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Abstract

Smullyan’s notion of effectively inseparable pairs of sets is not the best effec-
tive/constructive analog of Kleene’s notion of pairs of sets inseparable by a recursive
set. We present a corrected notion of effectively inseparable pairs of sets, prove a
characterization of our notion, and show that the pairs of index sets effectively insepa-
rable in Smullyan’s sense are the same as those effectively inseparable in ours. In fact
we characterize the pairs of index sets effectively inseparable in either sense thereby
generalizing Rice’s Theorem. For subrecursive index sets we have sufficient conditions
for various inseparabilities to hold. For inseparability by sets in the same subrecursive
class we have a characterization. The latter essentially generalizes Kozen’s (and Royer’s
later) Subrecursive Rice Theorem, and the proof of each result about subrecursive index
sets is presented “Rogers style” with care to observe subrecursive restrictions.

There are pairs of sets effectively inseparable in Smullyan’s sense, but not effec-
tively inseparable in ours. The proof of this involves a non-effective construction by
finite extensions with the unusual and interesting feature that alternate stages in the
construction apply an instance of Smullyan’s Double Recursion Theorem effective in
the previous stage. Our construction yields as a corollary that the pairs of sets effec-
tively inseparable in Smullyan’s sense, but not in ours, are plentiful in the sense of
Baire Category. By way of contrast with the previous result we show that, for pairs
of r.e. sets, our notion and Smullyan’s are coextensive. We call our notion effective

∆0
1-inseparability and generalize it, Smullyan’s notion, and all our results (except those

about subrecursive index sets) to the ∆0
n level, for each n > 1. (Royer and Case apply

effective ∆0
2-inseparability to obtain results in structural complexity theory.) For sub-

recursive index sets we have a sufficient condition for effective ∆0
2-inseparability. The

proof of this latter result is made compact by an application of Royer and Case’s Hybrid
Recursion Theorem which facilitates interaction between a subrecursive programming
system and a programming system for the partial limiting-recursive functions.

∗This paper is dedicated to the memory of John Myhill. It grew out of a joint monograph with Royer,
and owes an especial intellectual debt to that work and the methods in Myhill’s paper on creative sets
and Smullyan’s monograph. A suggestion of Royer’s provided a cleaner version of Theorem 3. He also
made some helpful suggestions regarding presentation. The research was supported in part by NSF grant #
CCR-8713846.
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N denotes the set of natural numbers, {0, 1, 2, 3, . . .}. Lower case letters, with or without
decorations, near the front and rear of the alphabet range over N , and f , g, and h range
over (total) functions with arguments and values from N . A, B, and C range over subsets
of N , and A denotes the complement of A. card({A}) denotes the cardinality of A, and
χA denotes the characteristic function of A, the function which is 1 on A and 0 on A.
Let ϕ denote a fixed acceptable programming system (numbering) for the partial recursive
functions: N → N [Rog58, Blu67, MY78, Ric80, Ric81, Roy87], and let Wp denote the
domain of ϕp. Wp is, then, the r.e. set (⊆ N) accepted by ϕ-program p. Following Meyer we
let ↓ denote convergence of a computation, and ↑ denote divergence [Rog87]. Let λx, y 〈x, y〉
denote a fixed pairing function (a recursive, bijective mapping: N × N → N [Rog87]) with
respective inverses π1 and π2. Lineartime denotes the class of functions computable on
multi-tape Turing machines [HU79] within a linear time bound of the length of the input (in
binary). We suppose that λx, y 〈x, y〉, π1, and π2 are each in Lineartime. An example based
on bit interlacing with standard binary representations [BL74] of numbers is provided in
[RC86, RC89]. Let λx1, . . . , xn 〈x1, . . . , xn〉 be a fixed recursive bijection: Nn → N based on
λx, y 〈x, y〉. For example, we could take 〈x1, x2, x3〉 = 〈x1, 〈x2, x3〉〉. We let Φ denote a fixed
Blum complexity measure associated with ϕ [Blu67, MY78, DW83]. Φp(z) is, intuitively,
the run time of ϕ-program p on input z. We say that a number w appears in Wx in exactly
z (respectively, ≤ z) steps ⇔ Φx(w) = z (respectively, ≤ z). A number w appears in Wx

before Wy ⇔ Φx(w)↓ < Φy(w) ≤ ∞. A number w appears in Wx at the same time as it
appears in Wy ⇔ Φx(w) = Φy(w)↓ < ∞. f |A denotes the graph of f restricted to the set
A. f |<x denotes f |{w|w<x}, and f |≥x denotes f |{w|w≥x}. A△ B denotes (A− B) ∪ (B − A),
the symmetric difference of A and B. Any other unexplained notation or terminology is
from [Rog87]. For example, ∆0

n, Σ0
n, and Π0

n represent the usual levels in the arithmetical
hierarchy.

We provide a brief, partial history of the notions that preceded the subject of this paper.
Gödel’s First Incompleteness Theorem [Göd86, Men79] indirectly motivated Dekker’s notion
of productive set [Dek55, Rog87]. This notion was based on Post’s earlier notion of creative set
[Pos44, Myh55, Rog87]. Gödel’s Theorem directly motivated Kleene’s notion of recursively
inseparable sets [Kle52, Rog87]. We explain these notions just below.

A is productive ⇔ there is an effective procedure which, given any x such that Wx ⊆ A,
returns a value in (A − Wx). Here is an example from [Rog87] extracting a recursion-
theoretic essence of Gödel’s Theorem. Gödel number the set of sentences of arithmetic onto
N and identify sentences with their Gödel numbers. The set of true sentences of arithmetic
is productive. Post [Pos44] was interested in productive sets with r.e. complements, for
example, the set of sentences not provable in Peano Arithmetic.

