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ABSTRACT. This paper advances an interpretation of Von Neumann-Morgen- 
stern's expected utility model for preferences over lotteries which does not require 
the notion of a cardinal utility over prizes and can be phrased entirely in the 
language of probability. According to it, the expected utility of a lottery can be 
read as the probability that this lottery outperforms another given independent 
lottery. The implications of this interpretation for some topics and models in 
decision theory are considered. 
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1. INTRODUCTION (AND DISAPPEARANCE) 

This paper advances an alternative interpretation of  the Von Neu- 
mann  and Morgenstern 's  expected utility model  for preferences over 
lotteries. In short, we show that the expected utility model  need not 
be based on the notion of  a cardinal utility function over prizes and 
can in fact be entirely phrased in the language of  probability. From 
here, we move  to examine what the proposed interpretation has to 
say or to add about some important topics in expected utility theory 
and about some non-expected utility models.  

We begin with the introduction of  this new interpretation and 
the (simultaneous) disappearance of  the von Neumann-Morgens te rn  
(NM) utility function. Given a compact  interval C' C IR (with 
nonempty  interior) of  monetary outcomes,  a random variable X 
taking values in C' is called a (monetary) lo t tery  on C. We write 
A ( C )  to denote the set of  monetary lotteries on C' and X , ~  F to 
indicate that X has cumulat ive distribution function F .  Note that by 
definition the probabilities of  a lottery are exogenously given; when 
this is not the case, we will speak of acts. 

Consider  the problem of  representing the preference relation ~ o f  
an agent named Nemo over the set A(C)  of  monetary lotteries. If _ 
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is complete, reflexive, transitive, and continuous (with respect to the 
topology of the weak convergence), it can be shown that there exists 
a continuous real-valued Bernoulli index B �9 A(C) ~ 1~. such that 
X _ Y if and only if B(X) >_ B(Y), for any X, Y in A(C). See 
Theorem 1 in Grandmont (1972). 

When __ satisfies also the axiom of independence, we obtain 
the expected utility model for preferences over lotteries. According 
to this, there exists an NM-utility function U �9 C --+ 1~ (unique 
up to positive affine transformations) such that the Bernoulli index 
representing ~ can be written as 

B(X) = fc U(x)dF(x) 
so that Nemo ranks two monetary lotteries X ~ F and Y ~ G 
according to the rule 

(1) X ~ Y i fandonly  if fcU(X)dF(x)>_ fcU(X)dC(x) 
which compares the expected utilities of X and Y. 

We assume as usual that the NM-utility function U over C is 
nonconstant and increasing, and furthermore that U is (at least right) 
continuous. As we recall in the Appendix, this latter assumption 
can be derived axiomatically by continuity of >-_ with respect to the 
topology of the weak convergence. Under this set of assumptions, U 
is bounded on C and by an appropriate positive affine transformation 
we can normalize its range to be the interval [0, 1]. Henceforth, U 
turns out to be a (nonconstant) increasing and continuous function 
such that U(inf C) = 0 and U(sup C) -- 1 or, more simply, a bona 
fide cumulative distribution function on C. 

As it is well known, this implies that on some appropriate prob- 
ability space there exists a random variable V ~ U, which can 
always be taken to be independent of any lottery in A(C). See The- 
orem 14.1 in Billingsley (1986). It follows that the Bernoulli index 
used to rank lotteries from A(C) can be written 

Bv(X) = fcU(X)dF(x)= fc 
(2) 

= Pr(X > V) 

and (1) can be restated as 

Pr(V _< x)dF(x) 

(3) X _ Y if and only if Pr(X > V) _> Pr(Y _> V) 
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so that two lotteries X, Y in A(C) are compared with respect to their 
likelihood of yielding outcomes which are no worse than those gen- 
erated by the stochastically independent lottery V. In other words, 
we can interpret the expected utility model as a procedure that ranks 
lotteries on the basis of their probability to outperform an (indepen- 
dent) stochastic benchmark. 

We call V an NM-benchmark and its cumulative distribution func- 
tion U(z) = Pr(V _< z) an NM-distribution. Moreover, to provide 
our interpretation with a name, note that in (2) we are averaging prob- 
abilities rather than utilities. Hence, we will speak of the (expected) 
probability model for preferences over lotteries instead of the expect- 
ed utility model. 

The two models coincide under the assumption that the NM- 
benchmark V is stochastically independent of the lotteries to be 
ranked. In this case, in fact, a quick glance to (2) should make it 
obvious that the linear functional representing Nemo's preferences is 
the same for both models. Mathematically, thus, stochastic indepen- 
dence of the benchmark implies that which of the two interpretations 
is chosen makes no difference. 

