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Abstract

Language maps signals onto meanings through the use of two distinct types of structure.

First, the space of meanings is discretized into categories that are shared by all users of the lan-

guage. Second, the signals employed by the language are compositional: The meaning of the

whole is a function of its parts and the way in which those parts are combined. In three iterated

learning experiments using a vast, continuous, open-ended meaning space, we explore the condi-

tions under which both structured categories and structured signals emerge ex nihilo. While previ-

ous experiments have been limited to either categorical structure in meanings or compositional

structure in signals, these experiments demonstrate that when the meaning space lacks clear preex-

isting boundaries, more subtle morphological structure that lacks straightforward compositionality

—as found in natural languages—may evolve as a solution to joint pressures from learning and

communication.

Keywords: Categorization; Communication; Compositionality; Cultural evolution; Iterated

learning; Language evolution; Sound symbolism

1. Introduction

Language facilitates the division of the world into discrete, arbitrary categories

(Lupyan, Rakison, & McClelland, 2007). For example, the words bottle, cup, flask, glass,
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and mug separate the space of drinking vessels into discrete regions based on such fea-

tures as shape, material, and function; however, languages differ in the way they dis-

cretize our continuous sensory perception of the observable world (Malt, Sloman, &

Gennari, 2003). The presence of categorical structure in language reduces an intractable,

theoretically infinite set of meanings to a tractable, finite set of words that have the flexi-

bility to handle novel exemplars (Lakoff, 1987). By aligning on a particular system of

categorical meaning distinctions, members of a linguistic population can rely on their

shared understanding of the structure of the world to successfully communicate.

A second important property of language is its compositional structure: The meaning

of a sentence—at multiple levels of analysis—is a function of the meanings of its parts

and the way in which those parts are combined. For example, the meanings of the water
is in the cup and the cup is in the water are predictable from the constituent parts (six

monomorphemic words) and the word order. In language, compositional structure is a

means for optimizing the trade-off between expressivity (the number of meanings that

can be expressed) and compressibility (the degree to which the language can be reduced

to atomic units and rules of recombination) (Kirby, Tamariz, Cornish, & Smith, 2015).

This paper focuses on how these two structural properties of language (categorical and

compositional structure) can emerge simultaneously through the cultural evolutionary pro-

cesses that are argued to hold at least some explanatory power in understanding where

such structure comes from (e.g., Christiansen & Chater, 2008). Although the cultural evo-

lution of categorical (e.g., Xu, Dowman, & Griffiths, 2013) and compositional (e.g.,

Kirby, Cornish, & Smith, 2008) structure has previously been demonstrated in isolation,

we show here that structured languages can evolve where no categories have been pro-

vided by the experimenter a priori. We show this using an open-ended meaning space

and the experimental paradigm of iterated learning.

1.1. Iterated learning

Iterated learning refers to “a process in which an individual acquires a behavior by

observing a similar behavior in another individual who acquired it in the same way”

(Kirby et al., 2008, p. 10681). For example, an individual learns a language from his or

her parents, who themselves learned the language from their own parents. Taking inspira-

tion from earlier computational (e.g., Hurford, 1989; Kirby, 2002; Smith, 2004) and

experimental (e.g., Galantucci, 2005; Horner, Whiten, Flynn, & de Waal, 2006; Selten &

Warglien, 2007) studies, Kirby et al. (2008) devised an experimental paradigm for study-

ing iterated learning using adult human learners.

The basic design of an iterated learning experiment is as follows. An artificial language

(i.e., a mapping between signals and meanings) is generated. In the case of Kirby et al.

(2008), this language was a set of 27 randomly generated strings that were mapped onto

a fixed set of 27 meanings (three shapes, in one of three colors, moving in one of three

distinct patterns). Participants learn this language in a training phase and are then asked

to reproduce the language by typing in the corresponding strings for a selection of mean-

ings. The output from this test phase is then taught to a new participant, whose test out-

J. W. Carr et al. / Cognitive Science 41 (2017) 893



put is, in turn, taught to another new participant. These experiments typically show that,

after several generations, the languages that initially started out as random evolve some

form of structure.

The simplest kind of structure that can arise from these experiments is where partici-

pants collapse all meaning distinctions. This kind of language (referred to as “degenerate”

by Kirby et al., 2015) is highly learnable because a single word can be applied to any

meaning. Similarly, systems of structure can arise where the meaning space is collapsed

into a small number of categories, each labeled by a distinct word. These kinds of struc-

ture represent one way in which languages might adapt to become easier to learn and

therefore reliably transmitted. However, while these kinds of language are highly com-

pressible, they are not expressive (see Kirby et al., 2015, for more discussion of this

trade-off).

The second experiment reported by Kirby et al. (2008) implemented a “filtering” sys-

tem that removed duplicate strings from the training material taught to the next partici-

pant in a chain, such that the training language always consisted of a set of unique

signals. This modification was intended as an analog of the pressure for expressivity that

exists in natural languages. In this experiment, small sets of meaningful, recombinable

units emerged corresponding to the dimensions of the meaning space. For example, labels

for all blue stimuli began with l- and labels for all stimuli moving in a spiral motion

ended with -pilu. By learning a handful of linguistic units and the rules for combining

them, participants were able to generate a unique label for any possible meaning combi-

nation, including meanings they had not been taught during training.

1.2. Continuous meaning spaces

Iterated learning experiments have typically relied on meaning spaces that are discrete,

finite, low dimensional, and structured by the experimenter. Kirby (2007) has described

such meaning spaces as fixed and monolithic (p. 256). For example, the meaning space

used in Kirby et al. (2008), described above, is three dimensional with each dimension

(color, shape, and motion) varying over three discrete qualities. To take another example,

the space in Smith and Wonnacott (2010) has two discrete dimensions (animal and plural-

ity) for a total of eight meanings.

More recently, iterated learning experiments have been conducted using continuous

meaning spaces (see also work with continuous signal spaces by e.g., Verhoef, 2012). Xu

et al. (2013) conducted an experiment where participants had to label a continuous color

space using between two and six color terms according to condition. The way in which a

participant discretized the space was then taught to a new participant in a chain. After 13

generations of cultural transmission, the structure of the space came to resemble the way

in which color space is typically structured by languages recorded in the World Color

Survey (Kay, Berlin, Maffi, Merrifield, & Cook, 2009). For example, in the three-term

condition, the emergent systems discretized the space into dark, light, and red categories.

Perfors and Navarro (2014) used a meaning space of squares that could vary continu-

ously in terms of color (white to black) and size (small to large). In one condition, there

894 J. W. Carr et al. / Cognitive Science 41 (2017)



was an abrupt change in the color, such that the stimuli could be categorized into two

broad categories (light-colored squares and dark-colored squares); in another condition,

there was an abrupt change in the size of the squares. Labels for these stimuli were then

passed along a transmission chain of learners. In both conditions, the authors found that

the structure of the emergent languages came to mirror the structure of the meaning

space, primarily making color or size distinctions according to condition.

Silvey, Kirby, and Smith (2013) produced a continuous meaning space by randomly

generating four seed polygons and then gradually morphing the polygons into each other,

creating a space of 25 stimuli. The space had no obvious internal boundaries; as such,

participants showed variation in how they discretized it. The authors also conducted an

iterated learning experiment using the same meaning space (Silvey, 2014, Chapter 5). In

this experiment, each generation consisted of a pair of participants who communicated

about the stimuli using a fixed set of up to 30 words. Over five generations, the category

systems that emerged tended to make fewer distinctions and became easier to learn. Fur-

thermore, the category structures became increasingly convex, providing experimental

evidence for predictions made by G€ardenfors (2000) about semantic convexity.1

1.3. Research questions

Two important and related questions arise from prior research into iterated learning.

First, to what extent are the general findings supported under more realistic assumptions

about meaning? For example, do the results still hold when the meaning space possesses

properties that more closely reflect the natural world (e.g., high-dimensionality, open-

endedness, continuousness)? This question has been partially addressed by the work with

continuous meaning spaces described above (see also simulation work by e.g., Laskowski,

2008). The second question that arises is whether iterated learning simply returns the

structure prescribed by the experimenter, transferring it from one domain (e.g., predefined

categories in the meaning space) to another domain (e.g., the emergent structure in the

signals). Xu et al. (2013) address this issue to a certain extent; however, the participants

in their experiment are explicitly told how many categories to create—the number of cat-

egories does not arise naturally—and the participants are also likely to have strong pre-

conceptions of how to discretize color space based on the color system of their native

language (although the authors do address this); furthermore, Xu et al. (2013) do not test

for emergent signal structure, since a fixed set of labels is provided. If it is indeed the

case that iterated learning experiments simply return structure provided by the experi-

menter, is it realistic to assume that structured languages can evolve in a context where

individuals are not provided with shared categorizations of the observable world?

In this paper, we address these concerns by introducing a novel meaning space of ran-

domly generated triangle stimuli. Like previous work, our meaning space is continuous,

but crucially it is also open-ended: The structure of the space is neither provided by the

experimenter nor naturally categorizable; instead it is up to the participants to arbitrarily

decide how to categorize the space. In addition, the experiment is set up in such a way

that no two generations are tested on or trained on precisely the same stimuli, forcing
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participants to generalize from the training stimuli to the test stimuli in all cases. Finally,

the space of possible stimuli that participants can encounter is vast, forcing participants

to adopt a system of categorization. Together, these properties of our meaning space rep-

resent more realistic assumptions about the natural world, and by not defining what the

meaning dimensions are, we can test whether structure can arise in the signals and in the

meaning space simultaneously.