A is recursively inseparable from B ⇔ A is disjoint from B and there is no recursive set C
such that A ⊆ C ⊆ B. (The reader may find a simple Euler-Venn diagram helpful to see the
relation between the sets in this definition and others of this paper.) Kleene [Kle52, Rog87]
noted that the set of sentences P provable in Peano Arithmetic is recursively inseparable from
the set of sentences R refutable in Peano Arithmetic. If a complete, recursive axiomatization
of arithmetic existed, its deductive closure C would be a recursive set separating P from R.

2



Dekker [Dek55, Rog87] essentially defined a set A to be completely productive (abbrevi-
ated: c-productive) ⇔ (∃ recursive f)(∀x)[f(x) ∈ Wx △ A]. Myhill [Dek55, Rog87] showed
that the c-productive and the productive sets coincide. Intuitively, A is c-productive ⇔
there is an effective procedure to find, given any x, a counter-example to ‘Wx = A’. The
c-productive sets are, then, those sets that fail to be r.e. in a certain effective sense.

Now, to get to a central concept of this paper, just as there is an effective sense in which
sets can fail to be r.e., there are effective senses of one set failing to be recursively separable
from another. For example, we define just below effective ∆0

1-inseparability. Intuitively, A is
effectively ∆0

1-inseparable from B ⇔ [A is disjoint from B and there is an effective procedure
to find, given x and y, a counter-example to ‘[A ⊆Wx = Wy ⊆ B]’].

Definition 1 A is effectively ∆0
1-inseparable from B ⇔ [(A∩B) = ∅∧(∃ recursive f)(∀x, y)[

f(x, y) ∈ ((Wx ∩B) ∪ (Wx ∩ A) ∪ (Wy ∩A) ∪ (Wy ∩B) ∪ (Wx △Wy))]].

Here is a characterization of effective ∆0
1-inseparability.

Theorem 1 A is effectively ∆0
1-inseparable from B ⇔ [(A∩B) = ∅∧ (∃ recursive f)(∀x, y)[

f(x, y) ∈ ((Wx ∩B) ∪ (Wy ∩A) ∪ (Wx ∩Wy))]].

Proof. (⇐) is immediate.
(⇒): Suppose A is effectively ∆0

1-inseparable from B as witnessed by the recursive func-
tion f .

By Smullyan’s Double Parametric Recursion Theorem [Smu61, Rog87], there are recursive
functions g and h such that, for all x and y,

Wg(x,y) =
{

{f(g(x, y), h(x, y))}, if f(g(x, y), h(x, y)) appears in Wx before Wy;
∅, otherwise;

Wh(x,y) =











{f(g(x, y), h(x, y))}, if f(g(x, y), h(x, y)) appears in Wy before (or
at the same time as it appears in) Wx;

∅, otherwise.

We show that (∀x, y)[f(g(x, y), h(x, y)) ∈ ((Wx ∩ B) ∪ (Wy ∩ A) ∪ (Wx ∩Wy))].
Case (1). f(g(x, y), h(x, y)) appears in Wx before Wy. Then

Wg(x,y) = {f(g(x, y), h(x, y))} and Wh(x,y) = ∅.

Hence, f(g(x, y), h(x, y)) 6∈ ((Wg(x,y) ∩ A) ∪ (A ∩Wh(x,y)) ∪ (Wg(x,y) △Wh(x,y))). Therefore,
since f witnesses the effective ∆0

1-inseparability of A from B, f(g(x, y), h(x, y)) ∈ B. Hence,
f(g(x, y), h(x, y)) ∈ (Wx ∩B).

Case (2). f(g(x, y), h(x, y)) appears in Wy before (or at the same time as it appears in)
Wx. Then, by an argument symmetric to that of Case (1), f(g(x, y), h(x, y)) ∈ (Wy ∩ A).

Case (3). Neither Cases (1) nor (2). Then, f(g(x, y), h(x, y)) ∈ (Wx ∩Wy).

Smullyan [Smu61] effectivized Kleene’s notion of recursive inseparability in an intension-
ally, and, as we shall see (Theorem 6), extensionally, different way. Definition 2 is essentially
Smullyan’s definition.
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Definition 2 (Smullyan) A is effectively inseparable from B ⇔ [(A∩B) = ∅∧(∃ recursive
f)(∀x, y)[A ⊆Wx ⊆Wy ⊆ B ⇒ f(x, y) ∈ (Wx ∩Wy)]].

If C is a class of partial recursive functions, then PC denotes {p | ϕp ∈ C}, the index set
[Rog87] determined by C. The next theorem characterizes effectively ∆0

1-inseparable pairs of
index sets and implies that for pairs of index sets our notion and Smullyan’s agree. (Results
related to special cases may be found in [DM58, Hay65].)

Theorem 2 Suppose C and D are disjoint classes of partial recursive functions. Then (a)
through (d) are equivalent.

(a) PC is effectively ∆0
1-inseparable from PD.

(b) PC is effectively inseparable from PD.
(c) PC is recursively inseparable from PD.
(d) Both PC and PD are non-empty.

Proof. Suppose the hypothesis. If either of PC or PD is empty, clearly they are separated
by a recursive set.

Suppose, then, ϕc ∈ C and ϕd ∈ D. By Definitions 1 and 2, it suffices to show (∃
recursive f)(∀x, y)[f(x, y) ∈ ((Wx ∩ PD) ∪ (Wy ∩ PC) ∪ (Wx ∩Wy))].

