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Abstract In the health informatics era, modeling longitudinal data remains
problematic. The issue is method: health data are highly nonlinear and dy-
namic, multilevel and multidimensional, comprised of multiple major/minor
trends, and causally complex – making curve fitting, modeling and prediction
difficult. The current study is fourth in a series exploring a case-based density
(CBD) approach for modeling complex trajectories; which has the following ad-
vantages: it can (1) convert databases into sets of cases (k dimensional vectors)
based on a set of bio-social variables, called traces; (2) compute the trajectory
(velocity vector) for each case, based on (3) key traces from the k dimensional
profile; (4) construct a theoretical map to explain these traces; (5) use vector
quantization (i.e., k-means, topographical neural nets) to longitudinally clus-
ter case trajectories into major/minor trends; (6) employ genetic algorithms
and ordinary differential equations to create a microscopic (vector field) model
(the inverse problem) of these trajectories; (7) look for complex steady-state
behaviors (e.g., spiraling sources, etc) in the microscopic model; (8) draw from
thermodynamics, synergetics and transport theory to translate the vector field
(microscopic model) into the linear movement of macroscopic densities; (9) use
the macroscopic model to simulate known and novel case-based scenarios (the
forward problem); and (10) construct multiple accounts of the data by linking
the theoretical map and k dimensional profile with the macroscopic, micro-
scopic and cluster models. Given the utility of this approach, our purpose here
is to organize our method (as applied to recent research) so it can be employed
by others.
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1 Introduction

Modeling the nonlinear dynamics of complex health trajectories across time
presents a number of serious challenges for scientific inquiry [6],[7],[8],[17],[18].
The challenge comes in the form of method (both in terms of the complexities
of data and the limitations of conventional techniques).

In terms of data, the challenge is that complex trajectories, be they cohort
or longitudinal data: (1) seldom follow a singular common trend; instead, (2)
they self-organize into multiple major and minor trends; which, (3) when mod-
eled microscopically, are high dynamic and complex – often taking the form of
a variety of complex behaviors – making curve fitting, prediction and control
(for example, health management) very difficult; furthermore (4) these con-
tinuous trends are often a function of different measurements (k dimensional
vectors) on some profile of biomedical-psycho-social factors and (5) the com-
plex set of qualitative interactions and relationships amongst these variables
[6][7][8].

Our last point on data leads to the challenge of technique: (1) while
medicine and health are ultimately about the case – k dimensional vector
profiles – health researchers tend to ignore these complex profiles and the set
of qualitative interactions of which they are comprised; (2) focusing, instead,
on what they deem to be the most salient (and relatively independent) handful
of variables relevant to some outcome of concern; (3) which they model by con-
trolling for the remaining profile of variables; (4) furthermore, they study these
few factors using some form of linear (and often discrete) modeling/statistics;
(5) typically in the search for the most common one or two aggregate trends
[6][7][8].

As a result of this approach, there is a major disconnect between health
data and health research, making it difficult for scientists to do such things as
(1) model the aggregate nonlinear dynamics and complex trajectories of cases
or their densities in continuous time; (2) detect the presence of multiple trends
(i.e., major and minor) across time; (3) identify and map complex steady-state
behaviors (i.e., transient sinks, spiraling sources, periodic orbits); (4) explore
and predict the motion of different health trajectories and time instances; or
(5) link these different trends to the complex k dimensional vectors/profiles
upon which they are based, so that (6) they can construct a multi-level theo-
retical model of their topic of study[4,5,17,18].

While the above disconnect between health data and technique is prob-
lematic, researchers are beginning to ’turn’ to the complexity sciences and
computational modeling and related areas of inquiry – genetic algorithms, dy-
namical systems theory, agent-based modeling, network analysis, differential
equations, control theory, etc – for possible solutions [2]. In regards to this
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’complexity turn,’ we seek to demonstrate the utility of case-based complexity
for modeling complex health trajectories[3].

Case-based complexity combines case-comparative method with the vari-
ous theoretical and methodological tools of the computational and complexity
sciences to advance the modeling of complex (social and health) systems; which
it does by treating complex systems as sets of cases (i.e., k dimensional vec-
tors/profiles)[4,5,17,18]. The platform we created for this approach is called
the SACS Toolkit [4,5,17,18].

The SACS Toolkit is a case based,computationally grounded, mixed meth-
ods framework for modeling complex systems. One of its key strengths – called
a case-based density approach – is its capacity to model the nonlinear dynam-
ics of complex trajectories, particularly in the form of cohort or longitudinal
data[17,18]. To do so, it employs a novel combination of case-comparative
method in conjunction with vector quantization, genetic algorithms, ordinary
differential equations (ODE), Haken’s synergetics, the inverse-forward prob-
lem, and non-equilibrium statistical mechanics, specifically transport theory
and the continuity (advection) partial differential equation (PDE). The result
is a ten-step, multi-level procedure for transforming the nonlinear dynamics of
complex trajectories into cases, clusters and densities[4,5,17,18].

The current study is fourth in a series.[5,17,18] The purpose of the first
three papers was to provide a mathematical outline of our approach [5] and
to work on several key steps, including (1) a technique for fitting an ODE
directly to data and (2) a procedure for using the vector field thus obtained
to simulate the evolution of the distribution of cases (as densities) across time
using the advection PDE[17,18]. Still, the following remains to be done. We
have yet to:

1. assemble our ten steps into a formal outline for others to employ;
2. highlight how the various and multiple outputs of our ten steps go together

to create our multi-level model; and
3. demonstrate the utility of our approach in application to several of our

recent studies.