1.4. Outline of this paper

This paper reports three artificial language learning experiments that use the paradigm

of experimental iterated leaning described above. Experiment 1 (basic transmission) looks

at what happens when there is no pressure for expressivity. It therefore provides a base-

line for how participants respond to the open-ended meaning space. The results demon-

strate that categories emerge over generational time to discretize the space of possible

triangles. Experiment 2 (transmission with an artificial expressivity pressure) explores

whether compositional structure can emerge alongside the categorization of the meaning

space by implementing an artificial pressure for expressivity. The results of this experi-

ment were negative, suggesting that the second experiment reported by Kirby et al.

(2008) may be a special case relating to the discrete meaning space adopted therein.

Experiment 3 (transmission with communication) implements a natural expressivity pres-

sure—communication—and shows that sublexical structure can emerge when languages

are both learned and used to communicate.

2. Experiment 1: Basic transmission

Our first experiment is equivalent to the first experiment reported by Kirby et al.

(2008) and looks at what happens when languages are passed along a simple transmission

chain with no pressure for expressivity. We had two hypotheses about what would hap-

pen over generational time:

1. We expect that the languages will become increasingly easy to learn.

2. We expect to find emergent categories in the meaning space.

These outcomes were expected because the languages should adapt to the cognitive biases

of the language users, gradually becoming more learnable. Categories are a way to

increase learnability because they constitute a more compressed representation of the

meaning space.

2.1. Method

The experiment adopted the standard iterated learning paradigm described previously:

Participants were arranged into transmission chains in which the output from generation i
became the input to generation i + 1 for a given chain.
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2.1.1. Participants
Forty participants (20 female) were recruited at the University of Edinburgh. The med-

ian age was 22 years (range: 19–34). Participants were paid £5.50 for participation, and a

£20 Amazon voucher was offered as a prize for the best learner. Ethical approval was

granted for all experiments reported in this paper according to the procedures of the

School of Philosophy, Psychology, and Language Sciences at the University of Edin-

burgh. All participants provided informed consent and were offered debrief information.

2.1.2. Stimuli
Participants learned and produced artificial languages that consisted of labels paired

with triangles. To generate a triangle stimulus, three points were chosen at random in a

4809480-pixel space and joined together with black lines (2 pixels wide). The space was

enclosed in a 5009500-pixel dashed, gray bounding box. One vertex (determined ran-

domly) was marked with a black circle with a radius of eight pixels (referred to as the

orienting spot). Its function is to give the participant some context about which way the

triangle is oriented, although this was not explicitly explained to participants. The number

of stimuli2 that can be generated in this way is 3 4802

3

� �
� 6 � 1015. See Fig. 1 for some

examples of the triangle stimuli. In this paper, we use the terms dynamic set and static
set to refer to subsets from the set of possible triangles that participants may be exposed

to. These terms are explained in greater detail below; for now it suffices to say that a

unique dynamic set is generated at every generation (i.e., it changes across participants

and generations), while the static set is identical for all participants across all experi-

ments, allowing us to take measurements on a consistent set of stimuli.

The labels used as input to the first generation in a chain were generated by concate-

nating 2–4 syllables at random. A syllable consisted of a consonant from the set {d, f, k,
m, p, z} and a vowel from the set {a, i, o, u} (pronounced /ɑ i oʊ u/), yielding 24 possi-

ble syllables. The labels used as input to subsequent generations were derived from the

output of the previous generation in the chain. We used the MacinTalk speech synthesizer

(Alex voice) to produce a synthesized spoken version of each label with primary stress

Fig. 1. Examples of the triangle stimuli. The stimuli are generated by randomly selecting three points inside

a dashed, gray bounding box. One vertex is marked with a black circle.
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on the penultimate syllable. The use of spoken stimuli, alongside the written stimuli,

offers a number of benefits: (a) it makes the task more engaging, (b) if frees participants

from having to consider how to pronounce or subvocalize the words, (c) it ensures that

all participants hear the words pronounced in the same way, and (d) it ensures that partic-

ipants still hear the word even if they only pay attention to the triangle stimulus and

ignore the written label. When participants introduced new characters, those characters

were assigned phonological values consistent with English orthography.

2.1.3. Procedure
Participants were assigned to one of four chains at random until the chain reached 10

generations. Participants were told that they would be learning the language of the Flat-
landers (after Abbott, 1884), a fictional life-form that has many words for triangles. The

task was explained to participants in a written brief (see Appendix S1 in the supplemen-

tary material), the contents of which were reiterated verbally. The experiment was

divided into a training phase followed by a test phase. The training phase involved learn-

ing the labels used by the previous participant. The test phase involved providing labels

for novel triangles. The experimental procedure is illustrated in Fig. 2, and each phase is

explained in the following paragraphs.

During training, participants learned the labels that the previous participant had applied

to the 48 triangles in his or her dynamic set (i.e., the unique set of stimuli generated for

the previous participant’s test phase). Each training trial lasted 5 s. On each trial, the tri-

angle was presented first, and its associated label appeared below it after a 1 s delay to

ensure that both stimuli were attended to. The synthesized form of the label was played

through headphones at the same time as the presentation of the written form. Training

was done in three blocks. In each block, the participant was exposed to the 48 items in a

Fig. 2. (Top) The participant at generation i is trained on a set of triangle stimuli paired with labels

(dynamic set i � 1). He or she is then tested on two novel sets of triangles: a randomly generated set

(dynamic set i) and a set that remains constant for all participants (the static set). The labels applied to the

dynamic set become the training input to generation i + 1. (Bottom) During training, the participant sees a

series of three triangles along with their associated labels. One of the three triangles is then presented again,

and the participant is prompted to type its associated label. Feedback is then given on whether the answer

was correct.
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randomized order for a total of 144 trials. After every third trial (i.e., 16 times per block,

48 times overall), the participant was shown one of the previous three triangle stimuli

again and prompted to type its label. We refer to this as a mini test. Over the course of

training, each of the 48 items was mini-tested once. Feedback on each mini test was

given in the form of a green checkmark or a red cross according to whether the partici-

pant answered correctly. If the answer was incorrect, the correct answer was shown. The

mini tests were intended as a means for holding the participant’s attention during the

training phase.

In the test phase, participants were exposed to 96 triangle stimuli, none of which they

had seen during training, and were prompted to type the associated label for each one.

The 96 stimuli consisted of the 48 stimuli in a newly generated dynamic set (which

would go on to become the training material for the subsequent participant in the chain)

and the 48 stimuli in the static set (in randomized order). The presentation of these two

sets was interleaved. The static set comprised the same set of triangles across all partici-

pants in all experiments, allowing us to take measurements on a consistent set of stimuli.

No feedback was provided during the test phase, since there is no right or wrong answer.

2.2. Results

The results for Experiment 1 are shown in Fig. 3 and are discussed in the following

sections. The raw data and analysis are available from https://github.com/jwcarr/

flatlanders.

2.2.1. Loss of expressivity
We can estimate how expressive a language is by looking at the number of words it

contains. A language with more words is potentially capable of making more meaning

distinctions. In the initial Generation-0 input, 48 unique strings were used to label the sta-

tic set, but by Generation 10, this number decreased to 6 or 7, and in Chain D, a single

word, mika, was used to describe all triangles. These results are shown in Fig. 3A. Page’s

test (Page, 1963) revealed that this decrease in the number of unique labels was signifi-

cant (L = 1,993, m = 4, n = 11, p < .001). These results show that the languages are

becoming less expressive over time.

2.2.2. Increase in learnability
We expected to find that the languages would become increasingly learnable over time.

If a language is easy to learn, a participant’s output language should more faithfully

reproduce the rules of the input language. In other words, we would expect to find a

decrease in intergenerational transmission error over time. Intergenerational transmission

error was measured by taking the mean normalized Levenshtein edit-distance3 (Leven-

shtein, 1966) between the strings used to describe items in the static set at generation i
and the corresponding strings at generation i � 1:
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1

48

X48
m¼1

LDðsmi ; smi�1Þ
max½lenðsmi Þ; lenðsmi�1Þ�

; ð1Þ

where LD gives the Levenshtein edit-distance, s is a string, and m is a meaning from the

static set of 48 items. This measure of error is expressed in [0, 1], where 0 is perfect

alignment between consecutive generations. The results for transmission error are shown

Fig. 3. Results of Experiment 1. (A) Expressivity: number of unique strings in the static set. (B) Levels of

transmission error. (C) Levels of general structure. (D) Levels of sublexical structure. (E) Levels of shape-

based sound symbolism. The dotted lines in (C), (D), and (E) give the upper and lower 95% significance

levels; points lying outside of this interval are unlikely to be explained by chance. Some data points at the

end of Chain D are undefined due to the small number of unique strings.
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in Fig. 3B. Page’s test revealed that the decrease in transmission error was significant

(L = 1,514, m = 4, n = 10, p < .001), suggesting that the languages are becoming easier

to learn over time. Although transmission error may appear quite high by the final gener-

ation, this should not be surprising, since a score of 0 requires not only that consecutive

participants label the categories in the same way, but also that they infer the same cate-

gory boundaries; in natural languages, however, the boundaries between categories are

known to be fuzzy (Rosch, 1973).