By Kleene’s Parametric Recursion Theorem [Rog87, Ric80, Ric81, Roy87], there is a
recursive function f such that, for all x, y, and z,

ϕf(x,y)(z) =



















ϕd(z), if f(x, y) appears in Wx before Wy;
ϕc(z), if f(x, y) appears in Wy before (or at

the same time as it appears in) Wx;
↑, otherwise.

Case (1). f(x, y) appears in Wx before Wy. Then, ϕf(x,y) = ϕd; hence, f(x, y) ∈ PD.
Therefore, f(x, y) ∈ (Wx ∩ PD).

Case (2). f(x, y) appears in Wy before (or at the same time as it appears in) Wx. Then,
by an argument symmetric to that of Case (1), f(x, y) ∈ (Wy ∩ PC).

Case (3). Neither Cases (1) nor (2). Then, f(x, y) ∈ (Wx ∩Wy).

Theorem 2 obviously generalizes Rice’s Theorem [Ric53, Rog87, DW83].
Theorem 3 below provides a sufficient condition for disjoint pairs of subrecursive index

sets (defined two paragraphs below) to be effectively ∆0
1-inseparable. We provide next the

preliminaries for that theorem and other results about subrecursive index sets.
A subrecursive class is an r.e. class of (total) recursive functions: N → N . Suppose S

is a subrecursive class. ψ is a programming system (or effective numbering) for S ⇔ ψ is a
recursive function such that S = {λz ψ(r, z) | r ∈ N}. If ψ is a programming system for a
subrecursive class, we write ψr for λz ψ(r, z) and speak of r as a ψ-program for ψr. Generally
subrecursive classes studied in computer science are explicitly based on bounding the time
or space complexity of the functions allowed in the class; those studied in mathematics are
implicitly so based [CB71, Con71, Ros84, RC86, RC89]. For example, Polytime, the class of
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functions each computable on a multi-tape Turing machine within time given by a polynomial
in the length of the input (in binary), is a subrecursive class. If one Gödel numbers (onto N)
the multi-tape Turing machines each explicitly clocked to halt within time bounded by some
polynomial in the length of the input and sets ψr = the function computed by the machine
with Gödel number r, then ψ is a subrecursive programming system for Polytime [BH79,
HB79, Koz80, RC86, RC89].

Suppose S and ψ are fixed such that S is a subrecursive class and ψ is a subrecursive
programming system for S. If C ⊆ S, then SC denotes {r | ψr ∈ C}, the subrecursive index
set determined by C [Koz80].

We make two basic assumptions about S and ψ.

Assumption 1 S contains Lineartime and it is closed under (inner and outer) composition
with functions in Lineartime.

We present some consequences of Assumption 1.
Recall from above that we chose λx, y 〈x, y〉, π1, and π2 in Lineartime. Thanks to

Assumption 1, these are clearly useful to simulate the effect of having functions of multiple
arguments in S. As another example, let

cond = λ〈x, y, z〉
{

y, if x > 0;
z, if x = 0.

Then cond is clearly in Lineartime. Hence, S is closed under definition by cases. This is
exploited below in the proof of Theorem 3 (and also the proofs of Theorems 4, 5, and 8 and
Remarks 1 and 3). Let max = λ〈x1, . . . , xn〉 [the maximum of x1, . . . , xn]. Clearly max is
in Lineartime. Hence, S is also closed under taking the maximum of a constant number
of functions. We exploit this in the proof of Theorem 4 below. We also note (and exploit
below) that, in effect, the Boolean functions ∧ (and), ∨ (or), and ¬ (not) are in Lineartime.

Let Quadratictime be the class of functions: N → N computable within time bounded
by some degree-two polynomial in the length of the input. Then S = Quadratictime satisfies
Assumption 1, but is not itself closed under composition. The same is true for S = Cubictime,
defined in the obvious way, etc.

Assumption 2 ψ satisfies the Kleene s-m-n Theorem with an s-1-1 function in Lineartime
[Koz80, Roy87, RC86, RC89].

Essentially s-1-1 provides substitution of data into programs, of course filtered through
the Gödel numbering. This is an extremely elementary operation if an efficient Gödel num-
bering is chosen. Therefore, it is quite plausible to be able to perform this operation in linear
time for a “natural”, efficiently numbered, subrecursive programming system for a class S sat-
isfying our assumptions. Marcoux [Mar89] shows that, as a control structure [Ric80, Ric81,
Ric82, Roy87], s-1-1 is more fundamental than composition with respect to instance com-
plexity. [RC86, RC89] (generalizing [Koz80]) provide extremely simple sufficient conditions
for ψ to have an instance of an s-1-1 function in Lineartime. Now, the Kleene form of his
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Strong Recursion Theorem [Rog87, Page 214], but not the Rogers Pseudo-Fixed Point form
[Rog87, Page 180] (see also [Ric80, Ric81, Ric82, Roy87]), holds in most naturally occurring
subrecursive programming systems computing at least the functions in Lineartime [Koz80,
Roy87, RC86, RC89]. In fact, it easily follows from our assumptions on S and ψ that ψ has
a Lineartime-effective Parametric Recursion Theorem [RC86, RC89] (‘Lineartime-effective’
merely means that the witnessing function is in Lineartime). Our proof below of Theorem 3
contains an application of this recursion theorem. Royer and Case [RC86, RC89] show how
to efficiently Gödel number multi-tape Turing machines and formulate clocking mechanisms
so that explicitly clocked systems for Lineartime, Quadratictime, . . . , Polytime, etc., based
on this numbering of Turing machines, satisfy the assumptions above. They also present
an axiomatic treatment of clocked systems and show how these inherit, from the underly-
ing general purpose machines, relatively efficient control structures [Roy87] involving s-1-1,
composition, recursion theorems, etc.