Hence, we come to the purpose of the current study: we seek to formalize our
case-based density approach, as employed through the SAC Toolkit, in appli-
cation to several of our recent health studies, including a study on allostatic
load [1], public health [6], and international health [18], along with a forth-
coming study on depression and wellbeing [19]. While the last three studies
are all longitudinal, the first is discrete; nonetheless, we will refer to it here,
as it was crucial to developing several of our steps.

2 Modeling Health Trajectories: Cases, Clusters and Densities

Case-based density modeling, as employed through the SACS Toolkit, is a
ten-step, multi-level procedure for studying the nonlinear dynamics of complex
trajectories, the process of which can be summarized as follows:
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2.1 Steps 1 Through 4: Cases, Traces, and Profiles

The purpose of the first four steps is to construct a case-based portrayal of
the topic (complex system) of study by: (1) rethinking the database from a
case-based (as opposed to a variable-based) perspective; (2) computing the
trajectory (velocity vector) for each case, based on (3) an identified set of
traces variables (which we will explain below); and (4) constructing a working
theoretical model to explain the trajectory of these traces.

2.1.1 Step 1

The first step is an epistemological one: it requires a cognitive shift from a
variable-based to a case-based view of the topic (complex system S) of study.
According to case-based complexity, cases are complex profiles comprised of a
set of inter-dependent variables, which are contextually dependent, nonlinear,
dynamic, evolving, self-organizing, emergent, etc ... in short, cases have the
same characteristics as a complex system. Theoretically speaking, then, cases
(as in a cohort or longitudinal study) can be treated and modeled as complex
systems[2,3].

What the case is for any given study, however, can vary significantly. For
example, in a public health study we conducted on a Midwestern county in
the United States [6], our case was a county, which we conceptualized (using
census data) as a set of 20 communities (smaller cases). As such, as shown in
Figure 1, for our study we moved back and forth between Summit County (our
primary case) and its twenty major communities (our more specific cases).

As a second example, in a recent study we conducted on the negative
impact of stress, we treated allostatic load as our primary case [1]. We did
this by conceptualizing it as a complex clinical construct, comprised of a large
number of interdependent biological subsystems, which are represented by an
even larger number of interconnected biomarkers. However, when it came to
our database, allostatic load became more of an abstraction, as we did not
seek to build a single model of this clinical system. Instead, we sought to treat
each of our N=1151 cases as an individualized model. In other words, each
case in our study constituted one possible way that allostatic load manifests
itself in people’s lives; one possible trajectory in the larger state-space of all
possible trajectories, based on the unique way allostatic load self-assembles
itself for each case.

As these two examples illustrate, it is this unique, case-based approach that
distinguishes our method from conventional statistics or conventional mathe-
matical modeling. We begin with the assumption that any complex system of
study requires multiple and different (albeit interconnected) models, as there is
no one trajectory taken by the system’s cases. With this epistemological shift
in thinking established, next the database requires further reconceputalization.

From a case-based complexity perspective, each row in a study’s database
D becomes a complex case ci , where each ci is a k dimensional row vector
ci = [xi1, ..., xik] and where each xij represents a measurement on the profile of
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longitudinal variables for D – what case-based researchers call the case profile.
For example, in our public health study – see Figure 2 – we treated each of
the 20 cases (communities) as a set of measurements on an in-depth profile
(k dimensional row vector) of contextual, compositional and health factors.
Furthermore, these variables were measured at two discrete time points (2000
and 2010). In turn, in a recent international health study, we examined the
longitudinal relationship between per-capita GDP and human longevity rates
(our two profile variables) for 156 countries (each a complex dynamical case)
over the course of 63 years. Data for this model came from the widely used
Gapminder dataset (http://www.gapminder.org/).

The temporal nature of these two examples take us to our next point:
cases ci are not static; instead, they are dynamic and evolving. As such, in
terms of cohort and longitudinal databases D, each case ci in D is, ultimately,
a complex dynamical system ci(j), where j denotes the time instant tj . In
turn, if the trajectories of cases ci change across time/space, so too must
their vector configurations ci = [xi1, ..., xik]. As such, in terms of cohort and
longitudinal studies, D is comprised of a series of ci(j), one for each moment
in time/space tj (discrete or continuous), on which a set of measurements are
taken to construct a particular model of the complex system of study S.

Two examples: First, in a new study we are conducting on depression and
wellbeing, we examined a total of 84 monthly time-stamps, for a total of seven
years worth of trajectory data [19]. Data for this study (N=259 cases) came
from a subsample of the Diamond Prospective Longitudinal Cohort Study, one
of the largest primary care depression cohort studies worldwide. Second, in
our international health study (as mentioned above) we examined the longi-
tudinal relationship between per-capita GDP and human longevity rates for
156 countries over the course of 63 years. In fact, Figure 3 shows a microscopic
model of the trajectories of these countries across time (shown in blue) along
with the model we ’fitted’ to the data (shown in green). The X-axis represents
GDP; and the Y-axis represents life expectancy.

2.1.2 Steps 2 and 3

With the database reconfigured into a case-based framework, the next two
steps are to identify and model the key traces of the system.

The challenge with modeling cohort and longitudinal data is that, given
some complex profile of study, the resulting vector configuration ci = [xi1, ..., xik]
and corresponding vector field are k dimensional and therefore too complex or
dynamic to be accurately modeled [2,16]. As a result, even with a working map
in hand, one rarely has direct access to the actual state of the system studied.
Instead, pace observability and control theory, one studies the system’s state
in a modified form.

Following Byrne and Callaghan [2], we refer to this modified form of the
system as its trace. In other words, while the ultimate modeling goal of case-
base complexity is idiographic analysis, one never fully models the complete
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complexity of a case or set of cases; instead, one only studies their traces,
albeit from a case-based, complex systems perspective!