On the other hand, the (expected) probability model has higher 
generality because, if we drop this assumption, (3) defines a Bernoul- 
li index of the nonexpected utility type. We discuss this possibility 
in Section 7 but, unless explicitly stated, we maintain the assump- 
tion of stochastic independence elsewhere in the paper. We hope to 
show, in fact, that replacing the NM-utility function with the NM- 
distribution can lead to new insights even when the two models are 
mathematically equivalent. 

The rest of the paper assumes the (expected) probability view- 
point and develops as follows. Section 2 deals with the interpre- 
tation of a NM-benchmark. Section 3 considers risk aversion and 
asset integration. Section 4 studies the uniqueness properties of the 
NM-distribution U. Section 5 characterizes constant risk attitude by 
means of noninformed benchmarks. Section 6 develops a unifying 
definition for both univariate and multivariate first-order stochas- 
tic dominance. Section 7, finally, looks at some nonexpected utility 
models. 
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2. INTERPRETATIONS OF THE B E N C H M A R K  

A crucial component of the (expected) probability model is the NM- 
benchmark V. In this section we offer three complementary inter- 
pretations for its meaning. Our point of view is not to unveil how 
V is obtained but what it could represent. In particular, we hope 
to suggest which kind of process may lead to construct preferences 
which satisfy the (expected) probability model for preferences over 
lotteries. To be fair, it should be said that none of these interpretations 
seem completely convincing to us; yet, they seem to be more illu- 
minating than the intuitions about the cardinality of the NM-utility 
function U offered by the expected utility model. 

The first interpretation is that V represents the (random) value 
of opting out of a decision problem involving lotteries. The idea is 
the following. Presumably, Nemo does not go around with a ready- 
made package of preferences over lotteries to use whenever it is fit 
to do so. Rather, he explores (and maybe constructs) his preferences 
whenever this is necessary to make a choice. Hence, the problem 
of representing Nemo's preferences over lotteries presupposes the 
existence of a problem of choice among lotteries. Maybe Nemo 
is a sophomore who has agreed to participate in some economic 
experiment; maybe he is a gambler playing roulette in Las Vegas; or 
maybe he is just working out Gedanken experiments to improve his 
understanding of decision theory. But he is participating or playing 
or thinking. He is in the decision. 

If Nemo is in, he might as well stay out. The sophomore could 
spend the four hours that the experiment will last working part time; 
the gambler could go out of the casino and play in the stock market; 
the researcher could stop working on expected utility and write a 
paper on some ongoing hot topic. Any of these acts opts out of the 
decision problem and leads onto a different path where the choice 
is among acts and not about lotteries. We can interpret V as the 
subjective probabilistic assessment describing what Nemo believes 
would happen if his choice among lotteries would be turned into 
a choice about acts. Moreover, the stochastic independence of V 
would be a consequence of the plausible assumption that lotteries 
are independent of the acts involved in opting out. Note also that 
opting out cannot be reduced to a lottery and therefore the objection 
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that the option of staying out should be included in Nemo's decision 
problem does not apply. 

The second interpretation is that Nemo would actually like to use 
a 'probability-of-ruin' criterion, which ranks lotteries according to 
the probability that they outperform some deterministic threshold 
0 in C. However, when this threshold is only imperfectly known, 
Nemo makes a probabilistic assessment about its distribution U 
and considers the expected value of the criterion over all possible 
thresholds. Formally, 

E [Pr(X _> 0)] = fc Pr(X _> O)dU(O) = Pr(X >_ V) 

In this case, the NM-distribution U represents Nemo's uncertainty 
about the 'correct' threshold to apply. 

In the third interpretation, V stands for some standard of refer- 
ence which defines which prizes is 'fair' for Nemo to expect from 
the lotteries he plays or can play. More precisely, U(x) represents 
Nemo's probability to receive a prize not greater than z in a world 
'fair' to his situation. Here, the idea is that most agents have access 
only to a small subset of A(C) which depends on who they are. For 
instance, a very poor person can play lotto or bingo but may not 
play in casinos with high entrance fees; almost everybody can buy 
insurance policies but only a few ones can sell them. Therefore, the 
kind of lotteries Nemo plays depends on who he is and, in turn, this 
shapes his way to assess them. 

According to this interpretation, Nemo learns or estimates a plau- 
sible distribution for the prizes he can earn through lotteries (given 
who he is and his personal history) and use this as a benchmark to 
rank the lotteries which he can actually play. Thus, the distribution 
of V may be correlated with the lotteries that Nemo plays because 
he can use the information about the kind of lotteries to which his 
current situation gives him access to infer (or revise) a plausible 
distribution for V. As we discuss in Section 7, an interesting conse- 
quence of this is that some well-known non-expected utility models 
can be recast in the framework of the (expected) probability model. 

Moreover, if winning at lotto makes Nemo a millionaire and 
opens up new opportunities for him, he might revise drastically his 
assessment about V. This suggests that the NM-distribution may also 
be a function of Nemo's current situation (see Robson, 1992) and that 
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expected utility preferences over multi-stage lotteries may change 
over time as the outcomes of the lotteries in the initial stages become 
known. For lack of space, these possibilities are not considered in 
this paper. 