Theorem 3 Suppose C and D are disjoint subsets of S. Suppose there are ψ-programs b,
c, and d such that, for every t,

ψb|<t ⊂ λz ψc(〈t, z〉) ∈ C and ψb|<t ⊂ λz ψd(〈t, z〉) ∈ D.

Then: SC is effectively ∆0
1-inseparable from SD.

We noted above that S = Cubictime satisfies our Assumption 1. If we suppose ψ

is a subrecursive programming system for this class satisfying Assumption 2, then, by
Theorem 3, {r | ψr ∈ (Quadratictime − Lineartime)} is effectively ∆0

1-inseparable from
{r | ψr ∈ Lineartime}; {r | (∃t)[ψr = (λz 0|<t ∪λz 1|≥t)]} is effectively ∆0

1-inseparable from
{r | ψr = λz 0}; and {r | (∃t)[ψr = (λz 0|<t ∪ λz 1|≥t)]} is effectively ∆0

1-inseparable from
{r | (∃t)[ψr = (λz 0|<t ∪ λz 2|≥t)]}.

Proof of Theorem 3. Suppose the hypotheses.
For this proof we take Φ to be a special, “delayed” Blum complexity measure such that

one can compute in Lineartime both λp, z, t [Φp(z) ≤ t] and

λp, z, t

{

Φp(z), if Φp(z) ≤ t;
t+ 1, otherwise.

Royer and Case [RC86, RC89] show that, for any ϕ, such an associated Φ always exists. In
the rhetoric below in this proof (and others which employ such a special Φ), locutions of
the form, “so-and-so appears in Wp with such-and-such restrictions on the number of steps,”
implicitly refer, then, to this special Φ.

By the Lineartime-effective Kleene Parametric Recursion Theorem for ψ [RC86, RC89],
there is a Lineartime function f such that, for all x, y, and z,

ψf(x,y)(z) =







































ψd(〈t, z〉), if f(x, y) appears in Wx in exactly t steps, where
t ≤ z, and f(x, y) appears in Wx before Wy;

ψc(〈t, z〉), if f(x, y) appears in Wy in exactly t steps, where
t ≤ z, and f(x, y) appears in Wy before (or at;
the same time as it appears in) Wx;

ψb(z), otherwise.
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The rest of the proof is a straightforward modification of that of Theorem 2.

In Theorem 4 just below we make the sufficient condition of Theorem 3 somewhat less
constructive to obtain a sufficient condition for recursive inseparability of subrecursive index
sets.

Theorem 4 Suppose C and D are disjoint subsets of S. Suppose, for each i, j, and k with
i ≤ ℓ, j ≤ m, and k ≤ n, there are corresponding ψ-programs bi, cj, and dk such that, for
every t, there are corresponding i, j, and k, with i ≤ ℓ, j ≤ m, and k ≤ n, for which

ψbi |<t ⊂ λz ψcj (〈t, z〉) ∈ C and ψbi |<t ⊂ λz ψdk
(〈t, z〉) ∈ D.

Then: SC is recursively inseparable from SD.

Remark 1 For both Theorems 3 and 4, the sufficient conditions are not necessary.

Remark 2 The sufficient condition of Theorem 4 does not imply that SC is effectively ∆0
1-

inseparable from SD.

We prove Theorem 4, Remark 1, and Remark 2, in that order.

Proof of Theorem 4. Suppose the hypotheses. For this proof only we make the
convention that i, j, and k (with or without decorations) are restricted in range thus: i ≤ ℓ,
j ≤ m, and k ≤ n.

Also for this proof we again take Φ to be a special, “delayed” Blum complexity measure
such that one can compute in Lineartime both λp, z, t [Φp(z) ≤ t] and

λp, z, t

{

Φp(z), if Φp(z) ≤ t;
t+ 1, otherwise.

As we noted in the proof of Theorem 3, Royer and Case [RC86, RC89] show that, for any
ϕ, such an associated Φ always exists.

Let x and y be fixed. By the ((ℓ + 1) · (m + 1) · (n + 1))-ary Recursion Theorem for ψ
[RC86, RC89], there are ((ℓ + 1) · (m + 1) · (n + 1)) self-other referential ψ-programs ei,j,k
such that, for all z,

ψei,j,k
(z) =



























































ψdk
(〈t, z〉), if each ei′,j′,k′ appears in either Wx or Wy within a

number of steps least upper bounded by t, where
t ≤ z, and ei,j,k itself appears in Wx before Wy;

ψcj (〈t, z〉), if each ei′,j′,k′ appears in either Wx or Wy within a
number of steps least upper bounded by t, where
t ≤ z, and ei,j,k itself appears in Wy before (or at
the same time as it appears in) Wx;

ψbi(z), otherwise.

(1)
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It suffices to show that, for some triple (i, j, k),

ei,j,k ∈ ((Wx ∩ SD) ∪ (Wy ∩ SC) ∪ (Wx ∩Wy)).

Case (1). Each ei′,j′,k′ appears in either Wx or Wy. Let t be the least upper bound of the
number of steps required for each ei′,j′,k′ to so appear. By the hypotheses of the theorem,
there is, associated with this t a triple (i, j, k) such that

ψbi |<t ⊂ λz ψcj (〈t, z〉) ∈ C and ψbi |<t ⊂ λz ψdk
(〈t, z〉) ∈ D. (2)

Consider, then, ei,j,k.

Subcase (1.1). ei,j,k appears in Wx before Wy. Then by (1),

ψei,j,k
= (ψbi |<t ∪ λz ψdk

(〈t, z〉)|≥t);

hence, by (2),
ψei,j,k

= λz ψdk
(〈t, z〉) ∈ SD.