Theoretically speaking, the trace can be anything measurable that is di-
rectly/indirectly influenced by the actual state of a system. In practice, how-
ever, we find it useful (at least for our case-based density approach) to begin
with the output/dependent variables in a case-based profile. Two reasons:

First, the output is typically what researchers are trying to understand,
model, manage or control. For example, in our study of public health, we
were primarily interested in community-level health outcomes across time (See
Figure 2); and, in our study of international health, the focus was on human
longevity (across time) in each of our 156 countries (See Figure 3).

Nonetheless, once these output traces are explored, one continues onward
to increase the complexity of the study by exploring their intersection with
other key traces – which takes us to the next point.

Second, it provides a useful way to manage the complex causality residing
within the case-based profiles. As we will discuss later, the purpose of Step 10 is
to explore how the traces (as outcomes, outputs, dependent variables) link to,
evolve or change in relationship to other key biological, psychological, social
or ecological traces. For example, in our public health study, we examined
our community-level health outcomes in relation to the compositional and
contextual factors shown in Figure 2; and, in our international health study, we
examined human longevity rates in each country in relation to that country’s
per-capita GDP.

With the traces identified, the next thing is to use these them to compute
the velocity vector for each case. Later, in Steps 5 and 6, we detail the process
of computing the traces. Here we want to provide our rationale for why velocity
vectors are so important to our approach.

A key feature of our approach, mathematically speaking, is our link be-
tween an ’algebraic-based’ definition of cases as k dimensional vectors and a
’calculus-based’ definition of vectors as quantities with direction and magni-
tude. We make this link for several reasons: it allows us to (1) treat cases
as continuous trajectories (traces); (2) compute these continuous trajectories
(traces) as a function of change between time-stampss (something statistics
struggles, at best, to do); (3) examine these changes as a function of discrete or
continuous measures on the k dimensional vector for each case (which brings
in our theoretical model); (4) employ ODEs to explore the rate of change or
velocity of cases (first-order ODE), as well as acceleration (second-order ODE)
if needed; and (5) link steps 1 through 4 with the modeling processes in steps
5 through 10. As such, computing the velocity vector for each case functions
as the main methodological link upon which our approach is based.

2.1.3 Step 4

With the velocity vectors computed, the next step is to construct a working
theory (map) of the topic of study. The purpose of this map is to theorize,
albeit tentatively, how the factors in the case-based profile – as a complex
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system of interacting variables – go together in relation to the set of outcome(s)
being observed; which are treated as trajectories (traces) across time/space.

For example, to arrive at our conceptualization of community health as a
complex system we needed a theoretical map. The result was Figure 4. The
utility of this map is that it gave us an idea of what traces to explore and
how to think about their complex inter-relationships, particularly in relation
to our community health outcomes (which we will discuss later). For example,
looking at the map, one sees the key factors outlined in Figure 2 (compositional
and contextual) as well as some of the key environmental forces we explored
in our study; also one sees the three types of maps we constructed for our
study, including (as we will discuss in Step 10) a social network analysis of the
relationships amongst our 20 communities.

Another example of the importance of a theoretical model is study on
allostatic load. A shown in Figure 5, the utility of this map was that it gave us
an idea of what traces to explore and how to think about their complex inter-
relationships, particularly in relation to various health risk outcomes (which
we will discuss later). Using this map, we worked with context experts to
settle on 20 key biomarkers – each constituting one of the key variables in
our k dimensional profile. We then factor analyzed these 20 biomarkers to
construct a seven-factor solution, as shown in Figure 6. In turn, these seven
factors became our seven main trace variables.

2.2 Step 5: Major and Minor Clusters and Trends

With the theoretical map constructed, the fifth step is to identify the major
and minor trends in the data, based on the traces initially chosen for study.
This step is done using k-means cluster analysis and the topographical neural
net known as the Self-Organizing Map [10][11][13][12]. Our usage of k-means
and the SOM is unique in three important ways:

2.2.1 Knowledge Free Clustering

First, we take a knowledge-free approach to trend identification. Based on the
multiplicity of possible trajectories generated by the theoretical model from
Step 4, we do not make any reductive assumptions about the number of cluster
trajectories or possible major and minor trends in the data. Instead, we strive
to identify these trends first and then model them separately for each trace,
thereby allowing for the creation of multiple models for the same system.

For example, in our study of depression and physical wellbeing, we identi-
fied 18 different cluster trajectories. And, in our public health study, we arrived
at a seven-cluster solution. Finally, in our allostatic load study, we identified
nine clusters, which are shown in Figure 7.

Despite the differences in outcome, in both studies the goal was the same:
to allow the data, through the key traces identified, to interact with, speak to,
temper, impact, disagree with, modify, or corroborate the theoretical model.
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The model that proved the best fit, based on its corroboration with our theo-
retical map, is the one used.

That is not, however, where the search for trends needs to stop. Depending
on how complex the case-based profile under study is, we can go on to iden-
tify sub-trends (and even sub-sub-trends) for any particular cluster, thereby
giving us a hierarchy of models that range from a single model for the entire
database of cases (which will hardly capture any complexity at all) all the way
down to a model for each individual case (which captures, perhaps, too much
complexity).

It is because of our knowledge-free approach to clustering that our method
is a data-driven special case of the inverse-forward problem: we start with data
analysis to identify trends; then we move to and develop the theoretical model
to organize the causal mechanisms for the trends; then we go back to the data
to identify sub-trends if need be and also model the mechanisms identified;
and then back to the theoretical model. As the data grows in size with the
addition of cases or time-stamps, we can repeat the process, hence the method
scales as well.