2.2.3. Emergence of structure
Although the languages became less expressive, we expected to find that the words

would increasingly be used to categorize the space systematically. In a systematic lan-

guage, we would expect to find that similar labels refer to similar meanings, while dis-

similar labels refer to dissimilar meanings. Thus, to measure how structured the system

is, we correlate the dissimilarity between pairs of strings with the dissimilarity between

pairs of triangles for all n(n � 1)/2 pairs. The normalized Levenshtein edit-distance was

used as a measure of dissimilarity between strings. To measure the dissimilarity between

triangles, we conducted a separate experiment in which na€ıve participants were asked to

rate the dissimilarity between pairs of triangles (see Appendix A for full details of this

experiment and Appendix S2 in the supplementary material for an alternative geometric

approach). Following previous studies (e.g., Kirby et al., 2008, 2015), the distance matri-

ces for string dissimilarity and triangle dissimilarity were correlated using the Mantel test

(Mantel, 1967), since the distances are not independent of each other making standard

parametric statistics unsuitable. The test compares the Pearson correlation for the veridi-

cal signal–meaning mapping against a distribution of Pearson correlations for permuta-

tions of the mapping, yielding a standard score (z-score). The results of this analysis are

presented in Fig. 3C. The last two generations of Chain D are undefined under this mea-

sure because there is only one word in the language. The plot shows that structure is

emerging in all chains with the exception of Chain D. Page’s test revealed a significant

increase in structure (L = 1472, m = 3, n = 11, p < .001; excluding Chain D due to miss-

ing data points).

However, this measure of structure cannot discriminate between category structure and

string-internal structure (e.g., compositionality). To test if structure was present inside the

signals, a modification was made to the measure: Rather than randomize the mapping

between signals and meanings, we randomize the mapping between the category labels

(i.e., the unique set of words in the language) and the sets of triangles they map onto,

such that the set of triangles labeled by a given word remains intact but the labels for

each category are randomly shuffled. Under this randomization method, any categorical

structure in the language remains present in the permuted mappings, so a high z-score
indicates that there must be additional structure present inside the strings themselves. The

results from this alternative approach are shown in Fig. 3D, where the majority of data

points are below the upper 95% significance level, suggesting that there is no string-inter-

nal structure in the languages of this experiment.
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To visualize the categories, the pairwise dissimilarity ratings (obtained from the na€ıve
raters; Appendix A) were passed through a multidimensional scaling (MDS) algorithm,

producing a two-dimensional representation of the meaning space.4 MDS finds an

arrangement of items in a metric space that best preserves the distances known to exist

between those items (see e.g., Borg & Groenen, 2005). The MDS solution is shown in

the plot in Fig. 4. Each dark dot represents one of the triangles in the static set; triangles

that are close together in this space were rated to be similar, and triangles that are far

apart were rated to be dissimilar. Although the dimensions of the space are somewhat

abstract, the x-axis appears to correspond to shape, while the y-axis appears to have some

correspondence with size. The space is partitioned into 48 Voronoi cells—one cell for

each triangle in the static set. Each cell encompasses all points in the space that lie closer

to the associated triangle than to any other triangle from the static set. In other words,

each Voronoi cell delimits the space of triangles that would have been labeled with the

associated string under the assumption that each item is a prototypical member of a con-

vex category (G€ardenfors, 2000).
Color is used in Fig. 4 to show information about the state of the language at Genera-

tion 10 in Chain A; similarity in color indicates similarity in word form. To determine a

Fig. 4. Categorical structure of the meaning space at Generation 10 in Chain A. The plot on the left shows

how the meaning space is discretized by the words in the language: Similarity in position represents similar-

ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static

set are grouped by the word used to describe them (presented in the same order as the legend). Refer to the

main text for a full description and interpretation of this figure.
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color for each word, we computed the pairwise Levenshtein edit-distances between the

seven words in this particular language and derived a two-dimensional MDS solution cen-

tered on the origin. The Cartesian coordinates in this MDS space were converted to polar

coordinates and then mapped into HSV (hue, saturation, intensity value) colorimetric

space: The angular coordinate was mapped to hue and the radial coordinate (scaled in

[.5, 1] to avoid overly dark colors) was mapped to saturation; the intensity value was held

constant at 1 (see Lespinats & Fertil, 2011, for a full description of this method). The

seven words are given in the legend alongside their assigned colors. Each Voronoi cell is

colored according to the word that was used to describe its associated triangle, making it

possible to see how the space is discretized by the words. The plot is a visual approxima-

tion of the measure of structure described above: In a structured language, similar colors

will cluster into similar regions, while in an unstructured language, colors will be ran-

domly distributed across the space. The images to the right of the plot show all triangle

stimuli in the static set grouped and colored according to the word that was used to

describe them. Note that Fig. 4 combines two data sets: The structure of the meaning

space is determined by the na€ıve raters, while the color coding is determined by how the

participant at Generation 10 in Chain A labeled the triangles. Figures for all generations

in all chains can be found in Appendix S3 in the supplementary material.

Fig. 4 clearly shows that the language divides the meaning space into around five cate-

gorical regions. The center of the space (medium thin triangles) is occupied by the word

fama (light purple), with the similar word pama (dark purple) branching off into the

top-right corner (smaller thin triangles). The kazi- forms (kazizizu, kazizizui, and kazizui;
yellow–green) occupy the right-hand side of the plot and represent the extremely thin tri-

angles. Muaki (blue) mostly occupies the top left (smaller open triangles), and fod (pink)

occupies the center left (larger open triangles). With some exceptions, the five main cate-

gories tend to form single, contiguous regions (e.g., it is possible to travel between any

two examples of a fama without leaving the fama region), although the regions do not

appear to be convex (it is not always possible to travel in a straight line without passing

through another category). It is important to note, however, that the Voronoi tesselation

of MDS space only offers a two-dimensional model of participants’ underlying concep-

tual representations of the triangles and linguistic categories; the plots should therefore

not be taken as a reliable source of information about the precise structuring of the mean-

ing space.

2.2.4. The rise of sound-symbolic languages
Sound symbolism describes the phenomenon where a unit of sound goes “beyond its

linguistic function as a contrastive, non-meaning-bearing unit, to directly express some

kind of meaning” (Nuckolls, 1999, p. 228). Although we did not initially set out to test

for the emergence of sound-symbolic languages, it appeared that such patterning might

be present. For example, the word kiki (the same word used in the classic bouba/kiki

experiments; K€ohler, 1929) arose independently in several chains (Chains C and D in this

experiment and Chains E, G, and H in Experiment 2) to describe very thin or small trian-

gles. To explore the emergence of shape-based sound symbolism, we hypothesized that
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the extent to which each triangle was thin vs. equilateral would be correlated with the

presence of phonemes associated with pointy vs. round stimuli (following e.g., K€ohler,
1929; Kovic, Plunkett, & Westermann, 2010; Maurer, Pathman, & Mondloch, 2006). The

“equilateralness” of a triangle (a proxy for shape) was calculated as

a

p2=ð12 ffiffiffi
3

p Þ ; ð2Þ

where a is the triangle’s area and p is its perimeter.5 To measure the “roundedness” of a

string, we used the sound-symbolic correspondences described by Ahlner and Zlatev

(2010, p. 310) to divide all phonemes that occurred into three categories: “round” pho-

nemes /b d g l m n oʊ cu/, which received a score of +1, “pointy” phonemes /k p t eɪ i/,
which received a score of �1, and all other phonemes, which received a score of 0. We

then correlated the total roundedness of the strings with the equilateralness of the corre-

sponding triangles and compared this correlation to a distribution of correlations for per-

mutations of the mapping between signal and meaning to arrive at a standardized

measure of shape-based sound symbolism. The results are shown in Fig. 3E; by the final

generations, there are significant levels of shape-based sound symbolism in chains A, B,

and C.

The same analysis was conducted for size-based sound symbolism using the centroid

size6 as a measure of a triangle’s size. This measure is uncorrelated with the triangle’s

shape (Bookstein, 1991, p. 97), which is particularly important given the great amount of

overlap in phonemes associated with both shape and size. Specifically, the “bigness” of a

string was measured based on the phonemes listed in Thompson and Estes (2011, p.

2396): The “big” phonemes /b d g l m w ɑ oʊ cu/ received a score of +1 and the

“small” phonemes /k p t eɪ i/ received a score of �1. While there was an effect in some

later generations, the results were quite weak. Given the lack of a strong effect for size,

only the shape-based sound symbolism results are reported in this paper.

2.2.5. Summary of Experiment 1
The results for Experiment 1 suggest that categorical structure emerges in the lan-

guages. In Chains A, B, and C, the space of possible triangles was gradually divided into a

small number of arbitrary categories that varied across chains. In Chain D, a single word

came to stand for all triangles, which is itself a form of categorical structure—in everyday

English, for example, all three-sided, two-dimensional figures can be categorized under the

single word triangle. The small number of words that emerged in the languages by the

final generations mirrors the underspecification found in the first experiment of Kirby et al.

(2008). Categories allow for languages that are more compressed and, as such, more learn-

able. For example, the language depicted in Fig. 4 can be minimally represented by seven

words, but it is presumably capable of describing any of the 6 � 1015 triangles that could

have been generated. However, highly compressed languages are not necessarily useful in

the context of language use, where it is important to be able to disambiguate one referent

from a set of referents (see Kemp & Regier, 2012, for an example of this trade-off in the
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context of kinship categories). To test whether more expressive languages could evolve

under this unstructured, open-ended meaning space, we conducted two additional experi-

ments that include expressivity pressures.

