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A Theorem of Ludwig Revisited
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Using a recent result of Busch and Gudder, we reconsider a theorem of Ludwig
which allows one to identify a class of effect automorphisms as the symmetry
transformations in quantum mechanics.

I propose that we embark on a study of the structure of science��
its theories and models��in itself. The clue, I shall suggest, is this:

at the most basic level of theorizing, sive model construction, lies
the pursuit of symmetry.

Bas van Fraassen, Laws and Symmetry
(Clarendon, Oxford, 1989)

1. INTRODUCTION

The basic structures of quantum mechanics are coded in two sets, the set
of states S and the set of effects E, and in the duality between them,
S_E % (T, E ) [ tr[TE ] # [0, 1], with an interpretation that the number
tr[TE ] is the probability for the effect E in the state T.4 Both of these sets
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are equipped with natural physically relevant structures. For the purposes
of this paper it is enough to recall only the convex structure of the set of
states (if T1 , T2 # S, 0�w�1, then wT1+(1&w) T2 # S), which reflects the
possibility of mixing states into new states, and the =-order structure of E,
which is directly related to the possibility of comparing effects in terms of
their probabilities: for any E, F # E, E�F if and only if tr[TE ]�tr[TF ]
for all T # S, and for each E # E there is a unique E= # E such that
tr[TE ]+tr[TE=]=1 for all T # S. (Clearly, E==I&E ). In the =-order
structure of E the set D of projection operators appears as a distinguished
subset of E: for any E # E, E2=E if and only if the greatest lower bound
of E and E= exists and equals to the zero effect, that is, E 7 E==O. The
=-order structure of E gives D the structure of a complete orthocomple-
mented lattice.

The above quoted structures of S, E, and D, lead to the following
notions of automorphisms.

Definition 1. A function s: S � S is a state automorphism if

(1) s is a bijection,

(2) s(wT1+(1&w) T2)=ws(T1)+(1&w) s(T2) for all T1 , T2 # S,
0�w�1.

Definition 2. A function e: E � E is an effect =-order automorphism
if

(1) e is a bijection,

(2) for all E, F # E, E�F � e(E )�e(F ),

(3) e(E=)=e(E )= for all E # E.

Definition 3. A function d: D � D is a D-automorphism if

(1) d is a bijection,

(2) for all D1 , D2 # D, D1�D2 � d(D1)�d(D2),

(3) d(D=)=d(D)= for all D # D.

The sets Aut(S), Aut(E), and Aut(D) of all state automorphisms, effect
=-order automorphisms, and D-automorphisms form groups with respect
to the composition of functions. These groups are among the several
natural automorphism groups of quantum mechanics on which the theory
of symmetry in quantum mechanics can be based. In a recent paper(3) we
have investigated some of these groups, leaving aside the group Aut(E)
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which was already investigated in great detail in Sec. 5.5 of the mono-
graph(2) of Ludwig. Ludwig's Theorem V.5.21 is the key result in showing
that the groups Aut(S), Aut(E), and Aut(D) are isomorphic, and therefore
provide equivalent formulations of the notion of symmetry in quantum
mechanics. Ludwig's proof is, however, rather complicated and it contains
an unnecessary dimension restriction. The purpose of this paper is to offer
in the form of Lemma 3 a simplified proof of this crucial result with a
proper dimension requirement.

2. A THEOREM OF LUDWIG REVISITED

The set D of projections is a subset of E. Thus it is natural to consider
the restriction e|D on D of an effect automorphism e # Aut(E). One gets:

Lemma 1. The function Aut(E) % e [ e|D # Aut(D) is a group homo-
morphism.

Proof. Let e # Aut(E). Then for any E, F, G # E, G is a lower bound
of E and F if and only if e(G) is a lower bound of e(E ) and e(F ). Since D
consists exactly of those effects E # E for which O is the only lower bound
of E and E= one thus has e(D)�D. Clearly, (e1 b e2)|D=e1| D b e2 |D and
e&1| D=(e| D)&1. g

The homomorphism of Lemma 1 is, in fact, injective whenever the
dimension of the Hilbert space is, at least, two. We shall prove this result,
which is due to Ludwig (Ref. 2, Theorem 5.21, p. 226), using the following
characterization of effects.(1) Here P denotes the set of one dimensional
projections.

Lemma 2. For any E # E,

E= �
P # P

(E 7P)= �
P # P

*(E, P) P (1)

where

*(E, P) :=sup[# # [0, 1] | #P�E ]

In fact, *(E, P)=max[# # [0, 1] | #P�E ], and if . # H, &.&=1, is such
that P.=., then *(E, P)=&E&1�2.&&2, whenever . # ran(E 1�2), whereas
*(E, P)=0, otherwise.
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Lemma 3. If dim(H)�2, then the function Aut(E) % e [ e|D #
Aut(D) is injective.

Proof. It suffices to show that if e # Aut(E) is such that e(D)=D, for
all D # D, then e is the identity function. Therefore, assume that e(D)=D,
for all D # D. Then, in particular, e(P)=P, for all P # P. Thus, for any
# # [0, 1], P # P, e(#P)�e(P)=P, so that

e(#P)={(#, P) P (2)

for some {(#, P) # [0, 1]. The proof now consists of showing that, for any
# # [0, 1] and for any P # P, {(#, P)=#. If this is the case, then, for any
E # E,

e(E )= �
P # P

e(*(E, P) P)

= �
P # P

{(*(E, P), P) P

= �
P # P

*(E, P) P

=E

and we are through. We proceed in three steps.