2.2.2 Longitudinal Clustering

Second, we use vector quantization to engage in longitudinal clustering. We
need to emphasize that Step 5 involves clustering case trajectories; not static
profiles, as is done in traditional clustering. To cluster cases longitudinally, we
treat each time instance as a measure, and the total of time instances/measures
as the longitudinal k dimensional vector profile for each case. In turn, these
trajectories can be combined (appended to one another) so that the cluster
solution is based on similarities in evolution across all of the trace trajectories.
For example, in our study of international health we appended the trajectory
for per-capita GDP with the trajectory for longevity rates for each of the 156
countries in our database.

2.2.3 Clustering to Corroborate

Third, we use k-means and the SOM as a method of corroboration. K-means
is a partitional (as opposed to hierarchical) iterative clustering technique that
seeks a single, simultaneous clustering solution for some proximity matrix. For
k-means, reference vectors are centroids, representing the average for all the
cases in a cluster. The SOM is a topographical artificial neural network that
maps high-dimensional data onto a smaller, three-dimensional space, while
preserving, as much as possible, the complex patterns of relationships amongst
these data. For the SOM, reference vectors are actual points, neurons, which
represent the weighted average of the cases clustering around it. Both k-means
and the SOM are forms of unsupervised learning, as cluster membership is not
known ahead of time.

In terms of a case-based density approach, these methods are used in com-
bination as follows: k-means is used first because it requires that the number
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of centroids be identified ahead of time, based largely on some rationale, even
if tentative or conjectural. As shown in Figure 7, following convention (and as
discussed earlier), the goal of multiple runs is to find a solution that fits the
data well and resonates with our theoretical model, even when exploratory.

Next, the SOM is run. Because the SOM is entirely unsupervised, if it
arrives at a solution similar to the k-means this provides an effective method
of corroboration. The closer the final quantization error and final topographic
error are to zero, the better the fit of the model.

The SOM graphs its cluster solution onto a variety of three-dimensional,
topographical maps. The three we typically use are the u-matrix, eigenvector
map, and components map. On the u-matrix and eigenvector maps, cases most
like one another are graphically positioned as nearby neighbors, with the most
unlike cases placed furthest apart. Both maps are also topographical: valleys,
or darker colored, areas are more similar in profile; while hilly, or brighter
colored areas, are more distinct. The component maps (which we will discuss
in Step 10) visualize how each of the variables (traces) from the complex profile
of study contribute to the final cluster solution and to the positioning of cases
on the u-matrix and eigenvector map.

A good example of this output comes from our study on depression and
physical wellbeing. As Shown in Figure 8, Map A and Map B are graphic
representations of the cluster solution arrived at by the Self-Organizing Map
(SOM) Neural Net, referred to as the U-Matrix. In Figure 8, Map A is the
three-dimensional (topographical) u-matrix: for it, the SOM adds hexagons
to allow for visual inspection of the degree of similarity amongst neighboring
map units; the dark blue areas indicate neighborhoods of cases that are highly
similar; in turn, bright yellow and red areas, as in the upper right corner of
the map, indicate cases that are very different from the rest. Map B is a two-
dimensional version of Map A that allows for visual inspection of how the
SOM clustered the individual cases. Cases on this version of the u-matrix (as
well as Map A) were labelled according to their k-means cluster membership
(the 18 cluster solution we discussed earlier) to see if the SOM arrived at a
similar solution, which (roughly speaking) it did.

2.3 Microscopic and Macroscopic Models

As mentioned in the abstract, to construct our microscopic model (Steps 6
and 7), we employ a combination of genetic algorithms and ODEs; and to
construct our macroscopic model (Steps 8 and 9), we employ the continuity
(advection) PDE in application to the vector field generated by our microscopic
model. As such, before moving on to our next set of steps, a bit of detail on
the mathematics behind them is necessary. Let us start by considering the
following ordinary differential equation (ODE):

ẋ = f(x), x(0) = x0, (1)
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where x ∈ X ⊂ RK is a compact set. We denote the solution of this ODE (1)
by φt(x), starting from the initial condition x. We use this ODE (1) to define
two linear infinitesimal operators, AK : L2(X)→ L2(X) and APF : L2(X)→
L2(X), which are defined as follows:

AKρ = f · ∇ρ,

APF ρ = −∇ · (fρ).

The domains of the above operators are given as follows:

D(AKρ) = {ρ ∈ H1(X) : ρ|Γo
= 0},

D(APF ρ) = {ρ ∈ H1(X) : ρ|Γi
= 0},

where Γo and Γi are the outflow and inflow portions of the boundary ∂X
defined as follows:

Γo = {x ∈ ∂X : f · η > 0},

Γi = {x ∈ ∂X : f · η < 0},

where η is the outward normal to the boundary ∂X. The semigroups cor-
responding to the AK and APF are called as Koopman (Ut) and Perron-
Frobenius (Pt) operators respectively. These operators are defined as follows:

Ut : L2(X)→ L2(X), (Utρ)(x) = ρ(φt(x))

Pt : L2(X)→ L2(X), (Ptρ)(x) = ρ(φ−t(x))

∣∣∣∣∂φt(x)

∂x

∣∣∣∣−1
where | · | denotes the determinant. These semigroups can be shown to satisfy
the following partial differential equations [14]:

∂ρ

∂t
−AKρ = 0, ρ|Γo = 0;

∂ρ

∂t
−APF = 0, ρ|Γi = 0.

