets of sentences

�⇤
such that � ✓ �⇤

and MCSn(�⇤).

We define the proper canonical model and prove the Truth Lemma.

Definition 15 (The Proper Canonical Model of LICn) Is a six element

structure Mn = hW,C,H, I,N, Si with the following components.

• WMn = {� : MCSn(�)}

• CMn = Sent

• HMn(') = '

• IMn(') = {� : ' 2 �}

• NMn(�) = {' : K' 2 �}

• SMn(�) = {⌃ : for all ' 2 Sent, if �' 2 �, then ' 2 ⌃}

Lemma 3 (Truth) � 2 J'KMn
iff ' 2 �

Proof. This is quick: � 2 J'KMn iff � 2 IMn(HMn(')) by the definition
of CGCs iff ' 2 � by the definitions of HMn and IMn .

However, it still remains to establish that this simplistic structure really is

a sphere model and that it belongs to the intended model class. For the first
part, we need to see that the composition of HMn and IMn is well-behaved,
i.e. that is satisfies all desired operations on ‘truth sets’.

Lemma 4 (Mn is a Sphere Model)

Proof. I present the illustrative cases of ¬,K,�.

• � 2 J¬'KMn

iff ¬' 2 � by the Truth Lemma
iff ' /2 � by consistency
iff � /2 J'KMn by the Truth Lemma
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• � 2 JK'KMn

iff K' 2 � by the Truth Lemma
iff ' 2 NMn(�) by definition of NMn

iff HMn(') 2 NMn(�) by definition of HMn

• � 2 J�'KMn

iff �' 2 � by the Truth Lemma
iff ⌃ 2 SMn(�) implies ⌃ 2 J'KMn by definition of SMn

iff SMn(�) ✓ J'KMn

Finally, we need to establish that this structure is in the right model class.
That means: that the respect schema for all n-Trivial inference forms holds
in all worlds (MCSs) of Mn. The following lemma will be useful.

Lemma 5 (Extension) If MCSn(�) and �' /2 �, then in Mn there is some

⌃ 2 SMn(�) such that ' /2 ⌃. Contrapositively, we can infer that if all

MCSs in the sphere of � in Mn contain ', then �' 2 �.

Proof. Let MCSn(�) and �' /2 �. I will first show that Conn(⌃0) for the
set ⌃0 = {¬'}[ { : � 2 �}. Suppose not. Then there are finite  i 2 ⌃0

such that `LICn  1 ! (. . . ! ( m ! ')). Since this sentence is derivable,
it follows that `LICn � 1 ! (. . . ! (� m ! �')) by the normality of �
and so we have � `LICn �'. By hypothesis, however, we have � 0LICn �',
so indeed we have Conn(⌃0) by reductio. We can apply Lindenbaum’s
Lemma to infer the existence of the target set: there is some ⌃ such that
⌃0 ✓ ⌃ and MCSn(⌃). By construction, if � 2 �, then  2 ⌃, so in the
canonical model we have ⌃ 2 SMn(�) as desired, and ¬' 2 ⌃.

We show that the canonical model is in the right model class.

Lemma 6 (Rank) Mn 2 Cn

Proof. Let Tnh�,'i. Note that there is at least one associated, reductive
implication  1 ! (. . . ! ( m ! ')) 2 RIn such that { 1, . . . , m} ✓ �.
Then by (A8) we have `LICn �K 1 ! (. . . ! (�K m ! ¬�¬K')),
call this derivable sentence (*). Note that (*) is contained in all worlds of
Mn. We can now show that (�-'-RS) holds in all worlds.
Suppose that HMn(�) ✓

T
{NMn(⌃) : ⌃ 2 SMn(�)}. Let ⇧ 2 SMn(�).

It is then easy to work out that {K 1, . . . ,K m} ✓ ⇧ (with respect to
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the sentences { 1, . . . , m} ✓ � from above). Since this holds throughout
SMn , it follows by the Extension Lemma that {�K 1, . . . ,�K m} ✓ �.
Then since (*) is contained in � we have ¬�¬K' 2 � by deductive closure
and hence �¬K' /2 �. It follows by the Extension Lemma that there is
some ⌃ 2 SMn(�) such that ¬K' /2 ⌃ and hence K' 2 ⌃. Thus, we have
H(') 2 NMn⌃ and hence HMn(') 2

S
{NMn(⌃) : ⌃ 2 SMn(�).

It follows that the logic LICn is sound and complete.

Theorem 2 (Adequacy) � ✏Cn ' iff � `LICn '

Proof. Soundness is straightforward. For completeness, we reason that if
� 0LICn ', then Conn(�[{¬'}), so there is a world (MCS) of the canonical
model ⌃ 2 WMn with � [ {¬'} ✓ ⌃, thus by the Truth Lemma, we have a
member of the model class Cn which shows that � 2Cn '.

6 Conclusion

IEC logics offer a formal solution to an epistemic paradox, by describing how
trivial consequences are borderline cases of knowledge closure. I developed a
simple semantics for these logics, without appeal to substantive metaphysics,
and showed that such logics are axiomatizable.

In the process of showing these results, however, a number of question
may have been raised. As emphasized in §3, the hard question for IEC
theory is how to understand the concept of triviality. I described one way
that proof-theory may constrain this concept.

The ranking approach to triviality provides formal structure, in the form
of candidate extensions, that can be used to axiomatize IEC logics, but this
is entirely determined by the choice of primitive rules of the base logic. So,
from a philosophical point of view, there is more to say about the actual
primitive rules that we ‘really use’ or that ‘really give structure’ to our
concept of triviality. This is a difficult and important question, but one that
lies beyond the scope of the present paper.
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