3. Experiment 2: Transmission with an artificial expressivity pressure

Our second experiment tests whether artificially forcing participants to use expressive

languages results in compositional structure as a solution to maintaining both diversity of

forms and compressible (and therefore learnable) languages. We had three hypotheses:

1. We expect that the languages will become increasingly easy to learn.

2. We expect to find emergent categories in the meaning space.

3. We expect to find emergent structure in the signals (e.g., compositionality).

The addition of Hypothesis 3 to the two hypotheses of Experiment 1 was motivated by

Kirby et al. (2008), whose second experiment showed that forcing languages to remain

expressive results in emergent compositional structure. In our experiment, participants

could, for example, use a system where the first syllable (a, b, or c) denotes three sizes,

the second syllable (d or e) denotes broad or thin, and the third syllable (f, g, h, or i)
denotes the quadrant that the triangle is primarily located in. In this example, participants

would only need to learn nine linguistic units (syllables a–i) and the rules for combining

them but would be able to generate 3 9 2 9 4 = 24 distinct words, providing referential

precision at minimal cost in terms of the number of label components to be learned.

3.1. Method

3.1.1. Participants
Forty participants (25 female), none of whom took part in Experiment 1, were

recruited at the University of Edinburgh. The median age was 22 years (range: 18–50).
Participants were paid £5.50 for participation, and a £20 Amazon voucher was awarded

to the best learner.

3.1.2. Procedure
The procedure was identical to Experiment 1, except that participants could not use

the same string more than three times to label test items from the dynamic set (i.e., every

other test trial). We did not impose this limitation on the static set because only the

dynamic set can lead to a runaway loss of expressivity, since the way in which this set

was labeled would be passed to the next generation. The advantage of this approach is

that participants will only encounter the expressivity pressure in half of trials. The disad-

vantage is that the static set may not be entirely representative of how the participant

responded in the dynamic set. In dynamic set trials, upon attempting to enter a word that

had previously been used three times, the participant was presented with the message

“You’ve used this word too often. Please use another word.” An additional sentence was
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added to the brief to explain that this could happen (see Appendix S1 in the supplemen-

tary material). This modification to the test procedure forces the languages to remain

expressive, since the output languages passed to the next generation must contain a mini-

mum of 48 / 3 = 16 unique strings.

3.2. Results

The results of Experiment 2 are shown in Fig. 5 and are discussed in the following

sections.

3.2.1. Expressivity
The number of unique strings used to label items in the dynamic set was not able to

collapse so dramatically. Although the pressure was only applied to the dynamic set, the

number of unique strings in the static set also remained high (as shown in Fig. 5A). The

languages thus remain more expressive than Experiment 1.

3.2.2. Learnability
Fig. 5B shows that intergenerational transmission error in Experiment 2 remained rela-

tively static. Nevertheless, the results do show a significant decrease (L = 1,415, m = 4,

n = 10, p < .001) from an average of 80% error at Generation 1 down to an average of

66% error at Generation 10.

3.2.3. Structure
Although the languages in Experiment 2 are more expressive, this did not translate into

increased levels of structure. Like Experiment 1, there is no evidence for sublexical struc-

ture (Fig. 5D); however, levels of general structure are also low (Fig. 5C), with only

Chains G and H showing marginal, albeit fragile, levels of structure. Fig. 6 shows the

state of the language at Generation 8 in Chain G. In this example, which was the most

structured language to emerge, there is a clear tendency for similar labels to cluster

together. For example, labels colored green cluster down the right-hand side, dark blues

in the top left, orange–yellows on the left-hand side, and so forth. However, the structure

of the space is not as clear cut as in the case of Experiment 1, partly due to the increased

number of words. In general, however, strong levels of categorical structure did not

develop in this experiment (as indicated by Fig. 5C), and it seems that the participants

continue to make a small number of categorical distinctions by using similar (but not nec-

essarily identical) strings to label each category. For example, although the language

shown in Fig. 6 uses 14 labels, there appear to be five broad categories (colored blue/

cyan, green, magenta, orange/yellow, red/salmon; this is not simply an artifact of color

perception as these five broad categories are also clear from the strings themselves).

3.2.4. Sound symbolism
Like Experiment 1, there are significant levels of shape-based sound symbolism emerg-

ing in some of the later generations (Fig. 5E), although the effect tends to be weaker.
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3.2.5. Summary of Experiment 2
Placing a limit on the number of times a particular word could be reused allowed the

languages to remain expressive. However, this did not translate into compositional struc-

ture as hypothesized. In fact, the substantial variation in the languages prevented many of

the participants from stabilizing on a set of reliable categories. This result is at odds with

the second experiment reported by Kirby et al. (2008), where an artificial pressure was

Fig. 5. Results of Experiment 2. (A) Expressivity: number of unique strings in the static set. (B) Levels of

transmission error. (C) Levels of general structure. (D) Levels of sublexical structure. (E) Levels of shape-

based sound symbolism. The dotted lines in (C), (D), and (E) give the upper and lower 95% significance

levels; points lying outside of this interval are unlikely to be explained by chance.
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sufficient to give rise to compositional languages. While there are many possible explana-

tions for this, one possibility is that an artificial pressure for expressivity is only sufficient

in the artificial case of a small, discrete, structured meaning space.

4. Experiment 3: Transmission with communication

The restriction imposed on Experiment 2 was artificial; although participants had to

remain expressive, there was no natural reason to use a large number of distinct strings.

In our final experiment, we replaced the artificial expressivity pressure with a more eco-

logically valid pressure: At each generation, two participants must use the language to

communicate with each other. Communication introduces a natural pressure for expressiv-

ity because, in order to maximize their communicative success, a pair of participants will

need a language that is well-adapted to the discrimination of referents in a world of trian-

gles. Our hypotheses were identical to those of Experiment 2.

Fig. 6. Categorical structure of the meaning space at Generation 8 in Chain G. The plot on the left shows

how the meaning space is discretized by the words in the language: Similarity in position represents similar-

ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static

set are grouped by the word used to describe them.
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4.1. Method

4.1.1. Participants
Eighty participants (63 female) were recruited at the University of Edinburgh, none of

whom took part in Experiments 1 or 2. The median age was 21 years (range: 18–37).
Participants were paid £8.50 for participation. The pair of participants who were most

successful at communicating were both awarded a £20 Amazon voucher to encourage

participants to be as communicative as possible with their partners.

4.1.2. Procedure
The task was explained to participants in a written brief (see Appendix S1 in the sup-

plementary material), the contents of which were reiterated verbally. The procedure fol-

lowed the same communication game paradigm introduced in other iterated learning

experiments (e.g., Kirby et al., 2015; Winters, Kirby, & Smith, 2015); this is illustrated

in Fig. 7. Sitting in separate booths, a pair of participants completed the same training

regimen used in Experiments 1 and 2. The training material presented to the two partici-

pants was identical and was derived from the dynamic set of the previous generation.

Once both participants had completed training, they entered a communication game in

which they took turns to play the role of director and matcher. The director was shown a

triangle stimulus on his or her screen and was asked to describe that triangle to his or her

partner. This label was then displayed on the matcher’s screen along with six triangles to

Fig. 7. (Top) The participants at generation i are individually trained on dynamic set i � 1. They then com-

municate about two novel sets of triangles: a randomly generated set (dynamic set i) and a set that remains

constant for all participants (the static set). The labels applied to the dynamic set become the training input

to generation i + 1. (Bottom) During communication, the director is shown a triangle and is prompted to type

a label to describe it. The label is then displayed on the matcher’s screen along with an array of six triangles

to choose from. The matcher’s task is to click on the triangle that his or her partner is trying to communicate.

As feedback, both participants see the target triangle and the selected triangle.
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choose from (the context array). The context array contained the target triangle (in ran-

domized position) and five randomly generated distractors. The matcher’s task was to

click on the triangle that his or her partner was trying to communicate. The director and

matcher were provided with full feedback: After making a selection, the correct target in

the context array was highlighted in blue, and the director was shown the triangle that

the matcher had selected alongside the correct target. The participants were jointly

awarded 10 points for each correct match; the number of points accumulated was shown

in the bottom left corner of both screens throughout the communication game.

One of the participants (determined randomly) labeled the dynamic set and the other

labeled the static set for a total of 96 communication trials. Like the previous experi-

ments, the dynamic and static sets were labeled in alternation as the pair of participants

swapped roles. This approach means that the subsequent generation was exposed to input

from one cultural parent (the participant who labeled the dynamic set); the disadvantage

is that the static set is only representative of the participant who labeled that set.

4.2. Results

The results of Experiment 3 are shown in Fig. 8 and are discussed in the following

sections.

4.2.1. Expressivity
The expressivity results are shown in Fig. 8A. The number of unique strings is gener-

ally greater than that observed in Experiment 1, and the number of unique strings in

Chain J and the first half of Chain L is comparable to Experiment 2.

4.2.2. Learnability
The results for transmission error are shown in Fig. 8B. There is a significant decrease

(L = 1,503, m = 4, n = 10, p < .001) from an average of 80% error at Generation 1

down to an average of 50% error at Generation 10.

4.2.3. Communicative accuracy
Fig. 8C shows the number of times the communicating pair correctly identified the

target triangle out of 96 trials. The chance level of accuracy under this measure is

96 / 6 = 16 (indicated by the dotted line). All but one of the pairs scored above chance.