Of the two, we use the Perron-Frobenius semigroup and the corresponding
advection PDE. Here, again, at a greater level of detail, is why: although
the solution trajectory φt(x) for each finite dimensional case x ∈ RK (given
f(x)) is, in general, nonlinear, the motion of the density of cases (governed by
the Perron-Frobenius semigroup Pt) is (a) linear and (b) acts on the infinite
dimensional space L2(X). In other words, the advection PDE (2) is solved
by Pt. In turn, Pt functions as a conduit for simulating and watching the
macroscopic evolution of ensembles of trajectories, given the vector field f(x),
which governs the nonlinear microscopic motion of each individual case.

Here, then, are the microscopic and macroscopic models upon which our
approach is based:
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Microscopic model for nonlinear evolution of each case trajectory

⇓
x′ = f(x);x(0) = x0;x ∈ X ⊂ RK

Macroscopic model for the linear evolution of densities of cases

⇓
ρt +∇ · (ρf) = 0; ρ|Γi = 0; ρ(x, 0) = ρ0(x). (2)

2.4 Steps 6 and 7: The Microscopic Model and Steady-State Behaviors

In addition to the mathematics upon which they are based, Step 6 and Step
7 involve a rather complicated set of procedures, which we have outlined in
detail elsewhere. Our goal here is to provide a quick overview of the procedures
involved in completing them. For more details see [17,18].

2.4.1 Identify the Data-Driven Vector Field

In terms of constructing the microscopic model, the form of the vector field
f , which is a part of the ODE (1), is completely unknown. In other words,
we do not have a pre-conceived function for the vector field model. As such –
and for a second time – we employ our knowledge-free approach to modeling:
this time looking for the best fit among polynomials of arbitrary degree using
genetic algorithms. Our attempt to fit a curve to this data-driven vector field
constitutes another of the novel aspects of our approach.

To obtain a vector-field model for the velocities of the traces, we use a
curve fitting algorithm to fit each case trajectory with a smooth curve; which
we then differentiate with respect to time. Our purpose in doing so is to find
the instantaneous (continuous) velocities for the time instants provided by the
data – which we discussed above in Step 2. A discrete velocity vector f(xk) is
thus obtained, situated at each of the cases xk.

2.4.2 Obtaining the Microscopic Model

With this discrete vector field obtained, we then fit a smooth continuous vec-
tor field f(x) of velocities. To do so, we use a genetic algorithm. The utility
of a genetic algorithm is its ’brute force’ and evolving power to fit complex
dynamical databases with a useful ODE model, while (at the same time) pre-
serving its complexity. We choose to fit polynomial vector fields as they are
well known to capture much of complex dynamics and they are dense in most
function spaces that are of practical interest such as L2(X).
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2.4.3 Validity Check

With the above complex, next the ODE (1) is then solved for the initial con-
ditions x0 from the database. Each trajectory from the ODE model, thus
obtained, is compared with the trajectories of the data for error. This process
is repeated, if necessary, after re-clustering any minority trends in a separate
cluster, from the aggregate trajectories. After iterations, a good model of the
major and minor trends of case trajectories in time is thus obtained.

2.4.4 Searching for Complex Steady-State Behaviors

The utility of the microscopic model is that, unlike the cluster model, it is
devoid of cases; constituting, instead, the data-driven space of all possible
trajectories. Equally important, it can be visualized as a movie across all
instantaneous time-stamps in the database. As such, the model can be visually
inspected to identify important steady-state behaviors and to note the manner
in which the trajectories evolve across continuous time, including changes in
velocity.

For example, Figure 9 shows the state-space for our depression and phys-
ical wellbeing study, which included 84 monthly time-stamps across a 7-year
period of time. Ten time-stamps are shown, beginning with four time-stamps
from the first year (3 months, 6, months, 9 months and 12 months) and then
one time-stamp for each subsequent year – each constituting the point at which
new data were collected. Looking at the time-stamps, one sees (1) the emer-
gence of stable spiraling equilibrium points marked in red, which enter the
relevant regions of the state space for time-stamps 3 through 24; (2) an unsta-
ble spiraling equilibrium point appearing and leaving the state space between
time-stamp 36 and 84; and (3) a saddle appearing at time-stamp 84.

Because, in our approach, the ODE that models the evolution of depression
trajectories is non-autonomous ẋ = f(x, t), time t is an independent variable
and hence the vector field changes it nature as time evolves, as seen in the
emergence and disappearance of various steady-state and transient behavior
(such as rifts etc.). This is one of the main advantages of using an ODE
to model the trajectories: both the steady-state and transient behaviors of
trajectories can be studied with time as an independent variable (which allows
for change of these behaviors across time) by using the multiple ODE models
(both autonomous and non-autonomous) that the genetic algorithm fits as
possible explanations of the trajectories from the standpoint of ODEs.

2.5 Steps 8 and 9: The Macroscopic Density Model

With the cluster and microscopic models complete, the next stage is to assem-
ble the macroscopic model, which involves two key steps.
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2.5.1 Simulating the Transport of Densities

First, we take the vector field f from our microscopic model – which is governed
by the ODE – and use the advection PDE to translate it into the macroscopic
motion of case-based densities. In doing so, we add a third level to our ap-
proach, focused on the macroscopic, non-equilibrium properties of the system
as a whole.

Our approach is motivated by thermodynamics [15], where the state of the
system is the characteristic of a density of particles and their properties (as
in the case of temperature or pressure) rather than the individual particles
themselves. As we discussed earlier, the major challenge of modeling longitu-
dinal data is that trajectories are often highly complex. For example, in our
study of international health, our microscopic model – while useful for identi-
fying major and minor trends and steady-state behaviors – was still incredibly
dynamic (See Figures 3 and 9). In such instances, our approach is useful be-
cause, following Haken [9] and others [28,30], it models the ensemble of cases
as the macroscopic movement of densities across continuous time; which are,
generally speaking, lower dynamic and therefore easier to model for common
patterns and trends across time.

