Skip to main content
Log in

A Tale of Four Grammars

  • Published:
Studia Logica Aims and scope Submit manuscript

Abstract

In this paper we consider the relations existing between four deductive systems that have been called “categorial grammars” and have relevant connections with linguistic investigations: the syntactic calculus, bilinear logic, compact bilinear logic and Curry's semantic calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abrusci, V. M. (1991), ‘Phase semantics and sequent calculus for pure Noncommutative Classical Linear Propositional Logic’, The Journal of Symbolic Logic 56,4, 1403-1451.

    Google Scholar 

  2. Abrusci, V. M. (1995), ‘Noncommutative proof nets’ in Girard et al. (eds.), Advances in Linear Logic, Cambridge University Press, Cambridge, 271-296.

    Google Scholar 

  3. Abrusci, V. M. (1996), ‘Lambek calculus, Cyclic Multiplicative-Additive Linear Logic, Noncommutative Multiplicative-Additive Linear Logic: language and sequent calculus’ in Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, Bologna, CLUEB, 21-48.

    Google Scholar 

  4. Abrusci, V. M., and E. Maringelli (1998), ‘A new correctness criterion for cyclic proof nets’, Journal of Logic, Language and Information 7, 449-459.

    Google Scholar 

  5. Ades, A. E., and M. J. Steedman (1982), ‘On the order of words’, Linguistics and Philosophy 4, 517-558.

    Google Scholar 

  6. Ajdukiewicz, K. (1935), ‘Die syntaktische Konnexität’, Studia Philosophica 1, 1-27; Eng. trans. 'syntactic connexion’, in S. McCall (ed.) (1967).

    Google Scholar 

  7. Bar-Hillel, Y. (1953), ‘A quasi-arithmetical notation for syntactic description’, Language 29, 47-58.

    Google Scholar 

  8. Barr, M. (1979), ‘*-Autonomous Categories’, Springer LNM 752, Berlin.

  9. Barr, M. (1996), ‘Autonomous categories, revisited’, Journal of Pure and Applied Algebra 111, 1-20.

    Google Scholar 

  10. Benthem, J. van (1988), ‘The Lambek calculus’, in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 35-68.

    Google Scholar 

  11. Buszkowski, W. (1982), ‘Lambek's Categorial Grammars’, Institute of Mathematics, Adam Mickiewicz University, Poznań, Poland.

    Google Scholar 

  12. Buszkowski, W. (1985), ‘The equivalence of unidirectional Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 31, 308-384.

    Google Scholar 

  13. Buszkowski, W. (1986), ‘Generative capacity of nonassociative Lambek calculus’, Bulletin of Polish Academy of Sciences (Mathematics) 34, 507-516.

    Google Scholar 

  14. Buszkowski, W., W. Marciszewski and J. van Benthem (eds.) (1990), Categorial Grammar, J. Benjamin, Amsterdam.

    Google Scholar 

  15. Casadio, C. (1988), ‘Semantic categories and the development of categorial grammars’ in E. Bach, R. T. H. Oehrle, D. Wheeler (eds.), Categorial Grammars and Natural Language Structures, Reidel, Dordrecht, 95-123.

    Google Scholar 

  16. Casadio, C. (1997), ‘Unbounded dependencies in Non-commutative Linear Logic’, in Proceedings of the Conference Formal Grammar, ESSLLI 1997, Aix en Provence.

  17. Casadio, C. (1999), ‘Minimalism and the logical structure of the lexicon’, in C. Retoré and E. Stabler (eds.), Resource Logics and Minimalist Grammar, ESSLLI99, Utrecht.

  18. Casadio, C. (2001), ‘Non-commutative linear logic in linguistics’, Grammars, 3/4, 1-19.

    Google Scholar 

  19. Casadio, C, and J. Lambek (2001), ‘An algebraic analysis of clitic pronouns in Italian’, in P. de Groote, G. Morrill and C. Retoré, editors, Logical Aspects of Computational Linguistics, 110-124, Springer, Berlin, 2001.

    Google Scholar 

  20. Chomsky, N. (1995), The Minimalist Program, Cambridge, Mass., The MIT Press.

    Google Scholar 

  21. Cockett, J.R.B., and R. A. G. Seely (1997a), ‘Proof theory for full intuitionistic linear logic, bilinear logic, and MIX categories’, Theory and Applications of Categories 3, 85-131.

    Google Scholar 

  22. Cockett, J. R. B., and R. A. G. Seely (1997b), ‘Weakly distributive categories’, Journal of Pure and Applied Algebra 114, 133-173.

    Google Scholar 

  23. Curry, H. B. (1961), ‘Some logical aspects of grammatical structure’, in R. Jacobson (ed.), Structure of Language and its Mathematical Aspects, in AMS Proc. Symposia Applied Mathematics 12, 56-67.

  24. Došen, K., and P. Schroeder-Heister (eds.)(1993), Substructural Logics, Oxford University Press, Oxford.

    Google Scholar 

  25. Eilenberg, S., and S. Mac Lane (1945), ‘General theory of natural equivalences’, Trans. Amer. Math. Soc. 58, 231-294.

    Google Scholar 

  26. Geach, P. T. (1972) ‘A program for syntax’, in D. Davidson and G. Harman (eds.)(1972), Semantics of Natural Language, Reidel, Dordrecht, 483-497.