There was a significant increase (L = 1,321.5, m = 4, n = 10, p = .021), with later gener-

ations tending to make more correct matches. Fig. 8D shows a more fine-grained measure

of communicative accuracy: the total dissimilarity between the selected triangle and the

target triangle for all incorrect responses (dissimilarity scores were collected in a separate

experiment; see Appendix B). This gives a measure of the amount of communicative

error at each generation. There was a significant decrease (L = 1,356, m = 4, n = 10,

p = .004), which again indicates that later generations communicate more accurately.

Nevertheless, levels of communicative accuracy were quite low. The pair of participants

with the highest score was Generation 8 in Chain J (46 correct trials). That all partici-
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Fig. 8. Results of Experiment 3. (A) Expressivity: number of unique strings in the static set. (B) Levels of

transmission error. (C) Number of correct trials (the dotted line indicates chance level). (D) Communicative

error. (E) General structure. (F) Sublexical structure. (G) Shape-based sound symbolism. The dotted lines in

(E), (F), and (G) give the upper and lower 95% significance levels; points lying outside of this interval are

unlikely to be explained by chance.
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pants got less than half of trials correct indicates that the task was particularly difficult

and that there may be a ceiling on how well participants can perform, given the amount

of training they receive and the length of time they communicate for. It is also likely that

a pair of participants will not infer identical category boundaries, resulting in difficulty

classifying nonprototypical members of a given category.

4.2.4. Emergence of sublexical structure
The results for general structure are shown in Fig. 8E. Structure emerged very rapidly

and remained high over the generations (L = 1,755, m = 4, n = 11, p = .007). Further-

more, Fig. 8F reveals that sublexical structure is present in Chains J and L, peaking at

around Generation 6. To take one example, the language at Generation 6 in Chain L

comprises five main units: ba, da, fa, ma, and piku. In nearly all cases, two or three of

these units will be combined together to create a word. The way in which the words map

onto the meaning space is shown in Fig. 9. Due to the large number of words, each Voro-

noi cell in the plot has been labeled to make the system easier to comprehend.

The pattern that immediately stands out is the tendency for labels represented by

orange–yellow to cluster on the right-hand side of the plot. These triangles are labeled

with words containing piku in initial and final position. There is also a clustering of reds

and pinks corresponding to words containing piku in second or final position only. When

piku occurs only once in the word, it usually indicates triangles that are small or some-

what thin (e.g., bapiku, dapiku, fapiku, mapikuba, fadapiku). When a word begins and

ends with piku, it will usually refer to a very thin triangle with little area (e.g., piku-
fapiku, pikumapiku, pikumidpiku). In fact, the three thinnest triangles are simply labeled

pikupiku. These results suggest that reduplication, a common cross-linguistic phenomenon

(Moravcsik, 1978), may play in role in intensifying meaning, perhaps through an iconic

principle (double the piku corresponds to double the thinness; cf. Regier, 1998). Words

with da in first position usually refer to triangles which are large and open (e.g., dababa,
dabafa, damafa). However, when da occurs in second position, it often indicates that the

triangle lies on the right-hand side of the bounding box (e.g., fadaba, fadama, fadapiku,
madada, madama). Finally, words with ma in first position often correspond to triangles

whose orienting spots point to the top-left corner of the bounding box (e.g., madafa,
mafaba, mamada, mapikufa). However, these patterns are probabilistic; for each rule,

exceptions can be identified.

Perhaps more interestingly, in many words, there appear to be meaningful subparts

combined with nonmeaningful subparts. For example, the meanings of fa and ma in the

words pikufapiku and pikumapiku are unclear. These subparts may be morphological resi-

due like that found in cranberry morphs. Cranberry morphs are a class of morpheme that,

for a given language, occur in only one word; as such, it is difficult to assign meaning to

them without circular reference back to the word itself, calling into question the meaning

of the term morpheme (traditionally, the smallest unit of meaning; see Aronoff, 1976,

Chapter 2 for discussion of this issue). The classic example is the cran in the word cran-
berry, which has no independent meaning; instead it serves to distinguish cranberries

from other types of berry. Similarly, the fa and ma in pikufapiku and pikumapiku may
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express the idea, “I’m of the type piku...piku, but slightly different in a way I won’t

explicitly specify.” For instance, the fa type of piku...piku is slightly longer and thinner

than the ma type, but this correspondence does not appear to be productive across the

language as a whole.

4.2.5. Sound symbolism
Fig. 8G shows levels of shape-based sound symbolism, which are very strong and tend

to emerge early in the chains. This is likely because the pair of participants can rely on a

shared, implicit understanding of common sound-symbolic patterns to more accurately

communicate with each other.

4.2.6. Summary of Experiment 3
Introducing communication created a natural pressure for participants to be expressive.

Expressivity remained higher than Experiment 1 and comparable to Experiment 2.

Despite this, the learnability of the languages also remained high. Participants in at least

two of the chains managed the pressures for expressivity and learnability by utilizing

Fig. 9. Categorical structure of the meaning space at Generation 6 in Chain L. The plot on the left shows

how the meaning space is discretized by the words in the language: Similarity in position represents similar-

ity in meaning; similarity in color represents similarity in word form. On the right, all triangles in the static

set are grouped by the word used to describe them.
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string-internal structure that leverages the structure in the meaning space and sound-sym-

bolic associations. Thus, in this experiment, where there was a pressure to maintain the

diversity of signals due to the natural pressure from expressivity in addition to the pres-

sure for learnability associated with transmission, sublexical structure emerged in addition

to the general categorical structure observed in the previous experiments.

5. Discussion

In the Introduction, we claimed that our meaning space is a useful model of the natural

world because the space of triangles is vast, continuous, and open-ended, properties that

are present in objects that occur in the real world. For example, the vast set of items

referred to by the English word cup forms a conceptual category that has fuzzy bound-

aries with neighboring concepts, such as bowl, glass, and pitcher (Labov, 1973). The

dimensions of the conceptual space in which cups are represented may be either discrete

(e.g., the presence or absence of a handle) or continuous (e.g., its size or shape). Simi-

larly, our space of triangles potentially has both discrete (e.g., the quadrant in which the

triangle is located) and continuous (e.g., the size or rotation of the triangle) dimensions

with boundaries that are not well defined. Furthermore, our participants are unlikely to

have strong preconceptions about how the space of triangles should be discretized. While

geometrical terminology exists to describe the shape of triangles (equilateral, isosceles,

and scalene) and their angles (acute, obtuse, and right-angled), these terms are not partic-

ularly useful in the context of our experimental paradigm, since they discretize the space

of triangles based on artificial mathematical properties rather than naturally perceived fea-

tures.

In Experiment 1, the languages that emerged discretized the meaning space into a

small number of categories. Although the precise boundaries between categories varied

from one chain to the next, the categories typically encoded the shape and size of the tri-

angles; other features that could have been encoded—location or rotation in the plane—
tended to be disregarded by the participants (see also Section 2 of Appendix S2 in the

supplementary material). In fact, the na€ıve raters broadly responded to the space in the

same way, rating the dissimilarity between triangles based on their shape and size proper-

ties (as evidenced by the dimensions of the MDS space). This is congruent with Landau,

Smith, and Jones (1988), who showed that, when learning words, both children and adults

are biased toward the shape of stimuli over their color, texture, or size. The process of

collapsing categorical distinctions was taken to the extreme in one of the chains where a

single word was used for all triangles by the final two generations. The process of col-

lapsing categories is a valid strategy for maximizing compressibility (and therefore learn-

ability), but the emergent languages in Experiment 1 were not expressive and would

therefore be ill-suited to a world where one needed to reliably discriminate referents.

In Experiment 2, we placed a limit on the number of times a word could be reused,

imposing an artificial expressivity pressure on the languages. This was intended to be

equivalent to the pressure imposed in Kirby et al.’s (2008) second experiment. While the
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number of unique strings remained high in Experiment 2, there was no evidence of the

sublexical structure one would expect to find in a compositional system. In fact, the large

amount of variation within each language even prevented stabilization on a set of cate-

gories in the meaning space. This result is strikingly different from the results reported

by Kirby et al. (2008), who observed robust compositional structure under such a pres-

sure. One explanation for this could be that, when the experimenter provides participants

with a structured meaning space with unambiguous internal boundaries, single partici-

pants can simply transfer part of the meaning space structure onto the signals, cumula-

tively giving rise to compositional systems over generational time. In contrast, when

participants are presented with an unstructured meaning space, as is the case here, the

process of deriving structured signals becomes nontrivial. That being said, the artificial

pressure used here is slightly different from that used by Kirby et al. (2008): The pressure

involves direct instruction to participants—asking them to use different words when an

arbitrary limit is reached—and does not maintain a one-to-one mapping between signal

and meaning (a signal can map to up to three meanings in this experiment). The effects

of such subtle differences are unclear and could be the subject of future work.

In Experiment 3, we added communication, which acts as a natural pressure for

expressivity. In this experiment, each generation consisted of communicating participants

who had the shared goal of maximizing their communicative accuracy. To achieve this, a

language would be required that could encode a sufficient number of feature distinctions

in order for the matching participant to correctly determine the target triangle. Like

Experiment 2, expressivity remained high, but, unlike Experiment 2, the learnability of

the languages also remained comparatively high and our measure of structure revealed

that string-internal structure was present in two of the four chains. Thus, in this experi-

ment, where there was a natural pressure to maintain a diverse set of signals, sublexical

structure emerged in addition to the categorical structure observed in Experiment 1.