The key aspect of the advection PDE is that it models the transport of
a physical quantity according to a given vector field f (as in the case of our
microscopic model) in addition to conserving the physical quantity itself. The
dynamical state of the advection PDE is a density ρ, which is a function of
both space x and time t. In turn, the density function ρ is basically the physical
quantity per unit area in two dimensions.

Given an initial distribution of cases ρ0(x), the advection PDE simulates
the evolution of ρ0 under the assumption that (a) the total number of cases
remains the same, and (b) each case x moves according to the velocity vector
f(x). The boundary condition ρ|Γi

= 0 ensures that no new cases enter the
state space through the inflow portion of the boundary given by

Γi = {x ∈ ∂X : f(x) · η < 0}, (3)

where η stands for the outward normal on that boundary ∂X. And, we use the
vector field f obtained in microscopic model to simulate the advection equation
given in (2) along with the boundary condition (3). As a final note, the validity
check for the motion of densities is mathematically inherent because the vector
field f is already checked in the microscopic model. (For more details on our
approach, see [17,18].)

2.5.2 Simulating Initial and Novel Conditions

With the macroscopic model built, the next step (Step 9) is to run it – which
we do by introducing known or novel sets of initial conditions. Unlike the mi-
croscopic model, which is devoid of cases, the macroscopic movie re-introduces
different distributions of cases back into the model to explore their actual tra-
jectory amongst all possible trajectories in the microscopic model.
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For us, these initial conditions come in three types: (1) conditions based
on the initial dataset upon which the microscopic vector field f was based;
(2) conditions based on the major and minor trends identified in the cluster
and microscopic models; and (3) novel conditions researchers wish to explore,
based on the results from running conditions (1) and (2).

Simulating these ’various’ initial conditions is important to our approach
because it brings us full circle, moving us from the inverse to the forward
problem in physics: in other words, while we use the microscopic model f to
simulate the macroscopic evolution of densities (using the advection equation),
we do so by returning to the initial conditions of the raw data (be it known
or novel) for corroboration.

For example, Figure 10 provides a series of snapshots from a simulation we
made for our international health study. In terms of reading Figure 10, the x-
axis represents GDP and the y-axis represents life expectancy; also, scores on
the axes were converted to z-scores for normalization and comparison. In this
example, the initial conditions t = 0 (which are shown in Models A and B) were
based on the original Gapminder dataset (http://www.gapminder.org/). (The
complete movie can be found at http://www.personal.kent.edu/~bcastel3/
macroscopic_model.mp4.)

In contrast, Figure 11 provides a series of snapshots from a simulation we
made for our depression and physical wellbeing study. In this simulation, five
different sets of initial conditions we explored, based on key trends identified in
the cluster and microscopic models. As with Figure 10, scores were converted
to z-scores, with the y-axis representing physical wellbeing; and the x-axis
representing depression.

As these two examples illustrate, our macroscopic model adds several ad-
vantages to our multi-level, case-based approach to modeling complex health
trajectories.

1. To begin, different regions of the simulation can be explored to see how
different sets of cases evolve (speed up, slow down, spread out, condense
inward toward the center of the density, etc) across time.

2. And, these movements can be calibrated using a number of indicators, such
as the the contour plot of speed (magnitude of velocity) – as shown in the
lower right graph in Figure 10.

3. Also, the non-equilibrium clustering of trajectories during transient times
can be studied by looking at the Lyapunov density plot. In Figure 11, for
example, high values in the Lyapunov density plot (shown in the upper
right graph) indicate that a large number of trajectories have squeezed
through that region in the state space.

4. We can also use these simulations to predict the longitudinal evolution of
cases across time and space.

5. And, we can study the complexity of various transient case dynamics, which
we do by stopping the evolution of the model prior to some key moment
in the simulation.
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6. Also, based on the exploration of various novel conditions, predictions can
be made for the evolution of case profiles and time instants that are not
part of the database.

7. And, multiple models can be tested simultaneously to find the model that
best explains the data.

8. Finally, new data can be incorporated with ease into the modeling process,
thereby providing us with a means to improve the model’s fit and predictive
value in response to the database’s evolution, expansion, development, etc.

2.6 Step 10: Constructing Multiple Accounts

Consistent with the overarching theme of case-based complexity – which seeks
to find differences through idiographic, case-comparative analysis – our ap-
proach, once again, distinguishes itself from convention. In Step 10, we do not
seek to build a single causal model or overarching account of the data. Instead,
we seek to construct multiple models, multiple accounts. And, we aim these
multiple accounts at explaining (exploring, understanding, etc.,) key differ-
ences, (distinctions, variations, nuances etc.,) in the data.

Equally important, we assume that these multiple accounts come from the
theoretical map – as constructed in Step 4 – and its k dimensional profile of
traces. And we assume – as discussed in Step 1 – that this map and profiles
are best studied as complex systems. As such, while it is useful to explore
variable-based trends across data; in our approach the emphasis is on the
intersection of traces and their self-organizing and emergent impact on some
initial (dependent / outcome) trace of concern.

With our map and case-based profile in hand, we construct our multiple
accounts by employing the following two-stage process:

2.6.1 Corroboration of the Three Models

During the course of completing steps one through nine, a significant amount
of information is generated. It is therefore necessary, as a first course of action,
to summarize and further corroborate these data into a multi-level, working
narrative to identify key issues for which we seek to develop an account.