Therefore, ei,j,k ∈ (Wx ∩ SD).

Subcase (1.2). ei,j,k appears inWy before (or at the same time as it appears in)
Wx. Then by an argument symmetric to that of Subcase (1.1), ei,j,k ∈ (Wy∩SC).

Case (2). Not Case (1). Then, for some triple (i, j, k), ei,j,k ∈ (Wx ∩Wy).

Proof of Remark 1. We take Φ to be a special, “delayed” Blum complexity measure
as in the proofs of Theorems 3 and 4. Let C = {ψr | (∃t)[ψψr(0) = (λz 0|<t ∪ λz 1|≥t)]}
and D = {ψr | (∃t)[ψψr(0) = (λz 0|<t ∪ λz 2|≥t)]}. C and D are non-trivial since S contains
Lineartime, and, clearly, C and D are disjoint subsets of S that do not satisfy the hypotheses
of Theorems 3 and 4. We show that, nonetheless, SC is effectively ∆0

1-inseparable from SD.
The techniques of [RC86, RC89] easily establish a Lineartime-effective Delayed Recursion
Theorem [Cas74] for ψ. Hence, there is a Lineartime function f such that, for all w, x, y,
and z,

ψψf(x,y)(w)(z) =



































2, if f(x, y) appears in Wx in ≤ z steps,
and f(x, y) appears in Wx before Wy;

1, if f(x, y) appears in Wy in ≤ z steps,
and f(x, y) appears in Wy before (or at;
the same time as it appears in) Wx;

0 otherwise.

It is easy to argue, much as in the proofs of previous theorems, that, for all x and y,

f(x, y) ∈ ((Wx ∩ SD) ∪ (Wy ∩ SC) ∪ (Wx ∩Wy)).
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Proof of Remark 2. We adapt a trick of Fulk’s from [CFE83]. Let A be a set such that
both A and A are immune [Rog87, Page 108]. Let C = {λz 0}. Let

D = {(λz 0|<t ∪ λz 1|≥t) | t ∈ A} ∪ {(λz 0|<t ∪ λz 2|≥t) | t ∈ A}.

Since Lineartime ⊆ S, we can choose ψ-program(s) b0 and c0 such that ψb0 = ψc0 = λz 0.
Furthermore, for each k ∈ {0, 1}, we can choose a ψ-program dk such that

ψdk
= λ〈t, z〉

{

0, if z < t;
k + 1, otherwise.

Clearly, then, C, D, b0, c0, d0, and d1 satisfy the hypotheses of Theorem 4. Suppose for
contradiction that f is a recursive function such that

(∀x, y)[f(x, y) ∈ ((Wx ∩ SD) ∪ (Wy ∩ SC) ∪ (Wx ∩Wy))]. (3)

By the s-m-n Theorem for ϕ, there is a recursive function g such that, for all s,

Wg(s) = {r | λy 0|<s ⊂ ψr}.

Let q be a ϕ-program such that

Wq = {r | (∃z)[ψr(z) > 0}.

Clearly, (Wq ∩ SC) = ∅ and (∀s)[(Wg(s) ∩Wq) = ∅]. Hence, by (3),

(∀s)[f(g(s), q) ∈ (Wg(s) ∩ SD)]. (4)

Now, by (4), for each s, s ≤ card({z | ψf(g(s),q)(z) = 0}) <∞. Therefore, {ψf(g(s),q) | s ∈ N}
is infinite. Let τ(r) = mint[(∃v > 0)[ψr(t) = v]. τ is clearly partial recursive. For each
v ∈ {1, 2}, let Av = {τ(f(g(s), q)) | v ∈ range(ψf(g(s),q))}. Clearly, then, either A1 is an
infinite r.e. subset of A or A2 is an infinite r.e. subset of A. This is a contradiction. Hence,
by Theorem 1, SC is not effectively ∆0

1-inseparable from SD.

We next proceed to define inseparability by subrecursive sets, where the class of subre-
cursive sets associated with a subrecursive class S (called the class of S-sets) is

{C | (∃g ∈ S)[C = g−1(1)]}.

A special case occurs when g ∈ S is χC for some C. Then g−1(1) = C, and, so, C is an S-set.

Definition 3 A is S-inseparable from B ⇔ [A and B are disjoint and there is no S-set C
such that A ⊆ C ⊆ B].

Theorem 5 just below characterizes S-inseparability of associated subrecursive index sets.
It also holds with the even less restrictive assumptions on S and ψ Royer [Roy87, Page 173]
employed for his Subrecursive Rice Theorem (together with the assumption that χ∅ and
χN ∈ S).
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Theorem 5 Suppose C and D are disjoint subsets of S. Then (a) and (b) are equivalent.
(a) SC is S-inseparable from SD.
(b) Both SC and SD are non-empty.

Proof. Suppose the hypotheses. We note that ∅ and N are S-sets since their characteristic
functions are computable in linear time. If either of SC or SD is empty, clearly they are
separated by an S-set, namely, either ∅ or N .

Suppose, then, ψc ∈ C and ψd ∈ D. Suppose C is an S-set.
By the Kleene Recursion Theorem for ψ [RC86, RC89], there is a ψ-program e such that,

for all x, y, and z,

ψe(z) =
{

ψd(z), if e ∈ C;
ψc(z), if e 6∈ C.

Suppose for contradiction that SC ⊆ C ⊆ SD. Hence, e ∈ C ⇒ ψe = ψd ∈ D,⇒ e ∈ SD,⇒
e 6∈ C,⇒ ψe = ψc ∈ C,⇒ e ∈ SC,⇒ e ∈ C. Therefore, e ∈ C ⇔ e 6∈ C, a contradiction.