Nevertheless, it is difficult to describe the emergent sublexical structure as composi-

tional, at least in terms of how compositionality is traditionally defined. A standard, the-

ory-neutral definition of compositionality states that, “the meaning of a complex

expression is determined by its structure and the meanings of its constituents” (Szab�o,
2013). However, in our qualitative analysis of the emergent languages, it proved difficult

to write simple grammars that could describe how to create composite strings with com-

posite meanings because many of the mappings between form and meaning were highly

probabilistic. In addition, in the exit questionnaire, many of our participants were unable

to describe how the languages worked, suggesting instead that there were weak statistical

tendencies in how form mapped onto meaning; one participant (Chain I, Generation 8,

Subject A) remarked, “I think we had vague ideas of the template for each word, but we

were pretty inconsistent.”

However, this is precisely how the lexicons of natural languages work. While polymor-

phemic words are compositional (either through inflection, washed = wash + -ed, or

derivation, happiness = happy + -ness), monomorphemic words cannot be decomposed

into smaller meaningful units. Furthermore, the extent to which polymorphemic words

are compositional is also questionable. For example, Aronoff (1976, 2007) takes the view
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that lexemes, even polymorphemic ones, are largely idiosyncratic. Sentences need to be

highly compositional to provide language with its productivity, and the production of sen-

tences is certainly a generative process, leading to combinations of words that have never

been uttered before (although cf. Wray & Perkins, 2000). In contrast, the lexicon is stored

in memory and many polymorphemic words have idiosyncratic meanings that have

drifted from the sum of the parts from which they were originally derived. Aronoff there-

fore views polymorphemic lexemes as being only weakly compositional. While Aronoff’s

position may be a radical alternative to the classic view, it provides an alternative per-

spective on compositionality (or lack thereof) at the level of the lexeme.

The second linguistic property relevant to our results is de Saussure’s (1959) arbitrari-
ness of the sign, which states that the relationship between form and meaning is arbitrary

and established only by convention among language users. In the context of language

evolution, the importance of the arbitrariness of the sign was further solidified by Hockett

(1960), who counted it among the design features of language. However, there are nota-

ble exceptions to this principle, which Cuskley and Kirby (2013) break down into con-

ventional and sensory sound symbolism.7

Conventional sound symbolism refers to correspondences between signal and meaning

that are set up by the historical relatedness of words. Such correspondences have been

shown to contribute to the overall systematicity of natural languages using corpus-analyti-

cal techniques in both English (Monaghan, Shillcock, Christiansen, & Kirby, 2014) and

Spanish (Tamariz, 2008). One example of this, which seems likely to contribute to such

statistical correspondences, is phonesthesia—the phenomenon where monomorphemic

words contain correspondences between sound and meaning. For example, English words

beginning with sn- often have meanings relating to the nose (e.g., sneeze, sniff, snore,
snout, etc.). Such words may possess shared etymologies that are obfuscated by the current

state of the language and/or may be adopted precisely because of the correspondences they

share with preexisting words in the lexicon. Bergen (2004) and Hutchins (1998) have

shown in psycholinguistic experiments that the English phonesthemes have a psychologi-

cal reality in the minds of native speakers, suggesting that they should be considered in a

similar light to regular morphemes (see Kwon & Round, 2015, for some discussion).

The second type, sensory sound symbolism, involves correspondences between signal

and meaning motivated by cross-modal or intramodal cognitive biases (see Lockwood &

Dingemanse, 2015, for a review). This type of sound symbolism is particularly relevant

to this study because it has been shown to facilitate word learning (e.g., Monaghan,

Christiansen, & Fitneva, 2011; Nielsen & Rendall, 2012; Nygaard, Cook, & Namy, 2009;

Parault & Schwanenflugel, 2006) and is frequently advanced as an explanation for the

origin of language. We found significant levels of shape-based sound symbolism in the

emergent languages. There was also some evidence for size-based sound symbolism in

some of the languages using a conservative measure of size.

Compositionality and the arbitrariness of the sign are fundamental principles of lan-

guage. However, recent research, briefly reviewed above, is suggestive of a more nuanced

picture of language structure that our results are aligned with: Sound symbolic structure

emerged in all three of our experiments, and, in Experiment 3, we found evidence of sub-
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lexical structure that was not compositional in the traditional sense. In the early genera-

tions of Experiment 3, the pairs of participants shared little common ground, so they

made use of iconic strategies, such as sound symbolism or reduplication. This gave rise

to sublexical structure that peaked in each of the chains between Generation 2 and Gener-

ation 6. This sublexical structure then gradually started to drop away, perhaps—as Aron-

off might argue—because the meanings of the words begin to drift from their

compositional origins as “the sign gravitates to the word” (Aronoff, 1976, p. 14). That is

to say, the words may be compositional early on and then start to lose this property as

they begin to evolve idiosyncratic meanings not predictable from their component parts,

just as in natural language where polymorphemic words cannot always be easily decom-

posed into smaller units of meaning.8 We suggest that this aspect of compositionality, as

well as a more complete understanding of how iterated learning builds morphemes out of

noise—via an interim stage of statistical tendencies—is ripe for future exploration.

6. Conclusion

Our meaning space pushes the boundaries on the experimental study of iterated learn-

ing by avoiding several simplifications that previous experiments have made. Our mean-

ing space is continuous, unstructured by the experimenter, vast in magnitude, and we do

not prompt participants to make a certain number of categorical distinctions. Despite

these features of the experimental setup, our first experiment showed that cultural evolu-

tion can deliver languages that categorize the meaning space under pressure from learn-

ability. These languages had no string-internal structure but showed signs of containing

sensory sound symbolic patterning. In our second experiment, and unlike previous stud-

ies, combining the pressure for learnability with an artificial pressure for expressivity did

not lead to signals with internal structure. In our final experiment, we found that combin-

ing a pressure for learnability with a pressure for expressivity derived from a genuine

communicative task gave rise to languages that use both categorization and string-internal

structure to be both learnable and expressive. Unlike previous work, this emergent struc-

ture was sublexical rather than morphosyntactic, and as such bears similarities to certain

aspects of natural lexicons, combining both conventional and sensory sound symbolism.
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Notes

1. Although we do not test these predictions in this paper, we do use the notion of

semantic convexity in our analyses. This notion states that “a subset C [i.e., a cate-

gory] of a conceptual space S [i.e., a meaning space] is said to be convex if, for all

points x and y in C, all points between x and y are also in C” (G€ardenfors, 2000, p.
69). In other words, the members of a category form a single region of a meaning

space in which it is possible to travel between any two members in a straight line

without leaving the region.

2. The number of possible triangles in a finite space is uncountably infinite given the

set of real numbers. However, the number of triangle stimuli in our meaning space

is limited by the resolution of the display and ultimately by what participants are

able to perceive as distinct. The latter is difficult to precisely quantify, but for the

purpose of this paper, the space can be assumed to be vast in magnitude.

3. The minimum number of insertions, deletions, and substitutions that must be made

to one string to transform it into another. The distance is normalized by dividing

by the length of the longer string.

4. Correlation between the original dissimilarity ratings and the corresponding Eucli-

dean distances in MDS space: .83. Stress-1 value: .25.

5. The denominator in Eq. 2 is the upper bound on the area of a triangle of given

perimeter. When the ratio is 1, the triangle has maximum area given its perimeter

and is therefore equilateral; as the ratio approaches 0, the triangle becomes increas-

ingly thin and pointed.

6. Square root of the sum of squared distances from the centroid of the triangle to its

vertices.

7. Cf. Dingemanse, Blasi, Lupyan, Christiansen, and Monaghan (2015), who refer to

these notions under the terms “systematicity” and “iconicity.”

8. For example, the meaning of reduce is not predictable from re- and -duce, despite
the fact that these morphemes appear in other English words: receive, refer, repel;
deduce, induce, produce (Aronoff, 1976). However, the Latin etymology of these

words indicates that they were indeed compositional in the past: reducere = to lead
back, referre = to carry back, repellere = to drive back, etc.

References

Abbott, E. A. (1884). Flatland: A romance of many dimensions. London: Seeley.
Ahlner, F., & Zlatev, J. (2010). Cross-modal iconicity: A cognitive semiotic approach to sound symbolism.

Sign Systems Studies, 38, 298–348.
Aronoff, M. (1976). Word formation in generative grammar. Cambridge, MA: MIT Press.

Aronoff, M. (2007). In the beginning was the word. Language, 83, 803–830. doi:10.1353/lan.2008.0042
Bergen, B. K. (2004). The psychological reality of phonaesthemes. Language, 80, 290–311. doi:10.1353/

lan.2004.0056

918 J. W. Carr et al. / Cognitive Science 41 (2017)

http://dx.doi.org/10.1353/lan.2008.0042
http://dx.doi.org/10.1353/lan.2004.0056
http://dx.doi.org/10.1353/lan.2004.0056


Bookstein, F. L. (1991). Morphometric tools for landmark data: Geometry and biology. Cambridge, UK:

Cambridge University Press. doi:10.1017/CBO9780511573064

Borg, I., & Groenen, P. J. F. (2005). Modern multidimensional scaling: Theory and applications (2nd ed.).

New York, NY: Springer-Verlag. doi:10.1007/0-387-28981-X

Christiansen, M. H., & Chater, N. (2008). Language as shaped by the brain. Behavioral and Brain Sciences,
31, 489–558. doi:10.1017/S0140525X08004998

Cuskley, C., & Kirby, S. (2013). Synesthesia, cross-modality, and language evolution. In J. Simner & E. M.