1. The Cluster Model: An easy place to start is with the cluster model.
Here, the goal is to verify further the veracity of the cluster trajectories and
the major and minor trends they represent. Such verification includes working
with context experts to:

1. determine if the clusters make clinical or theoretical sense.
2. examine if certain clusters need to be discarded or combined to create a

larger cluster.
3. determine – as discussed in Step 2.2.1 – if further sub-clustering is necessary

or clinical or theoretically meaningful.
4. name the final cluster and sub-cluster solutions, as well as major and minor

trends, based on how their trajectories differ from one another.
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5. assemble all this information into a working narrative.
6. And, finally, identify key issues for which an account of this narrative is

required, including hypothesizing how the other k dimensional traces in the
theoretical model and case-based profile might account for these differences.

For example, in our study on depression and physical wellbeing, the two
lead clinicians (both authors on the current paper) had to pour over the data
to make sure everything made clinical sense, including tentatively hypothe-
sizing how the other traces in the theoretical model might account for these
differences.

The same was true of our allostatic load study, albeit at an even greater
level of detail, as the clusters for this study were based on our factor analysis
(we discussed this earlier); which was, in turn, based on our 20 key biomarkers.
As such, the biologists and clinicians on our team had to corroborate the
biomarker linkages found in our cluster solutions – shown in Figure 7 – to
make sure they fit with what they and the literature knew to be biologically
true or possible.

In turn, the nine clusters shown in Figure 12 also had to make sense in
terms of our theoretical model of allostatic load (See, from earlier, Figure 5).
For example, Map C in Figure 12 is a graphic representation of the relative
influence that the seven traces (shown in Figure 7) had on the SOM cluster
solution. The SOM generated a mini-map for the seven traces, each of which
can be overlaid across maps A and B. Each of these mini-maps was also visually
inspected to examine what its rates were across the different neighborhoods
(clusters of cases – See Map B, Figure 12). Dark blue areas in Map C indicated
the lowest rates for a factor; and the bright red areas indicated the highest
rates for a factor. For example, looking at the map for Factor 6 (Blood Sugar),
its rates were extremely low across most of the map, except for the lower right
corner, where (looking at Map B) the SOM placed Cluster 6.

2. The Microscopic Model: Next, the insights from the cluster model
need to be integrated and further corroborated with the microscopic model.
Such integration and corroboration includes working with context experts to:

1. verify the clinical and theoretical utility of the various transient steady-
state behaviors initially identified during Step 2.4.4 of the model building
process.

2. use the cluster trajectories to visually corroborate the manner in which the
microscopic vector field evolves across continuous time.

3. examine how key velocity change moments in the microscopic model co-
incide with key changes in the trajectories of various major and minor
clusters. This is done by (a) identifying the region in the state-space where
the behavior occurs; (b) studying the clusters corresponding to the regions;
and (c) watching the movies and the actual trajectories from data (both
overall and at the interesting time instants) to see if they corroborate one
another.
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4. use the findings from the cluster and microscopic model to identify different
regions of the state-space that are qualitatively important, and to then
label them accordingly.

5. and, finally, hypothesize how the other k dimensional traces in the theo-
retical model and case-based profile might account for these differences in
the state-space and their respective evolution across time-space.

For example, as shown in Figure 9, in terms of our study of depression and
physical wellbeing, we identified five major regions into which we could fit all
18 of our clusters, based on the major and minor trends we noted in our cluster
solution. Roughly speaking, these regions approximated how physical wellbe-
ing and depression work together as a differential diagnosis for sorting clusters
according to their key differences. Figure 11 – which we already mentioned
but will discuss further in a moment – provides the name of these five major
regions. In addition, we confirmed that the transient steady-state behaviors
from our microscopic model (Figure 9) coincided with key shifts in the cluster
trajectories from our cluster model.

2. The Macroscopic Model: The last part of our corroboration process
is to add the macroscopic model to our multi-level narrative by integrating
the insights from its density simulations. Such integration and corroboration
includes working with context experts to:

1. confirm (both clinically and theoretically) the utility of the results gained
in Step 2.5.2 of the model building process, which includes validating the
various novel scenarios simulated, based on the results from the microscopic
and cluster models.

2. verify how and also when the transient steady-state behaviors identified
in the microscopic model manifest themselves in the density model, given
that both models are based on the same vector field generated by the ODE.

3. and, finally, hypothesize how the other k dimensional traces in the theo-
retical model and case-based profile might account for these differences in
the density model.

For example, looking at Figure 11 from our depression and physical well-
being study, we see two snapshots – t = 0 months and t = 84 months – which
we labeled according to the results from our cluster and microscopic mod-
els. During the course of exploring these five simulations, one of the findings
(amongst many) that stood out was how the density plot for the healthiest
region (lower right) changed across time, moving more toward the center. We
also noted how this healthy plot shifted and became more distributed across
time, with the upper right side stretched more toward increased depression,
and the lower right stretched more toward decreased physical wellbeing. The
question we sought to answer, based on this finding, and for which we engaged
in a series of hypotheses, was why? Answering this question takes us to the
final stage of our model building process: constructing multiple accounts.
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2.6.2 Constructing Multiple Accounts

The final stage of the modeling process is to construct a series of accounts
(causal models) that help make sense of the complex health trajectories stud-
ied. Again, no one account is expected to explain everything. Instead, we seek
multiple accounts, multiple explanations.

To do so, we begin with method. Unlike the previous steps, however, this
last stage need not follow any particular methodological protocol. In fact,
in our work we have employed a variety of methods, including statistical,
qualitative and historical analysis. Of these methods, however, perhaps the
most useful is to re-run steps five through nine.