Theorem 5 essentially generalizes Kozen’s [Koz80] (and Royer’s later [Roy87, Pages 173-
174]) Subrecursive Rice Theorem.

Case introduced the notions of r.e. inseparability and effective r.e. inseparability [CFE83].
Some of the theorems of [CFE83] are lifted to Scott’s CPO’s [Sco70] in [Spr83]. A is said
to be r.e. inseparable from B ⇔ [A and B are disjoint and there is no r.e. set C such that
A ⊆ C ⊆ B]. A is effectively r.e. inseparable from B ⇔ [A ∩ B = ∅ ∧ (∃ recursive f)(∀x)[
f(x) ∈ ((A ∩Wx) ∪ (Wx ∩ B))]]. Royer [Roy89] applies both these notions to characterize
the presence of proof speed-up between theories. Royer and Case [RC89] apply the lift to
the Σ0

2 level (from the r.e. = Σ0
1 level) of both these notions to characterize relative program

succinctness phenomena between subrecursive/complexity-bounded programming systems
[Koz80, Roy87] and to obtain a tight incompleteness theorem about subrecursive program
succinctness coupled with information loss.

Theorem 6 There are disjoint sets A and B such that A is r.e. inseparable from B (there-
fore, A is vacuously effectively inseparable from B), but A is not effectively ∆0

1-inseparable
from B.

Proof. A and B are obtained by a non-effective construction by finite extensions in con-
secutive stages s ≥ 0. As and Bs denote, respectively, the finitely much of A and B,
respectively, determined by the beginning of stage s. A0 and B0 are both empty. A and B

are constructed to explicitly satisfy, for each s, the requirements R0
s and R1

s below, where R0
s

is satisfied during stage 2s and R1
s during stage 2s+1. The finding of xs and ys in stage 2s+1

is effective in s and (canonical indices [Rog87] for) A2s+1 and B2s+1 by Smullyan’s Double
Recursion Theorem. The construction ensures that, if a number is put into one of A and B,
it is excluded from the other; hence, (A ∩B) = ∅.

R0
s: (∃ws)[ws ∈ ((Ws ∩ B) ∪ (Ws ∩ A))].

10



R1
s: [ϕs total ⇒ (∃xs, ys)[

[ϕs(〈xs, ys〉) ∈ (Wxs
∪Wys

)]∧
[ϕs(〈xs, ys〉) ∈Wxs

⇒ ϕs(〈xs, ys〉) 6∈ B]∧
[ϕs(〈xs, ys〉) ∈Wys

⇒ ϕs(〈xs, ys〉) 6∈ A]]].

Clearly, then, if A and B satisfy R0
s for every s, A is r.e. inseparable from B. If A and

B satisfy R1
s for every s, A is not effectively ∆0

1-inseparable from B.

begin stage 2s;
if (∃w)[w ∈ (Ws ∩ A2s)]

then
let ws be the least such w;
put ws into B {so that ws ∈ (Ws ∩B)}

else {hence, Ws is finite; therefore, Ws is infinite}
let ws be the least element of (Ws ∩B2s);
put ws into A {so that ws ∈ (Ws ∩A)}

endif
end {stage 2s}.

begin stage 2s+ 1;
find xs and ys such that

Wxs
=

{

{ϕs(〈xs, ys〉)}, if ϕs(〈xs, ys〉)↓ 6∈ B2s+1;
∅, otherwise;

Wys
=

{

{ϕs(〈xs, ys〉)}, if ϕs(〈xs, ys〉)↓ ∈ B2s+1;
∅, otherwise;

if ϕs(〈xs, ys〉)↓ 6∈ (A2s+1 ∪B2s+1)
then

put ϕs(〈xs, ys〉) into A {so that ϕs(〈xs, ys〉) can’t later be put into B}
endif

end {stage 2s+ 1}.

It is straightforward to verify that A and B are as required.

In recursion theory the subsets of N are usually topologized by identifying them with
their characteristic functions in 2N , placing the discrete topology on 2 (= {0, 1}), and the
corresponding product topology on 2N [Rog87, Myh61]. Similarly each pair (A,B) of disjoint
subsets of N can be identified with a naturally corresponding function in 3N , namely,

λz







2, if z ∈ A;
1, if z ∈ B;
0, otherwise.
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We place the discrete topology on 3 (= {0, 1, 2}) and the corresponding product topology
on 3N . Now, by a theorem of Hausdorff’s [Wil70, Theorem 30.3, Page 216], both these
product topologies are homeomorphic to the Cantor-set topology, a complete, metrizable
space; hence, the product topologies satisfy Baire’s Theorem.

Corollary 1 just below says that the pairs (A,B) witnessing the truth of Theorem 6 just
above are plentiful in the sense of Baire Category.

Corollary 1 {(A,B) | (A,B) witnesses the truth of Theorem 6} is co-meager.

Proof. At any stage in the construction of the proof of Theorem 6 a finite number of
elements have been committed to each of A, B, A, and B. Modify this construction so that,
for each i ∈ {0, 1}, every reference to 2s + i is changed to 3s + i + 1 and an “opponent”
in a new stage 3s is allowed to commit a finite number of elements to A, B, A, and B,
provided A is kept disjoint from B and each stage honors the commitments of the previous.
The A (respectively, B) resulting from this modified construction is understood to be the
set of numbers explicitly committed to A (respectively, B). Clearly the A and B from the
modified construction still satisfy Theorem 6. By the standard connection between infinite
games and Baire Category (first noticed by Banach [Jec78]), we have Corollary 1.