Step 1. Let E # E, P # P. Then E 7 P=*(E, P) P, so that e(E 7P)=
e(*(E, P) P)={(*(E, P), P) P. On the other hand, since e preserves the
order and is assumed to have the property e(P)=P, we also get
e(E 7 P)=e(E) 7 e(P)=e(E) 7 P=*(e(E), P) P. This shows that

{(*(E, P), P)=*(e(E), P) (3)

for any E # E, P # P.

Step 2. We next show that the function { does not depend on P, that
is,

{(#, P)={(#) (4)
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for each # # [0, 1], P # P. Clearly {(0, P)=0 and {(1, P)=1 for all P # P.
Thus, consider a fixed 0<#<1 and let P, Q # P be such that QP{O.
Define

+=
1&#

1&#(1&tr[PQ])
(5)

Observe that 1&#�+<1 and define E :=I&+Q. Then ran(E1�2)=H, so
that, by Lemma 2,

*(E, P)=
1

tr[E&1P]
=

+&1
+(1&tr[QP])&1

=#

Hence, due to (3),

{(#, P)=*(e(E ), P) (6)

On the other hand e(E )=I&{(+, Q) Q and again we have ran(e(E )1�2)
=H, so that,

*(e(E ), P)=
1

tr[e(E )&1 P]
=

{(+, Q)&1
{(+, Q)(1&tr[QP])&1

(7)

Comparing (6) and (7) we have

{(#, P)=
{(+, Q)&1

{(+, Q)(1&tr[QP])&1

From (5) we get

(1&tr[PQ])=
++#&1

+#

hence

{(#, P)=
#+[{(+, Q)&1]

{(+, Q)(++#&1)&#+
(8)

We then see that {(#, P) fulfills Eq. (8), where Q is any 1-dimensional pro-
jection such that tr[PQ]{0 and + is defined by (5). On the other hand,
+ depends only on # and tr[PQ]. Given P1 , P2 # P, one can find Q # P
such that tr[P1Q]=tr[P2 Q]{0 so that (8) implies {(#, P1)={(#, P2) and
this proves that { does not depend on P. Equation (4) is thus established.
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Step 3. Now suppose that dim H�2. It is clear from (5) that if
1&#�:<1, then we can choose P, Q # P such that +=:. Hence (8) gives

{(#)=
#:[{(:)&1]

{(:)(:+#&1)&#:
(9)

for all : such that 1&#�:<1. Choosing :=1&# in (9), since # # (0, 1) is
arbitrary, we obtain

{(#)=1&{(1&#) (10)

for any # # (0, 1). Observe now that (9) can be rewritten as

{(#)=
a(:) #

1+#(a(:)&1)
1&#�:<1 (11)

with a(:)=[:�(:&1)][({(:)&1)�{(:)]. We then obtain from (11) that

a(:)=
1&#

#
{(#)

1&{(#)
1&#�:<1

from which we conclude that a(:) is a constant. By comparison with (10)
we see that in fact a(:)=1 so that {(#)=# for all # # [0, 1]. This concludes
the proof. g

3. THE GROUP ISOMORPHISMS

To show that the groups Aut(S), Aut(E), and Aut(D) are isomorphic
we need some further results. We recall first the following proposition
(Ref. 3, Prop. 4.9), which is an application of the Gleason theorem.

Proposition 1. Let dim(H)�3. Given d # Aut(D) there is a unique
sd # Aut(S) such that sd (P)=d(P) for all P # P. Moreover, the map
Aut(D) % d [ sd # Aut(S) is an injective group homomorphism.

Consider next the set U _ U� of unitary and antiunitary operators. It
is a group and its kernel is set T=[zI | z # C, |z|=1]. The quotient space
7=U _ U� �T, with the elements [U]=[U$ # U _ U� | U$=zU for some
z # C, |z|=1], is a group with the multiplication [U1][U2]=[U1U2]. Let
_ # 7 and U # U _ U� be such that U # _. Define the function s_ : S � S, by
s_(T ) :=UTU*. Clearly, s_ is well defined and it is an element of Aut(S).
Moreover, it is an easy exercise to confirm that s_1

=s_2
if only if _1=_2 .
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Therefore, the function 7 % _ [ s_ # Aut(S) is an injective group homo-
morphism. The fact that it is also surjective is a formulation of the Wigner
theorem:(3)

Proposition 2. For any s # Aut(S) there is a _ # 7 such that s=s_ .
Hence the function 7 % _ [ s_ # Aut(S) is a group isomorphism.

Finally, define the function e_ : E � E, by e_(E ) :=UEU*. As above,
the function 7 % _ [ e_ # Aut(E) is an injective group homomorphism.

Now suppose that the dimension of the Hilbert space is greater than
two and consider the following diagram.

Aut(E) ww� Aut(D)

7 �wwww Aut(S)

Each arrow in the diagram is an injective group homomorphism. To show
that the groups are isomorphic it suffices to show that the map 7 � 7
obtained by composing the arrows is the identity function. Let _ # 7 and
U # _. Then e_(E )=UEU* and de_(D)=UDU*. By Proposition 1 there is
a unique sde_

# Aut(S) such that sde_
(P)=de_(P)=UPU* for all P # P. Since

any T # S can be expressed in the form T=� wiPi (where the series con-
verges in the trace norm) and the state automorphisms are continuous
(in the trace norm) we then have sde_

(T )=� wi sde_
(Pi )=� wi UP i U*=

UTU*=s_(T ) for all T # S. Hence sde_
=s_ and the proof is complete

because the map of Proposition 2 is an isomorphism.
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