Hubbard (Eds.), The Oxford handbook of synesthesia (pp. 869–899). Oxford, UK: Oxford University

Press. doi:10.1093/oxfordhb/9780199603329.013.0043

Dingemanse, M., Blasi, D. E., Lupyan, G., Christiansen, M. H., & Monaghan, P. (2015). Arbitrariness,

iconicity, and systematicity in language. Trends in Cognitive Sciences, 19, 603–615. doi:10.1016/

j.tics.2015.07.013

Galantucci, B. (2005). An experimental study of the emergence of human communication systems. Cognitive
Science, 29, 737–767. doi:10.1207/s15516709cog0000_34

G€ardenfors, P. (2000). Conceptual spaces: The geometry of thought. Cambridge, MA, MIT Press.

Giordano, B. L., Guastavino, C., Murphy, E., Ogg, M., Smith, B. K., & McAdams, S. (2011). Comparison of

methods for collecting and modeling dissimilarity data: Applications to complex sound stimuli.

Multivariate Behavioral Research, 46, 779–811. doi:10.1080/00273171.2011.606748
Hockett, C. F. (1960). The origin of speech. Scientific American, 203, 88–96.
Horner, V., Whiten, A., Flynn, E., & de Waal, F. B. M. (2006). Faithful replication of foraging techniques

along cultural transmission chains by chimpanzees and children. Proceedings of the National Academy of
Sciences of the USA, 103, 13878–13883. doi:10.1073/pnas.0606015103

Hurford, J. R. (1989). Biological evolution of the Saussurean sign as a component of the language

acquisition device. Lingua, 77, 187–222. doi:10.1016/0024-3841(89)90015-6
Hutchins, S. S. (1998). The psychological reality, variability, and compositionality of English phonesthemes

(Doctoral dissertation). Available at ProQuest Dissertations and Theses database (UMI No. 9901857).

Kay, P., Berlin, B., Maffi, L., Merrifield, W. R., & Cook, R. (2009). The world color survey. Stanford, CA:
Center for the Study of Language and Information.

Kemp, C., & Regier, T. (2012). Kinship categories across languages reflect general communicative

principles. Science, 336, 1049–1054. doi:10.1126/science.1218811
Kirby, S. (2002). Learning, bottlenecks and the evolution of recursive syntax. In T. Briscoe (Ed.), Linguistic

evolution through language acquisition: Formal and computational models (pp. 173–203). Cambridge,

UK: Cambridge University Press. doi:10.1017/CBO9780511486524.006

Kirby, S. (2007). The evolution of meaning-space structure through iterated learning. In C. Lyon, C. L.

Nehaniv, & A. Cangelosi (Eds.), Emergence of communication and language (pp. 253–267). London:

Springer-Verlag. doi:10.1007/978-1-84628-779-4_13

Kirby, S., Cornish, H., & Smith, K. (2008). Cumulative cultural evolution in the laboratory: An experimental

approach to the origins of structure in human language. Proceedings of the National Academy of Sciences
of the USA, 105, 10681–10686. doi:10.1073/pnas.0707835105

Kirby, S., Tamariz, M., Cornish, H., & Smith, K. (2015). Compression and communication in the cultural

evolution of linguistic structure. Cognition, 141, 87–102. doi:10.1016/j.cognition.2015.03.016
K€ohler, W. (1929). Gestalt psychology. New York: Liveright.

Kovic, V., Plunkett, K., & Westermann, G. (2010). The shape of words in the brain. Cognition, 114, 19–28.
doi:10.1016/j.cognition.2009.08.016

Krippendorff, K. (1970). Estimating the reliability, systematic error and random error of interval data.

Educational and Psychological Measurement, 30, 61–70. doi:10.1177/001316447003000105
Kwon, N., & Round, E. R. (2015). Phonaesthemes in morphological theory. Morphology, 25, 1–27.

doi:10.1007/s11525-014-9250-z

Labov, W. (1973). The boundaries of words and their meanings. In C.-J. N. Bailey & R. W. Shuy (Eds.), New
ways of analyzing variation in English (pp. 340–373). Washington, DC: Georgetown University Press.

J. W. Carr et al. / Cognitive Science 41 (2017) 919

http://dx.doi.org/10.1017/CBO9780511573064
http://dx.doi.org/10.1007/0-387-28981-X
http://dx.doi.org/10.1017/S0140525X08004998
http://dx.doi.org/10.1093/oxfordhb/9780199603329.013.0043
http://dx.doi.org/10.1016/j.tics.2015.07.013
http://dx.doi.org/10.1016/j.tics.2015.07.013
http://dx.doi.org/10.1207/s15516709cog0000_34
http://dx.doi.org/10.1080/00273171.2011.606748
http://dx.doi.org/10.1073/pnas.0606015103
http://dx.doi.org/10.1016/0024-3841(89)90015-6
http://dx.doi.org/10.1126/science.1218811
http://dx.doi.org/10.1017/CBO9780511486524.006
http://dx.doi.org/10.1007/978-1-84628-779-4_13
http://dx.doi.org/10.1073/pnas.0707835105
http://dx.doi.org/10.1016/j.cognition.2015.03.016
http://dx.doi.org/10.1016/j.cognition.2009.08.016
http://dx.doi.org/10.1177/001316447003000105
http://dx.doi.org/10.1007/s11525-014-9250-z


Lakoff, G. (1987). Women, fire, and dangerous things: What categories reveal about the mind. Chicago, IL:
The University of Chicago Press.

Landau, B., Smith, L. B., & Jones, S. S. (1988). The importance of shape in early lexical learning. Cognitive
Development, 3, 299–321. doi:10.1016/0885-2014(88)90014-7

Laskowski, C. (2008). The emergence of a lexicon by prototype-categorising agents in a structured infinite

world. In A. D. M. Smith, K. Smith, & R. Ferrer i Cancho (Eds.), The evolution of language: Proceedings
of the 7th international conference (pp. 195–202). Singapore: World Scientific. doi:10.1142/

9789812776129_0025

Lespinats, S., & Fertil, B. (2011). ColorPhylo: A color code to accurately display taxonomic classifications.

Evolutionary Bioinformatics, 7, 257–270. doi:10.4137/EBO.S7565
Levenshtein, V. I. (1966). Binary codes capable of correcting deletions, insertions, and reversals. Soviet

Physics Doklady, 10, 707–710.
Lockwood, G., & Dingemanse, M. (2015). Iconicity in the lab: A review of behavioral, developmental, and

neuroimaging research into sound-symbolism. Frontiers in Psychology, 6, 1–14. doi:10.3389/

fpsyg.2015.01246

Lupyan, G., Rakison, D. H., & McClelland, J. L. (2007). Language is not just for talking. Psychological
Science, 18, 1077–1083. doi:10.1111/j.1467-9280.2007.02028.x

Malt, B. C., Sloman, S. A., & Gennari, S. P. (2003). Universality and language specificity in object naming.

Journal of Memory and Language, 49, 20–42. doi:10.1016/S0749-596X(03)00021-4
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer

Research, 27, 209–220.
Maurer, D., Pathman, T., & Mondloch, C. J. (2006). The shape of boubas: Sound-shape correspondences in

toddlers and adults. Developmental Science, 9, 316–322. doi:10.1111/j.1467-7687.2006.00495.x
Monaghan, P., Christiansen, M. H., & Fitneva, S. A. (2011). The arbitrariness of the sign: Learning

advantages from the structure of the vocabulary. Journal of Experimental Psychology: General, 140, 325–
347. doi:10.1037/a0022924

Monaghan, P., Shillcock, R. C., Christiansen, M. H., & Kirby, S. (2014). How arbitrary is language?

Philosophical Transactions of the Royal Society B: Biological Sciences, 369, 1–12. doi:10.1098/

rstb.2013.0299

Moravcsik, E. (1978). Reduplicative constructions. In J. H. Greenberg (Ed.), Universals of human language:
Word structure (Vol. 3, pp. 297–334). Stanford, CA: Stanford University Press.

Nielsen, A., & Rendall, D. (2012). The source and magnitude of sound-symbolic biases in processing

artificial word material and their implications for language learning and transmission. Language and
Cognition, 4, 115–125. doi:10.1515/langcog-2012-0007.

Nuckolls, J. B. (1999). The case for sound symbolism. Annual Review of Anthropology, 28, 225–252.
doi:10.1146/annurev.anthro.28.1.225

Nygaard, L. C., Cook, A. E., & Namy, L. L. (2009). Sound to meaning correspondences facilitate word

learning. Cognition, 112, 181–186. doi:10.1016/j.cognition.2009.04.001
Page, E. (1963). Ordered hypotheses for multiple treatments: A significance test for linear ranks. Journal of

the American Statistical Association, 58, 216–230. doi:10.1080/01621459.1963.10500843
Parault, S., & Schwanenflugel, P. (2006). Sound-symbolism: A piece in the puzzle of word learning. Journal

of Psycholinguistic Research, 35, 329–351. doi:10.1007/s10936-006-9018-7
Perfors, A., & Navarro, D. J. (2014). Language evolution can be shaped by the structure of the world.