3. RISK AVERSION AND ASSET INTEGRATION 

According to Kahneman and Tversky (1979), most applications of 
the expected utility model for preferences over lotteries are based 
on the three tenets of expectation, asset integration, and risk aver- 
sion. Expectation states that Nemo's preferences over lotteries are 
represented by their expected utility. Asset integration says that the 
domain of the NM-utility function are Nemo's final asset positions 
(including current wealth) rather than his gains or losses. Risk aver- 
sion states that Nemo prefers the degenerate lottery bE(x) to any 
nondegenerate lottery X with expected value E ( X )  and is equiva- 
lent to concavity of the NM-utility function. 

Their paper (and many others) have offered several empirical 
refutations for each of these principles, and it is not our intention to 
rescue them here. However, we believe that the (expected) probabil- 
ity model can be used to shed some light on both risk aversion and 
asset integration and on how the empirical evidence bears on them. 

Let us begin from risk aversion. The two most common char- 
acterizations of this property are either behavioral (Nemo prefers 
bE(x) to X) or mathematical (U is concave). Neither of them, how- 
ever, seems to offer any explanation about why Nemo's preferences 
should be risk averse. The (expected) probability model provides a 
simple and direct answer. When the NM-distribution U is concave, 
Nemo attaches more probability to the occurrence of low outcomes 
for the NM-benchmark V. Therefore, Nemo is risk averse because 
he adopts a pessimistic benchmark where 'the worst outcomes are 
the most likely to happen'. To put it more colorfully, Nemo is risk 
averse because he believes in Murphy's Law. 

The principle of asset integration says that gains or losses are 
incorporated in the current asset position before evaluating the NM- 
utility function. However, since Markowitz (1952) formulated the 
assumption that NM-utility functions shift horizontally as a function 
of current wealth, several studies have produced ample evidence 
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that in most cases people tend to compute NM-utility functions over 
changes in wealth rather than on final asset positions. When this is 
the case, the function U is usually S-shaped: it is concave over gains 
but convex (and steeper) over losses, contradicting risk aversion. On 
the other hand, when Nemo is led to frame a decision problems in 
terms of final asset positions, U usually turns out to be concave. 

In the expected utility interpretation, this evidence is usually 
reported as another proof of the well-known fact that Nemo's prefer- 
ences (and hence their representation) may depend on how the choice 
problem is framed. However, why the framing affects Nemo's prefer- 
ences remains unexplained. The (expected) probability interpretation 
can offer a plausible explanation. 

To construct his preferences, Nemo must recall relevant informa- 
tion and assess a benchmark. The framing directs Nemo's attention 
either to his final asset positions or to changes from his current wealth 
w. In the first case, since his current position is irrelevant to the final 
position, Nemo's benchmark is likely to be independent of w. In the 
second case, instead, changes in current wealth relate naturally to w 
and Nemo might assess NM-distributions depending on his current 
position. 

In this latter case, Nemo might plausibly view w as a focal val- 
ue for his benchmark and assess for it a unimodal distribution U 
whose mode is (very close to) w. This would give the S-shaped 
distribution reported in the literature and described above. Further- 
more, the greater steepness of the convex part of the distribution 
would follow from the assumption that Nemo's current wealth w is 
sufficiently low: as Nemo cannot expect to face losses much larg- 
er than his current wealth w, a NM-distribution centered around w 
has to be positively skewed. Since most experiments have been run 
using students (who typically belong to the low-wealth range of the 
population), this explanation implies that the higher steepness of U 
over losses may be due to an experimental bias. 

On the other hand, consider the situation where Nemo is led to 
frame his decision problem in terms of final asset positions. Since he 
cannot rely on information about his current wealth, he might assess 
a benchmark based on his perception of the distribution of wealth in 
the population. Although this is a matter for empirical investigation, 
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casual evidence suggests that in this case most people would assess 
a distribution which is concave over most of its domain. 

4. ARBITRARY PRIZES 

The (expected) probability model can be extended without much 
difficulty to the case of an arbitrary prize set C. For any prize x in C, 
denote by 3, the degenerate lottery on C and by A(C) the set of all 
lotteries on C. Suppose that C is a separable metric space completely 
preordered by a preference relation _1 and that A(C) is completely 
preordered by _z. As detailed in the Appendix (under slightly more 
general assumptions), there exists a bounded and continuous func- 
tion U : C --+ R such that ~z can be represented by the Bernoulli 
index 

(4) B(X) = fc U(x)dF(x) 

for any lottery X ~ F on C if and only if: (i) -----2 is continuous in the 
topology of the weak convergence; (ii) satisfies the independence 
axiom; and (iii) is consistent with _ 1 in the sense that x ~ 1 Y if and 
only if ~ ___2 ~y. 