    Google Scholar 

  27. Girard, J. Y. (1987), ‘Linear logic’, Theoretical Computer Science, 50, 1-102.

    Google Scholar 

  28. Girard, J. Y. (1995), ‘Linear logic: its syntax and semantics’, in Girard et al. (eds.) Advances in Linear Logic, Cambridge University Press, Cambridge.

    Google Scholar 

  29. Grishin, V. N., (1983), ‘On a generalization of the Ajdukiewicz-Lambek system’, Studies in Non-Commutative Logics and Formal Systems, Nauka, Moscow, 315-343.

    Google Scholar 

  30. Harris, Z. (1966), ‘A cycling cancellation-automaton for sentence well-formedness’, International Computation Centre Bulletin 5, 69-94.

    Google Scholar 

  31. Jackendoff, R. (1977), X-bar Syntax: a study of phrase structure, Linguistic Inquiry Monograph 2, The MIT Press, Cambridge, Mass.

    Google Scholar 

  32. Jackendoff, R. (1997), The Architecture of the Language Faculty, Linguistic Inquiry Monograph 28, The MIT Press, Cambridge, Mass.

    Google Scholar 

  33. Kandulski, M. (1988), ‘The equivalence of nonassociative Lambek categorial grammars and context free grammars’, Zeitschr. f. math. Logik und Grund. der Math. 34, 41-52.

    Google Scholar 

  34. Kandulski, M. (1999), ‘Strong equivalence of generalized Ajdukiewicz and Lambek grammars’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 54-69.

  35. Kelly, G. M. (1972), ‘Many-variable functorial calculus I’, in S. Mac Lane (ed.), Coherence in Categories, Springer LNM 281.

  36. Lamarche, F., and C. Retoré (1996), ‘Proof nets for the Lambek calculus — an overview’, in V. M. Abrusci and C. Casadio (eds.), Proofs and Linguistic Categories: Proceedings 1996 Roma Workshop, CLUEB, Bologna, 241-262.

    Google Scholar 

  37. Lambek, J. (1958), ‘The mathematics of sentence structure’, American Mathematical Monthly 65, 154-70.

    Google Scholar 

  38. Lambek, J. (1993), ‘From categorial grammar to bilinear logic’, in Došen et al. (eds.), 207-237.

  39. Lambek, J. (1995a), ‘Cut elimination for classical bilinear logic’, Fundamenta Informaticae 22, 55-67.

    Google Scholar 

  40. Lambek, J. (1995b), ‘Bilinear logic in algebra and linguistics’, in Girard et al. (eds.), Advances in Linear Logic, Cambridge, Cambridge University Press, 43-60.

    Google Scholar 

  41. Lambek, J. (1999), ‘Type grammars revisited’, in A. Lecomte, F. Lamarche and G. Perrier (eds.), Logical Aspects of Computational Linguistics, Springer LNAI 1582, 1-27.

  42. Lambek, J. (2000), ‘Pregroups: a new algebraic approach to sentence structure’, in C. Martí n-Vide and G. Paun (eds.), Recent Topics in Mathematical and Computational Linguistics, Editura Academici Române, Bucharest.

    Google Scholar 

  43. Lambek, J. (2001), ‘Type grammars as pregroups’, Grammars 4, 21-39.

    Google Scholar 

  44. Lecomte, A. and C. Retoré (1995), ‘Pomset logic as an alternative to categorial grammar’, in Proceedings of the Conference on “Formal Grammar”, ESSLLI 1995, Barcelona.

  45. McCall, S. (ed.) (1967), Polish Logic, Clarendon Press, Oxford.

    Google Scholar 

  46. Moortgat, M. (1988), Categorial Investigations. Logical and linguistic aspects of the Lambek calculus, Foris, Dordrecht.

    Google Scholar 

  47. Moortgat, M. (1997), ‘Categorial Type Logics’, in J. van Benthem and A. ter Meulen (eds.), Handbook of Logic and Language, Elsevier, Amsterdam, 93-177.

    Google Scholar 

  48. Morrill, G. (1994), Type Logical Grammar, Kluwer, Dordrecht.

    Google Scholar 

  49. Morrill, G. (1998), ‘Incremental processing and acceptability’, Report de recerca, Universitat Politecnica de Catalunia.

  50. Pentus, M. (1993), ‘Lambek grammars are context free’, Proceedings 8th LICS Conference, 429-433.

  51. Pentus, M. (1997), ‘Product-free Lambek calculus and context-free grammars’, Journal of Symbolic Logic 62, 648-660.

    Google Scholar 

  52. Retoré, C. (ed.) (1997), Logical Aspects of Computational Linguistics, First International Conference LACL '96, Lectures Notes in Artificial Intelligence, Springer, Berlin.

    Google Scholar 

  53. Roorda, D. (1991), Resource Logics: proofs theoretical investigations, Ph.D. dissertation, Univ. van Amsterdam.

  54. Yetter, D. N. (1990), ‘Quantales and (non-commutative) linear logic’, Journal of Symbolic Logic 55, 41-64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casadio, C., Lambek, J. A Tale of Four Grammars. Studia Logica 71, 315–329 (2002). https://doi.org/10.1023/A:1020564714107

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020564714107

Navigation