Cognitive Science, 38, 775–793. doi:10.1111/cogs.12102
Regier, T. (1998). Reduplication and the arbitrariness of the sign. In M. Gernsbacher & S. Derry (Eds.),

Proceedings of the 20th Annual Conference of the Cognitive Science Society (pp. 887–892). Mahwah, NJ:

Lawrence Erlbaum Associates.

Rosch, E. H. (1973). Natural categories. Cognitive Psychology, 4, 328–350. doi:10.1016/0010-0285(73)

90017-0

de Saussure, F. (1959). Course in general linguistics. New York: Philosophical Library.

920 J. W. Carr et al. / Cognitive Science 41 (2017)

http://dx.doi.org/10.1016/0885-2014(88)90014-7
http://dx.doi.org/10.1142/9789812776129_0025
http://dx.doi.org/10.1142/9789812776129_0025
http://dx.doi.org/10.4137/EBO.S7565
http://dx.doi.org/10.3389/fpsyg.2015.01246
http://dx.doi.org/10.3389/fpsyg.2015.01246
http://dx.doi.org/10.1111/j.1467-9280.2007.02028.x
http://dx.doi.org/10.1016/S0749-596X(03)00021-4
http://dx.doi.org/10.1111/j.1467-7687.2006.00495.x
http://dx.doi.org/10.1037/a0022924
http://dx.doi.org/10.1098/rstb.2013.0299
http://dx.doi.org/10.1098/rstb.2013.0299
http://dx.doi.org/10.1515/langcog-2012-0007
http://dx.doi.org/10.1146/annurev.anthro.28.1.225
http://dx.doi.org/10.1016/j.cognition.2009.04.001
http://dx.doi.org/10.1080/01621459.1963.10500843
http://dx.doi.org/10.1007/s10936-006-9018-7
http://dx.doi.org/10.1111/cogs.12102
http://dx.doi.org/10.1016/0010-0285(73)90017-0
http://dx.doi.org/10.1016/0010-0285(73)90017-0


Selten, R., & Warglien, M. (2007). The emergence of simple languages in an experimental coordination

game. Proceedings of the National Academy of Sciences of the USA, 104, 7361–7366. doi:10.1073/

pnas.0702077104

Silvey, C. (2014). The communicative emergence and cultural evolution of word meanings (Unpublished

doctoral dissertation). Edinburgh, UK: University of Edinburgh.

Silvey, C., Kirby, S., & Smith, K. (2013). Communication leads to the emergence of sub-optimal category

structures. In M. Knauff, M. Pauen, N. Sebanz, & I. Wachsmuth (Eds.), Proceedings of the 35th Annual
Conference of the Cognitive Science Society (pp. 1312–1317). Austin, TX: Cognitive Science Society.

Smith, K. (2004). The evolution of vocabulary. Journal of Theoretical Biology, 228, 127–142. doi:10.1016/
j.jtbi.2003.12.016

Smith, K., & Wonnacott, E. (2010). Eliminating unpredictable variation through iterated learning. Cognition,
116, 444–449. doi:10.1016/j.cognition.2010.06.004

Szab�o, Z. G. (2013). Compositionality. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy (Fall

2013 ed.). Available at: http://plato.stanford.edu/entries/compositionality/. Accessed September 27, 2015.

Tamariz, M. (2008). Exploring systematicity between phonological and context-cooccurrence representations

of the mental lexicon. The Mental Lexicon, 3, 259–278. doi:10.1075/ml.3.2.05tam

Thompson, P. D., & Estes, Z. (2011). Sound symbolic naming of novel objects is a graded function. The
Quarterly Journal of Experimental Psychology, 64, 2392–2404. doi:10.1080/17470218.2011.605898

Verhoef, T. (2012). The origins of duality of patterning in artificial whistled languages. Language and
Cognition, 4, 357–380. doi:10.1515/langcog-2012-0019

Winters, J., Kirby, S., & Smith, K. (2015). Languages adapt to their contextual niche. Language and
Cognition, 7, 415–449. doi:10.1017/langcog.2014.35

Wray, A., & Perkins, M. (2000). The functions of formulaic language: An integrated model. Language and
Communication, 20, 1–28. doi:10.1016/S0271-5309(99)00015-4

Xu, J., Dowman, M., & Griffiths, T. L. (2013). Cultural transmission results in convergence towards colour

term universals. Proceedings of the Royal Society B: Biological Sciences, 280, 1–8. doi:10.1098/

rspb.2012.3073

Supporting Information

Additional Supporting Information may be found

online in the supporting information tab for this article:

Appendix S1. Experimental briefs
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larity

Appendix S3. MDS plots for all generations in all

chains

Appendix A: Online dissimilarity rating task

To measure the dissimilarity between pairs of triangles, we conducted an online experi-

ment on the crowdsourcing platform CrowdFlower. A standard rating procedure was

adopted, which is considered to be more reliable than other, more economical methods

(Giordano et al., 2011). We collected dissimilarity ratings for the 1,128 pairs of triangles

in the static set. The pairs of stimuli were randomly divided into 8 subsets of 141 pairs.
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This was repeated 12 times, resulting in 96 subsets, each to be assigned to an individual

participant. We paid a flat rate of $0.50 for each of the 96 participants who completed

the task. To access the task, participants had to correctly answer three simple entry ques-

tions, which evaluated their ability to understand basic English instructions; anyone who

failed to answer these questions correctly was not allowed to enter the task. The partici-

pants were told that they would see pairs of triangles and would have to “rate how simi-

lar the two triangles are” using a slider control. The main part of the task was preceded

by a 1 min familiarization stage in which participants were shown all 48 triangles in the

static set to give them a sense of the maximum and minimum dissimilarity.

On each trial, the pair of triangles were presented side by side in 5009500-pixel

dashed, gray bounding boxes. The slider control was located below the triangles and was

labeled with very similar on one end and very different on the other; the direction of the

scale was determined randomly for each participant. The slider had 1,001 levels of granu-

larity, where 0 is maximally similar and 1,000 is maximally dissimilar. The participant

could not proceed to the next trial until at least 3 s had passed and the slider control had

been moved. After giving a rating, the participant had to press the enter key, which

removed the triangles and slider from the screen, and then click a button labeled next,
which was centered at the top of the screen; this forced the participant to move the

mouse cursor to the top of the screen where it would be approximately equidistant from

all points on the slider on the following trial.

There were six practice trials at the beginning of the experiment and three reliability

trials randomly interspersed among the normal trials (for a total of 150 trials). In reliabil-

ity trials, participants were shown identical triangles and should therefore have rated them

with a low dissimilarity rating; this was included to monitor participants’ reliability. Due

to a browser compatibility issue, a small portion of ratings (5.7%) were not recorded.

After excluding these ratings, an average of 11.32 (SD: 1.48) independent ratings were

collected for each pair of triangle stimuli. The median dissimilarity rating (on the 1,000-

point scale) for reliability trials was 0, suggesting that participants were attending to the

stimuli. Two participants were excluded because their mean ratings of reliability pairs

were > 100.

The remaining 94 participants’ ratings were normalized in [0, 1] such that the ratings

would use the entire width of the scale. The normalized ratings were then averaged

together to produce a mean dissimilarity rating for each pair of triangles. Individual rater

agreement was measured by correlating an individual participant’s ratings with the

corresponding mean dissimilarity ratings for the 94 participants as a whole. Mean rater

agreement was .7 (range: .22–.88). The three participants whose rater agreement was < .4

were then excluded, leaving a total of 91 participants.

The final distance matrix used in the main analysis was produced by averaging

together the normalized ratings for the final 91 participants. There was an average of

10.72 (SD: 1.55) independent ratings per pair. Interrater reliability among the 91 partici-

pants was measured using Krippendorff’s alpha coefficient (Krippendorff, 1970), which is

applicable where multiple raters each rate incomplete but overlapping subsets of the full

data set. The value of this statistic was .41, which is quite low; however, this should not
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be surprising given that participants were not instructed on specifically how to judge the

dissimilarity between triangles, so some diversity in ratings was to be expected.

Appendix B: Dissimilarity judgments between target and selected triangles in
Experiment 3

Unless otherwise noted, this online experiment was identical to that described in

Appendix A above. The 80 participants who took part in Experiment 3 selected the

wrong triangle from the context array a total of 2,653 times. For a more granular measure

of communicative error, we wanted to quantify the dissimilarity between the target and

selected triangles in each of these cases. The 2,653 pairs were randomly divided into 21

subsets (14 subsets of 126 pairs and 7 subsets of 127 pairs). This was repeated 10 times,

resulting in 210 subsets to be assigned to individual participants. We paid a flat rate of

$0.45 for each of the 184 participants who completed the task. There were six practice

trials at the beginning and three reliability trials randomly interspersed among the normal

trials (for a total of 135 or 136 trials).

The median number of independent ratings collected for each pair was 9 (range:

4–10). The median dissimilarity rating for reliability trials was 0. One participant was

excluded because they rated all triangle pairs as having maximum dissimilarity. An addi-

tional 32 participants were excluded because their mean ratings of reliability pairs were

> 100. The remaining 151 participants’ ratings were normalized and averaged together to

produce a mean dissimilarity rating for each pair of triangles. Mean rater agreement was

.69 (range: .36–.87). The three participants whose rater agreement was < .4 were then

excluded, leaving a total of 148 participants. The final dissimilarity ratings used in the

main analysis were produced by averaging together the normalized ratings given by the

final 148 participants. The mean number of independent ratings per pair of triangles was

7.04 (SD: 1.4). Krippendorff’s alpha for interrater reliability was .37.
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