As a quick overview: starting with the cluster model, one would proceed,
as required, to examine a new set of traces. However, this time there is an
added dimension, as the goal is to construct an account of how the nonlin-
ear dynamics of these additional traces coincide, interconnect with, influence
or impact the original outcome traces. For example, in our depression and
health study, we were specifically interested in how the complex intersection
of employment, income and negative life events impact – across time – our
18 cluster trajectories, slowly stitching these new traces together to form a
complex model of these data.

Nonetheless, often one does not have the luxury of continuous data; or
researchers may be concerned with traces of a different type, as in the case
of discrete, qualitative or historical data; or they may be interested in other
methods, as in the case of network and agent-based modeling.

For example, in our public health study, we used multiple linear regression
and the unstandardized F-scores from our k-means cluster analysis to deter-
mine the relative impact that various compositional and contextual traces had
on our community-level health outcomes.

In this same study we also used a combination of qualitative and historical
data. For example, to examine the views and opinions of people living in
the poorer communities surrounding the two urban centers in our study, we
turned to a series of focus groups that local public health researchers had done.
And, to make historical sense of how out-migration impacted community-level
health, we turned to a local newspaper series on access to healthcare.

Going even further, we employed the tools of complex network analysis, ex-
amining (pace Christakis and Fowler’s work on obesity networks) how changes
in communities in one part of our county-wide network influenced changes in
another. Figure 13, for example, is a network representation of our cluster
analysis data. The network is made up of the seven clusters we identified in
our study, labeled 1 through 7. Around each cluster are the communities as-
sociated with it.

In terms of reading this network, the greater the distance between cluster
centers, the less alike these clusters are in health and economic wellbeing; and,
the greater the distance a community is from its cluster center, the less similar
its configuration is to the other communities in its cluster. One of the questions
we examined using this network was: given changes in the overall economic
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wellbeing of all twenty communities, which of the poorer communities fell
further into a poverty trap, relative to the rest? The answer was found in the
bottom two clusters, both 2 and 7, with the communities in Cluster 7 having
the poorest, overall, health outcomes.

And, as further evidence of this ’poverty-trap’ effect, we constructed an
agent-based model. Our goal in doing so was to test our data-driven as-
sumption about the role out-migration played in the different community-level
health outcomes we found. Figure 14, for example, shows (pace Schelling’s seg-
regation model) that, as more affluent communities pull away from the poorer
communities, the latter became segregated into poverty traps, identified by
the lighter grey clusterings in the center picture of our Netlogo model.

Still, despite these differences in method and technique, when it comes to
the final step of our case-based density approach, two things are consistent in
the account building process. The first has to do with focus: no matter what the
technique used, the purpose is to construct multiple accounts that help explain
the nonlinear dynamics of complex longitudinal health data. More specifically,
this means making sense of:

1. the different cluster trajectories;
2. major and minor trends;
3. various transient, steady-state behaviors;
4. the movement (across space/time) of various density distributions;
5. and, the evolution and dynamics of different regions of the state-space,

including:
(a) differences in the speed and velocity of key trajectories; and
(b) the prediction of different known or novel density outcomes.

The second has to do with the preliminary division of the data. Regardless
of the method used, before one constructs any account, the data need to be
divided according to each case’s cluster membership and the corresponding
trend or region of the state-space to which it belongs. In other words, it is
necessary to divide the database into separate sub-databases according to the
different clusters or trends to which cases belong. Once divided, one can then
explore these clusters and trends separately and in comparison to one another,
looking for different patterns within and also across clusters and trends.

With the construction of these different and multiple accounts complete,
one has reached the end of the modeling process – that is, unless, as a function
of the study, new or novel additional traces or cases are included, and therefore
further modeling is required.

3 Conclusion

In this paper, we have brought together the various steps outlined in our
previous research[17,18] to organize them into a single method, called a case-
based density approach (CBD) – which involves ten steps.
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In terms of summarizing these ten steps, our main thesis is that complex
longitudinal data are inherently multi-level, case-based systems that manifest
themselves from the bottom-up (as the microscopic, high-dynamic behavior of
individual cases) as well as the top-down (as the macroscopic, low-dynamic
behavior of densities).

Our secondary thesis is that to model such complex case-based, longitudi-
nal data, researchers need to acknowledge that singular one-size-fits-all models
are not sufficient; instead, new and multiple models are necessary. Further-
more, these multiple accounts need to be data-driven and predictive (if only
in the short range).

Third, we acknowledge that complex phenomena cannot be perfectly (or
often even directly) modeled using mathematical models. Instead, one typ-
ically studies the traces of a system’s complexity. Related, these traces are
often unknown; and only identified through multiple exchanges with subject
matter experts. However, modeling the traces of complexity is the first step
towards understanding a system’s causal mechanisms, which is what we have
endeavored to achieve with our approach.

Given these three main points, to model complex health trajectories it
is necessary to drawn upon a wide variety of concepts and techniques from
across the complexity sciences, including the ideas of non-equilibrium statisti-
cal mechanics, transport theory and thermodynamics. To model the motion of
density of cases, we specifically employed the advection PDE, which serves as
a conduit to translate the microscopic motions modeled by the vector field f
into the macroscopic evolution of the density ρ, while preserving the number
of cases intact. This is a very novel feature of our approach, which has yet to
be used to observe the complex behavior of health trajectories longitudinally
in time.

Finally, Step 10 is a very important part of the modeling process, as it
seeks to provide a series of accounts of the causal mechanisms that drive
the nonlinear dynamics of health trajectories. As such – and as mentioned
earlier – we are currently studying a large sample of the Diamond Prospective
Longitudinal Cohort Study to develop further this step. This is the future work
that is currently underway.
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