This latter assumption is especially important to the (expected) 
probability model because it implies that the NM-utility function U 
represents both ~__.1 on C and ~__-2 on A-(C). Hence, U is an increasing 
function or, more precisely, an order-homomorphism from (C, ~1) 
to (~,, >). Barring the case when ___ 1 is in fact an indifference relation 
and U is thus constant, then, U : C ~ R is a nonconstant, increasing, 
bounded and continuous function which can be normalized to a bona 
fide cumulative distribution function for some benchmark V on C and 
the Bernoulli index defined in (4) is equivalent to Pr(X _ 1 V). This 
establishes the applicability of the (expected) probability model. 

We can use this setting to shed light on an important puzzle asso- 
ciated with the expected utility model. Consider the usual statement 
that any strictly increasing transformation of the NM-utility function 
U represents Nemo's 15references on C, but U is defined only up to 
positive affine transformations in the expected utility model. This 
says that the utility function U is an ordinal representation of _1 on 
C and a cardinal representation of ~2 on the subspace (equivalent 
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to C) of the degenerate lotteries in A(C). Why is it that U has this 
twofold nature? 

According to the (expected) probability model, the answer is 
simple. The NM-distribution U supports a cardinal measure of an 
ordinal assessment. Given a lottery X and a benchmark V, the 
assessment of X is ordinal because the event {w : X(w) ~_l V(w)} 
involves only ordinal comparisons for each Lo. But its measure is 
cardinal because it is formulated as the probability of this event, so 
that the ranking of X is given by Pr(X ___1 V) and X >-_2 Y if and 
only if Pr(X __1 V) > Pr(Y _1 V). Let us examine this point in 
detail. 

First, consider the ordinal assessment. In the (expected) proba- 
bility model, preferences are independent of any order-preserving 
transformation of the domain of lotteries in the following sense. 
Given an order-homomorphism g from (C, El) to (IR, >_), the lottery 
X -~ F on C defines another lottery g(X) on g(C). Accordingly, a 
NM-benchmark V on C induces the NM-benchmark g(V) on 9(C). 
Moreover, for any x, y in C, x ~_l Y if and only if g(x) > g(y) so 
that, for any w, 

X(~o) __1 V(~) if and only if g[X(~o)] > g[V(~)] 

Hence, Pr(X ___~ V) = Pr[g(X) > g(V)] and X ___2 V if and only if 
g(X) is at least as preferred as 9(V). 

Therefore, when 9 is a real-valued (ordinal) utility function on C 
representing ___l, all qualititative comparisons can be made directly 
on the space g(C) of the ordinal 'utilities' of the prizes in C. It is 
for this reason that in the following (except in Section 6) we assume 
without loss of generality that the set of prizes is a (not necessarily 
compact) subset C = g(C) of monetary outcomes in R. 

Second, consider the cardinal measure. According to a common 
rendition, a cardinal utility function says that we can mark a zero 
point and a unit of measurement on a 'utils yardstick' and then 
use this yardstick to go around and measure the utility of different 
prizes in such a way that differences in utilities are meaningful. In 
the (expected) probability model, if x and y are in C, the difference 
between their utilities is U(y) - U(x) = Pr(x -<l V -<1 Y): the 
yardstick we are using is a 'probability rod' where differences in 
utilities measure strength of beliefs. Once we agree that zero and one 
mark respectively the null and the sure event, for any space which 
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is order-homomorphic to C there is only one possible yardstick or, 
equivalently, a unique probability distribution. 

5. CONSTANT RISK ATTITUDE 

Constant absolute risk attitude designates preferences over lotteries 
that are independent of a change in the size of the initial wealth posi- 
tion. Analogously, constant relative risk attitude denotes preferences 
that are independent of a proportional change in the initial wealth 
and in the scale of the prizes. 

In the expected utility framework, constant (absolute or relative) 
risk attitude has two main characterizations. The first one is very 
useful for modelling purposes and states that preferences with con- 
stant absolute risk attitude corresponds to linear or exponential NM- 
utility functions on ~,, while constant relative risk attitude yields 
power (including linear) or logarithmic NM-utility functions on R +. 
The second characterization relies on the notion of a constant coeffi- 
cient of (absolute or relative) risk aversion and lacks a clear decision 
theoretic interpretation. 

Since the expected utility and the (expected) probability models 
are mathematically equivalent, these two characterizations still hold 
for the (expected) probability interpretation. However, this latter can 
be used to provide two additional characterizations. 

The first one that we consider brings out clearly the central role 
of the probability assessment underlying the stochastic benchmark 
V ~ U. Recall from Section 2 the interpretation of the (expect- 
ed) probability model as a stochastic 'probability-of-ruin' criterion. 
Suppose that Nemo is a Bayesian who is trying to make a proba- 
bilistic assessment about the imperfectly known threshold 0, which 
we interpret for convenience as his minimum acceptable level of 
wealth. 