The sets A and B constructed in the proof of Theorem 6 are clearly recursive in the
halting problem (Note. In that construction A = B). Of course A cannot be r.e. However,
if all we wanted was to show that effective inseparability and effective ∆0

1-inseparability are
not coextensive, conceivably A and B could both be r.e. Theorem 7 just below implies they
could not. We did not explore whether, in Theorem 6, B can be r.e. and A recursive in the
halting problem. We also did not investigate whether a measure-theoretic [Rog87] analog of
Corollary 1 holds.

Theorem 7 Suppose A and B are r.e. Then: A is effectively inseparable from B ⇔ A is
effectively ∆0

1-inseparable from B.

Proof. Suppose A and B are disjoint r.e. sets. It clearly suffices to show [A is effectively
inseparable from B ⇒ A is effectively ∆0

1-inseparable from B]. Suppose A is effectively
inseparable from B as witnessed by the recursive function f . By the Double Recursion
Theorem there are recursive functions g and h such that, for all x and y,

Wg(x,y) =
{

A ∪ {f(g(x, y), h(x, y))}, if f(g(x, y), h(x, y)) appears in Wx before Wy;
A, otherwise;

Wh(x,y) =











B ∪ {f(g(x, y), h(x, y))}, if f(g(x, y), h(x, y)) appears in Wy before (or
at the same time as it appears in) Wx;

B, otherwise.

We show that A is effectively ∆0
1-inseparable from B as witnessed by λx, y f(g(x, y), h(x, y)).

Case (1). f(g(x, y), h(x, y)) appears in Wx before Wy. Then

12



Wg(x,y) = A ∪ {f(g(x, y), h(x, y))} and Wh(x,y) = B.

Suppose for contradiction that f(g(x, y), h(x, y)) 6∈ B. Then A ⊆ Wg(x,y) ⊆ Wh(x,y) ⊆ B.
Therefore, by Definition 2, f(g(x, y), h(x, y)) ∈ (Wg(x,y) ∩ Wh(x,y)). This contradicts that
Wg(x,y) = A ∪ {f(g(x, y), h(x, y))}. Hence, f(g(x, y), h(x, y)) ∈ (Wx ∩B).

Case (2). f(g(x, y), h(x, y)) appears in Wy before (or at the same time as it appears in)
Wx. Then, by an argument symmetric to that of Case (1), f(g(x, y), h(x, y)) ∈ (Wy ∩ A).

Case (3). Neither Cases (1) nor (2). Then, f(g(x, y), h(x, y)) ∈ (Wx ∩Wy).

We indicate, briefly, how to generalize up into the arithmetical hierarchy all the insepara-
bility notions above. We let ϕn denote a fixed acceptable programming system (numbering)
for the set of partial functions: N → N which are partial recursive in ∅(n) [LMF76, Rog87].
We let W n

p denote the domain of ϕnp . W n
p is, then, the Σ0

n+1 set (⊆ N) accepted by ϕn-
program p. We present the definition of effective ∆0

n+1-inseparability to illustrate the pattern
of the generalizations. The other inseparability notions above are similarly generalized.

Definition 4 A is effectively ∆0
n+1-inseparable from B ⇔ [(A ∩ B) = ∅ ∧ (∃ recursive

f)(∀x, y)[f(x, y) ∈ ((W n
x ∩B) ∪ (W n

x ∩A) ∪ (W n
y ∩A) ∪ (W n

y ∩B) ∪ (W n
x △W n

y ))]].

Since the inseparability concepts defined above are clearly invariant under choice of ac-
ceptable programming system, we have, for example, that the n = 0 case of Definition 4
agrees with Definition 1.

It is clear that by employing the appropriate relativization [Rog87, LMF76] of recursion
theoretic tools each of our results above except Theorems 3 and 4 and Remarks 1 and 2 can
be generalized to each higher level of the arithmetical hierarchy. Theorems 3 and 4 provide
sufficient conditions for effective ∆0

1-inseparability (respectively, recursive inseparability) of
subrecursive index sets. Theorem 8 below provides a sufficient condition for effective ∆0

2-
inseparability of subrecursive index sets. We have not explored any other levels for sufficient
conditions involving inseparability of subrecursive index sets.

We note that Royer and Case [RC89] use effective ∆0
2-inseparability to gain insight into

theorems of Ladner, Schöning and Ambos-Spies [Lad75, Sch82, AS85] in structural com-
plexity theory and to obtain independence results about complexity. These latter results
are in the style of independence results due to Regan, Kowalczyk, Hartmanis, and Kurtz,
O’Donnell, and Royer [Reg83, Kow84, Har85, Reg86, Reg87, KOR87].

Theorem 8 Suppose C and D are disjoint subsets of S. Suppose there are ψ-programs c
and d such that, for every finite set A, (ψd|A ∪ ψc|A) ∈ C and (ψc|A ∪ ψd|A) ∈ D. Then: SC

is effectively ∆0
2-inseparable from SD.

The quantifier ‘∀∞’ from [Blu67] means ‘for all but finitely many’. If we suppose, as for
the examples following the statement of Theorem 3 above, that ψ is a subrecursive program-
ming system for S = Cubictime and that it satisfies Assumption 2, then, by Theorem 8,
the first example after the statement of Theorem 3 also provides an example of effective
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∆0
2-inseparability. It is easy to argue that each of the other two example pairs of sets af-

ter the statement of Theorem 3 has a ∆0
2 separating set. However, by Theorem 8 once

again, {r | range(ψr) ⊆ {0, 1} ∧ (∀∞z)[ψr(z) = 0]} is effectively ∆0
2-inseparable from

{r | range(ψr) ⊆ {0, 1} ∧ (∀∞z)[ψr(z) = 1]}.