Since the NM-distribution U over 0 is independent of the lotteries 
that Nemo is called to play, both the sequence of lotteries faced and 
their realizations in the past do not provide information about 0. In 
the absence of other types of information about 0, then, Nemo might 
wish to use what Bayesian statisticians call a non informative prior for 
0 and we call a noninformed benchmark V. A few different general 
methods have been proposed to derive noninformative probability 
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distributions. See Berger (1985) or Bemardo and Smith (1994) and 
references therein. A largely used method is based on a principle 
of invariance and, as it tums out, suffices to characterize the NM- 
distributions which exhibit constant risk attitude. 

More precisely, constant absolute risk attitude and constant rela- 
tive risk attitude correspond respectively to the so-called relatively 
location invariant and relatively scale invariant model for noninfor- 
mative priors, which are well-known in Bayesian statistics. For a 
proof of this and other results in this section, see Castagnoli and 
Li Calzi (1993) which provides a more detailed discussion of the 
relevance of the (expected) probability model to constant risk atti- 
tude. 

THEOREM 1. A noninformed NM-benchmark exhibits constant 
absolute risk attitude on any compact interval C of prizes if and 
only if it is relatively location invariant. 

Thus, according to the (expected) probability interpretation, 
Nemo's preferences exhibit constant absolute risk attitude when his 
assessment of the benchmark is neutral with respect to information 
about its location. A similar result holds for constant relative risk 
attitude with respect to information about its scale. 

THEOREM 2. A noninformed NM-benchmark exhibits constant rel- 
ative risk attitude on any compact interval C of strictly positive prizes 
if and only if it is relatively scale invariant. 

Naturally, the relatively location invariant NM-distributions are lin- 
ear or exponential on 1~ and the relatively scale invariant NM- 
distributions are power (including linear) or logarithmic on N +. 
Therefore, any of these NM-distributions (if nonconstant) is unbound- 
ed on its domain, raising a justified concern about the applicability 
of the (expected) probability model. In fact, many noninformative 
priors are unbounded and Bayesians have long leamed to think of 
them as convenient shortcuts for more complicated statements. 

To illustrate what we mean, let us go back to the expected utility 
model. Assume that U is an unbounded NM-utility function. Taking 
for granted that U must be increasing, it can be unbounded only 
if its domain C is not bounded. In this case, there exist lotteries 
with infinite expected utility and the preferences represented by 
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the expected utility model cannot be complete, contradicting one 
of our assumptions. See for instance Arrow (1974). A statement 
based on unbounded NM-utility functions, then, is either an implicit 
assumption of incomplete preferences or a shortcut for something 
else. 

In the (expected) probability interpretation, the shortcut is the 
following. If U is defined over a non-compact set (say, P,) and is 
unbounded, U may be an improper cumulative distribution with 
infinite mass of the kind used in the Bayesian literature to model 
noninformative priors. However, since any realistic set C of prizes 
can be assumed compact, the NM-utility function Uc on C given by 

l O U(x) - U(minC) 

=  ( xax 

1 

if x < min C 

if min C < x < max  C 

i f x  > maxC 

is bounded. For obvious reasons, we call Uc a conditional NM- 
distribution. It is clear that although a NM-distribution U can be 
unbounded, this is never the case for a conditional NM-distribution 
on a compact domain. In this language, the statement that the only 
NM-utility functions exhibiting constant absolute risk attitude are 
the (unbounded) exponential or linear functions becomes the state- 
ment that the only NM-distributions satisfying constant absolute 
risk attitude are characterized by (bounded) exponential or linear 
conditional NM-distributions Uc on any compact set C of prizes. 

The second characterization that we consider is the following. Let 
V be a given NM-benchmark. We are interested in measuring how 
the Bernoulli index By(X) for an available lottery X varies when 
we assess its value with respect to the alternative NM-benchmark 
W = V + a, where a E R. Natural candidates for this purpose are the 
ratio index RI(X, a) = Bv(X)/Bv+a(X) and the difference index 
DI(X, a) = By(X) - Bv+a(X). Note that the ratio index can take 
values in the extended reals. 

In general, either index depends on the lottery X,  on the value of 
a and on the compact domain C which defines the conditional NM- 
distribution Uc. The two classes of NM-distributions which exhibit 
constant absolute risk attitude are respectively obtained when one or 
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the other index is independent of X;  i.e., when the difference or the 
ratio between an assessment using V or V + a does not depend on 
the lottery to be evaluated. 

THEOREM 3. Let V be a NM-benchmark with NM-distribution U : 
--+ IR. The following holds: 

A1 U is exponential if and only if R l (X ,  a) is independent of X on 
any compact interval C of prizes; 

A2 U is linear if and only if DI(X,  a) is independent of X on any 
compact interval C of prizes. 

A similar construction leads to the characterization of constant rela- 
tive risk attitude. Given a NM-benchmark V, however, we are now 
interested in measuring how the Bernoulli index Bv(X)  for a fea- 
sible lottery X varies when we assess its value with respect to the 
alternative NM-benchmark W = bV, where b > 0. We use again the 
ratio index RI(X,b) = Bv(X) /Bbv(X)  and the difference index 
DI(X,b) = Bv(X)  - Bbv(X). 

THEOREM 4. Let V be a NM-benchmark with NM-distribution U : 
(0, +oo) --+ IR. The following holds: 

A3 U is power if and only if RI(X,  b) is independent of X on any 
compact interval C of strictly positive prizes; 

A4 U is logarithmic if and only if Dl(X,  b) is independent of X on 
any compact interval C of strictly positive prizes. 

6. STOCHASTIC DOMINANCE 

The (expected) probability model has an interesting application to the 
study of (first order) stochastic dominance for multivariate lotteries. 
We assume in the following that p n is endowed with the natural 
componentwise partial order >_ and that C C p n is the cartesian 
product of compact intervals (with nonempty interior). In particular, 
if n -- 1, this reduces to the same setting discussed so far. As above, 
we denote by A(C) the set of all lotteries on C. 
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In the univariate case with n = 1, the Bernoulli index associated 
by the (expected) probability model to a lottery X in A(C) is 

By(X)  = Pr(X >_ V ) =  1 - P r ( X  < V) 

In the multivariate case with n > 1, instead, Pr(X > V) and Pr(X < 
V) need not have unit sum. This leads to consider an upper Bernoulli 
index 

= Pr(X > V) 

and a lower Bernoulli index 

B~,(X) = 1 - P r ( X  < V ) =  Pr(X r V) 

Note that the quantity B~v(X) - B}(X)  is always not negative 
because it represents the probability that X and V are not compara- 
ble; i.e., that X outperforms V over at least one and at most n - 1 
components of 1~ n but is outperformed over the other components. 

The two indices define respectively an upper and a lower pref- 
erence relation >-_* (z = u, l) on A(C) described by X >-_* Y if 
and only if B}(X)  >_ B~.(Y) for all X, Y in A(C). As it is obvi- 
ous, these two preference relations need not coincide in general for 
n > 1. In fact, the upper preference relation ranks X higher than Y 
if X has an higher probability than Y to outperform the benchmark 
over all the components of p,n while the lower preference relation 
ranks X higher than Y if it has a higher probability of not being 
outperformed by the benchmark over all the components of R".  

Finally, note that the two indices can also be thought as the expect- 
ed value respectively of the upper NM-utility function U~'(x) = 
Pr(V < x) and the lower NM-utility function U t (z) = 1 - Pr(V > 
:r). Moreover, the upper NM-utility function U u is in fact a cumula- 
tive distribution function while the lower NM-utility function U t is 
the complement to one of a survival function. 

Let us now examine how this relates to the subject of multivariate 
stochastic dominance. Consider first the univariate case, where C is 
a subset of R. As it is easy to show (see also Theorem 17.A.1 in 
Marshall and Olkin, 1979), given lotteries X .---* F and Y "--* G, the 
following five conditions are equivalent and each of them could be 
taken as the definition of stochastic dominance: 

D1 Pr(X >__ t) >__ Pr(Y >__ t) for any t in C; 
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D2 Pr(X < t) _< Pr(Y < t) for any t in C; 

D3 E U ( X )  >_ EU(Y)  for any increasing NM-utility function U : 
C --+ R; 

D4 9(X)  first order stochastically dominates 9(Y) for any increasing 
function 9 : C --+ R; 

D5 Pr(X E B) _> Pr(Y C B) for any subset B of C with increasing 
indicator function. 

Consider now the multivariate case, when C is a subset of 1~. '~ for 
n > 1. By analogy, it would seem natural to interpret 'increasing' in 
the conditions above as 'componentwise increasing' and obtain five 
characterizations of multivariate stochastic dominance. However, it 
is obvious that the two conditions D1 and D2 cannot be equivalent. 
Moreover, any of D 1 and D2 is implied by (but does not imply) D3, 
D4, and D5, which are all equivalent. See Marshall and Olkin (1979). 
This missing implication is somewhat crucial: condition D3, which 
is based on expected utilities, does not follow from either D1 or D2, 
which are based on distribution functions. 

Theorem 17.C.3 in Marshall and Olkin (1979) shows where is the 
root of the problem. 

THEOREM 5. Condition D1 holds on IR n if and only if E U ( X )  >_ 
EU (Y) for any distribution function U on IR n. Analogously, con- 
dition D2 holds on IR" if and only if E U ( X )  >_ EU(Y)  for any 
function U on IR n which is the complement to one of a survival 
function. 