Proof of Theorem 8. Suppose the hypotheses.
Since effective ∆0

2-inseparability is invariant under choice of acceptable programming
system, we are free to judiciously choose one. Now, the functions recursive in ∅(1) are well
known to coincide with the functions which are the limit of some recursive function [Sho59,
Sho71, Soa87]. This and its relativization were first noticed and used by Post [Sha71] and
have been employed (sometimes with rediscovery) many times. Case [Cas83] exploited an
extension to partial functions. Meyer [Mey72] proved a lemma that easily generalizes to the
fact that each function recursive in ∅(1) is the limit of some primitive recursive function.
Royer and Case [RC86, RC89] construct an Lineartime function L∗ such that, if we define

ϕ∗
p = λz lim

t→∞
L∗(p, z, t),

then ϕ∗ is an acceptable programming system (numbering) for the set of partial functions
partial recursive in ∅(1). They further define a particular associated relativized Blum com-
plexity measure [LMF76], Φ∗, based on the modulus of convergence [Sho59, Sho71] for L∗.
In particular the predicate λp, z, t [Φ∗

p(z) ≤ t] is in Π0
1 (generalizing Shoenfield’s Modulus

Lemma [Sho59, Sho71, Soa87]); hence, this predicate is in ∆0
2. Let W ∗

p denote the domain
of ϕ∗

p. W
∗
p is, then, the Σ0

2 set (⊆ N) accepted by ϕ∗-program p. We say that a number w
appears in W ∗

x before W ∗
y ⇔ Φ∗

x(w)↓ < Φ∗
y(w) ≤ ∞. A number w appears in W ∗

x at the same
time as it appears in W ∗

y ⇔ Φ∗
x(w) = Φ∗

y(w)↓ <∞.
The Hybrid Recursion Theorem of Royer and Case [RC86, RC89] holds between ψ and

ϕ∗ [RC86, RC89] and can be used to obtain self-other reference and facilitate interaction
between these systems. By the Hybrid Recursion Theorem, then, there are Lineartime
functions f and g such that, for all x, y, and z,

ψf(x,y)(z) =
{

ψd(z), if L∗(g(x, y), 0, z) = 0;
ψc(z), if L∗(g(x, y), 0, z) > 0;

ϕ∗
g(x,y)(z) =



















0, if f(x, y) appears in W ∗
x before W ∗

y ;
1, if f(x, y) appears in W ∗

y before (or at
the same time as it appears in) W ∗

x ;
↑, otherwise.

(In this application of the Hybrid Recursion Theorem there is no direct self-reference, but
there is circular reference since, for each x and y, ψ-program f(x, y) and ϕ∗-program g(x, y)
each refers to the other.) It suffices to show that

(∀x, y)[f(x, y) ∈ ((W ∗
x ∩ SD) ∪ (W ∗

y ∩ SC) ∪ (W ∗
x ∩W ∗

y ))].

Case (1). f(x, y) appears in W ∗
x before W ∗

y . Then

ϕ∗
g(x,y)(0) = 0 = lim

z→∞
L∗(g(x, y), 0, z).
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Hence, A = {z | L∗(g(x, y), 0, z) > 0} is a finite set. Therefore, ψf(x,y) = (ψc|A ∪ ψd|A),
which, by hypothesis, is in D. Hence, f(x, y) ∈ SD. Therefore, f(x, y) ∈ (W ∗

x ∩ SD).
Case (2). f(x, y) appears in W ∗

y before (or at the same time as it appears in) W ∗
x . Then,

by an argument symmetric to that of Case (1), f(x, y) ∈ (W ∗
y ∩ SC).

Case (3). Neither Cases (1) nor (2). Then, f(x, y) ∈ (W ∗
x ∩W ∗

y ).

Remark 3 The sufficient condition of Theorem 8 is not necessary.

Proof. We let C = {r | range(ψψr(0)) ⊆ {0, 1} ∧ (∀∞z)[ψψr(0)(z) = 0]} and D =
{r | range(ψψr(0)) ⊆ {0, 1} ∧ (∀∞z)[ψψr(0)(z) = 1]}. C and D are non-trivial since S con-
tains Lineartime, and, clearly, C and D are disjoint, but do not satisfy the hypotheses of
Theorem 8. Nonetheless, we show, employing terminology and results from the proof of The-
orem 8, that SC is effectively ∆0

2-inseparable from SD. The techniques of [RC86, RC89] easily
establish various delayed forms [Cas74] of the Hybrid Recursion Theorem [RC86, RC89]. In
particular, there are Lineartime functions f and g such that, for all w, x, y, and z,

ψψf(x,y)(w)(z) =
{

1, if L∗(g(x, y), 0, z) = 0;
0, if L∗(g(x, y), 0, z) > 0;

ϕ∗
g(x,y)(z) =



















0, if f(x, y) appears in W ∗
x before W ∗

y ;
1, if f(x, y) appears in W ∗

y before (or at
the same time as it appears in) W ∗

x ;
↑, otherwise.

The rest of the proof is a straightforward modification of the proof of Theorem 8.

We have not explored whether the proofs of Theorems 3 and 4 and Remarks 1 and 3
might, upon suitable generalization, lead to characterization theorems. Perhaps algebraic
manipulations in the style of [Str68, Wag69] (see also [Fri71, Bye82a, Bye82b, Bye83, Bye84b,
Bye84a, Iva86]), but for subrecursive systems, would be useful to elegantly bring the suffi-
cient, but not necessary conditions of this paper closer to characterizations.
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