Hence, we can restore the equivalence D1 r D3 r D4 r D5 
between the characterizations of multivariate stochastic dominance 
by interpreting 'increasing' as 'increasing as a distribution func- 
tion' (or, equivalently, 'increasing and supermodular'). Similarly, 
the equivalence D2 r162 D3 r D4 r D5 is restated if we interpret 
'increasing' as 'increasing as the complement to one of a survival 
function on C'  (or, equivalently, 'increasing and submodular'). In 
both cases, the relevance of the probabilistic interpretation should 
be clear. 

Moreover, this suggests a possible way to unify the definition of 
stochastic dominance for the univariate and the multivariate case. 
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DEFINITION 6. Let X and Y be two random variables on R n. 
We say that X stochastically dominates Y in the upper sense if 
Pr(X > V) >_ Pr(Y >_ V) for any random variable V stochastically 
independent of X and Y. 

Similarly, we say that X stochastically dominates Y in the lower 
sense if Pr(X < V) < Pr(Y < V ) f o r  any random variable V 
stochastically independent of X and Y. 

It is clear that conditions D1 and D2 are respectively equivalent to 
stochastic dominance in the upper and in the lower sense. Hence, 
since D 1 and D2 are equivalent in the univariate case, for n = 1 the 
two types of stochastic dominance coincide. Moreover, using Theo- 
rem 5, it is a simple exercise to prove the following characterization 
which holds for any n >__ 1. 

THEOREM 7. Let X and Y be two random variables on ~n, with 
n > 1. Then X stochastically dominates Y in the upper (resp., 
lower) sense if and only if any of D1, D3, D4, D5 (resp., D2, D3, 
D4, D5) above holds with 'increasing' replaced by 'increasing as a 
distribution function' (resp., 'increasing as the complement to one 
of a survivat function'). 

7. CORRELATED BENCHMARKS 

tk natural generalization of the (expected) probability model is 
to drop the assumption of stochastic independence of the NM- 
benchmark. This can be done at various degrees of generality. A 
fairly general assumption is to allow for pairwise stochastic depen- 
dence between the benchmark V ~ U and each lottery X -,-* F. 
Thus, the Bernoulli index becomes 

(5) 
B y ( X )  = Pr(X > V) = f cPr(V < x I X  = x) dF(x) 

= fc  U(x ;X)dF(x )  

and the NM-distribution U(x; X) may depend on the lottery X to be 
evaluated. This more general type of Bernoulli index can be inter- 
preted as if Nemo is using the information about the prizes offered 



EXPECTED UTILITY WITHOUT UTILITY 297 

by lottery X to evaluate the appropriate benchmark against which 
X should be assessed. More precisely, the choice of the benchmark 
may be the outcome of a process in which Nemo combines some 
(prior) information and the evidence associated with X. 

For practical purposes, however, this model is unmanageable and 
it is necessary to make some additional assumption. One possibility 
is to make the NM-distribution depend on the distribution function 
F rather than on the random variable X so that (5) becomes 

(6) By(X) = Pr(X > V) =/c U(x; F) dF(z) 

This mathematical formulation leads to a model that has recently 
surfaced inside the expected utility framework, where it has been 
explored at various degrees of generality by Becker and S arin (1987), 
Viscusi (1989), Bordley and Hazen (1991), and Bordley (1992). For 
instance, the lottery-dependent expected utility model in Becker and 
Sarin (1987) hypothesizes that the dependence can be fully captured 
by a single parameter C~F E IR so that U(x; F)  = U(x; C~F). 

In a spirit similar to Section 3, these studies have shown that 
instances of (6) are not only potentially consistent with a large part of 
the experimental evidence, but predict most of the observed behavior. 
However, they have left unclear the mechanism by which the lottery 
X to be evaluated might affect the NM-utility function. 

The (expected) probability model, suggesting a probabilistic mech- 
anism, may offer an appropriate language to unify these and other 
kinds of nonexpected utility models. Although this point calls for 
further research, we illustrate it with an example based on the gener- 
alized expected utility model by Machina (1982). The choice of this 
important general model is motivated by our opinion that its rein- 
terpretation according to the (expected) probability model provides 
the intuitive appeal that lacks to its traditional presentation in the 
expected utility framework. 

Let us go back to (6). Instead of specifying exactly how U(.; F)  
depends on F,  we might be content with some qualitative assump- 
tion. In particular, since the assessment of the benchmark depends 
both on F and on other (prior) information, a plausible requirement 
is that U(.; F)  'changes less' than F for small changes in F.  To for- 
malize this statement, suppose that C is a bounded subset of R and 
endow the set A (C) with the L 1-norm. As argued in Machina (1982), 
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this norm is a natural choice because it induces the topology of weak 
convergence on the linear space generated by A(C). 

For any two lotteries X ~ F and Y ~ G on C, then, we assume 
that 

(7) [] U(.;F)-U(,;G)[1= o(l[ F - G  [I) 

In other words, for any lottery Y -,-, G in an appropriate neighbor- 
hood of X ~ F, the distributions of the benchmarks for X and 
Y are closer than the distributions of X and Y. Whatever process 
Nemo is using to revise his benchmark, it has the property that it is 
locally more stable than the change in lotteries as measured by the 
L 1-norm. 

When (??) holds, for Y in some appropriate neighborhood of X, 
the difference between the Bernoulli indices for lotteries X and Y 
can be written 

B ( Y )  - B ( X )  = fc U(z; G)dG(x) - fc  U(z; F)dF(x)  

= fc U(x; F) [dG(x) - dF(x)] 

+ fc [U(x; G) - U(x; F)] dG(x) 

<_ f eU(x ;F)  [dG(x)-dF(x)]  

+ II u ( . ; F ) -  u( . ;a)II  

= fc U(x; F) [dG(x) - dF(x)] + o (11F - G II) 

This gives exactly the key mathematical expression obtained in 
Machina (1982, p. 293-294) from the assumption that the Bernoul- 
li index is Fr6chet differentiable with respect to the Ll-norm on 
the linear space generated by A(C). Note that this approach is not 
only more intuitive but yields naturally the assumption of Fr6chet 
differentiability for the preference functional. 

The point of view based on the (expected) probability model 
can be used to reinterpret most of the results presented in Machi- 
na (1982). For instance, in the expected utility interpretation, Theo- 
rem 2 in Machina (1982) states that Nemo always prefers a lottery 
X to a lottery Y which differs by a mean preserving increase in 
risk if and only if the NM-distribution U(x; F) associated with any 
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lottery X ~ F on C is concave in z. For the (expected) probability 
model, this holds if and only if all benchmarks associated with any 
lottery share the pessimistic belief that the worst outcomes are the 
most likely to happen. 

Without going into detailed restatements for all the results in 
Machina (1982), we examine only the interpretation of its Hypothe- 
sis II. In the language of the expected utility model, this assumption 
states that the coefficient of absolute risk aversion for U(.; F) is 
greater than the coefficient of absolute risk aversion for U(.; G) 
whenever X -~ F first-order stochastically dominates Y ~ G. As 
discussed in Machina (1983), the addition of Hypothesis II to the 
generalized expected utility model can explain some of the most 
prominent systematic violations of the independence axiom, like the 
common consequence effect, the common ratio effect, the oversen- 
sitivity to changes in small probabilities or outlying events and the 
utility evaluation effect. It is unfortunate that such a crucial assump- 
tion should sound so complicated. 

Following the (expected) probability interpretation, instead, 
Hypothesis II states that when X first order stochastically dominates 
Y the benchmark for X is more pessimistic than the benchmark for 
Y. In other words, Nemo's assessment about the benchmark tends to 
be revised downward as the lottery evaluated becomes more appeal- 
ing. This attitude reminds of the saying 'hope for the best, prepare 
for the worst' and seems much closer to an intuitive explanation of 
Nemo's behavior. 

APPENDIX 

A. AN AXIOMATIZATION 

We recall here the axiomatization of the expected utility model for 
preferences over lotteries by Grandmont (1972), which provides a 
set of necessary and sufficient conditions for the NM-utility function 
to be bounded and continuous. See also Foldes (1972). 

We begin with some notation. Let C be a separable metric space 
and 13(C) its Borel a-field. Let M(C) the space of all (countably 
additive) probability measures on the measurable space (C., B(C)), 
endowed with the topology of the weak convergence. For any z E C, 
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denote by ~x the degenerate lottery on z and by D the (topological) 
subspace of all degenerate lotteries in M(C). 

We are now ready to state the axiomatization, which is given as 
Theorem 3 in Grandmont (1972). 

THEOREM 8. Let C be a separable metric space, completely pre- 
ordered by >- 1. Let II be a closed and convex (topological) subspace 
of M(C) containing D and completely preordered by >-2. A set of  
necessary and sufficient conditions for the existence of a bounded 
and continuous function U : C ~ JR order-preserving with respect 
to >-l and such that the Bernoulli index B : II --~ JR defined by 
B(zr) -- fc U(:c)dTr(z) is order-preserving with respect to >-2 is: 

(consistency) for any z and y in C, z >-l Y if and only if  ~x >-2 t~g; 

(continuity) for any 7to in FI, the sets {Tr C II : 7r >-2 7ro} and 
{ Tr EII : 7to >'-2 7r } are close& 

(independence) for any 7q, 7r2, 7f 3 E 1-[ and any real number a E 
[0, 1], 7rl r,-'2 712 implies 0t71-1 --[-(1- a):n3 ""2 0':7I'2 + (1 --0/)71 3. 
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