
Generality’s Price:

Inescapable Deficiencies in

Machine-Learned Programs

John Case

Dept. of Computer and Information Sciences, University of Delaware, Newark,

DE 19716-2586 USA. Email: case@cis.udel.edu.

Keh-Jiann Chen

Institute of Information Science, Academia Sinica, Nankang 115, Taipei, Taiwan,

ROC. Email: kchen@iis.sinica.edu.tw.

Sanjay Jain

School of Computing, National University of Singapore, 3 Science Drive 2,

Singapore 117543, Republic of Singapore. Email: sanjay@comp.nus.edu.sg.

Wolfgang Merkle

Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 294,

D-69120 Heidelberg, Germany. Email: merkle@math.uni-heidelberg.de.

James S. Royer

Dept. of Elec. Eng. and Computer Science, Syracuse University, Syracuse, NY

13244 USA. Email: royer@ecs.syr.edu.

Abstract

This paper investigates some delicate tradeoffs between the generality of an algo-

rithmic learning device and the quality of the programs it learns successfully. There

are results to the effect that, thanks to small increases in generality of a learn-

ing device, the computational complexity of some successfully learned programs is

provably unalterably suboptimal. There are also results in which the complexity of

successfully learned programs is asymptotically optimal and the learning device is

general, but, still thanks to the generality, some of those optimal, learned programs

are provably unalterably information deficient — in some cases, deficient as to safe,

Preprint submitted to Elsevier Science 11 March 2007

algorithmic extractability/provability of the fact that they are even approximately

optimal. For these results, the safe, algorithmic methods of information extraction

will be by proofs in arbitrary, true, computably axiomatizable extensions of Peano

Arithmetic.

Key words: Computational learning theory; Applications of computability theory

1 Introduction

We abbreviate class of characteristic functions of languages by CCFL. Sup-

pose C0 ⊆ C1 is a pair of complexity CCFLs which do (perhaps barely) sep-

arate. For example, let α, as from [1, §21.4], be a very slow growing, linear

time computable function ≤ an inverse of Ackermann’s function; let C1 be

DTIME(n · (log n) ·α(n)); and let C0 be DTIME(n). 1 These classes have long

been known to separate [2,3]. Furthermore, it is straightforward that some

learning device (synonymously, inductive inference machine or IIM) M0, fed

the values of any element f of this C0, outputs nothing but linear-time pro-

grams and eventually converges to a fixed linear-time program which correctly

computes f . This kind of syntactically converging learning in the limit is called

EX-learning (or EX-identification) [4–7]. Let Z∗ be the CCFL for precisely

the finite languages. Clearly, Z∗ is an especially simple, proper subclass of our

example C0. Two of our main theorems (Theorems 27 and 28 in §6 below) each

implies that, nonetheless, if M1 is any learning device which is slightly more

general than M0 in that it EX-learns every function in our example C1, then,

for some especially “easy” function f , more particularly for an f ∈ Z∗, M1

on f syntactically converges to a correct program p for f , but this p runs in

worse than any linear-time bound on all but finitely many inputs. This inherent

run-time deficiency of p is the inescapable price for employing a more general

learning device to learn C1 instead of learning only C0. Theorems 27 and 28, on

which this example is based, are proved by delayed diagonalization (or slowed

simulation) [8,9] with cancellation [10] (or zero injury), complexity-bounded

self-reference [9], and careful subrecursive programming [9].

Fix k ≥ 1. Let C1 = DTIME(nk · (log n) · α(n)) and C0 = DTIME(nk). These

classes separate [2,3], and it is straightforward that some learning device EX-

1 DTIME(t(n)) denotes the set of languages decidable by a deterministic, multi-

tape Turing machine within O(t(n)) time, where n is the length of the machine’s

input. DTimeF(t(n)) denotes the set of functions over strings computable by this

same class of machines within O(t(n)) time.

2

learns this C0 outputting only conjectures that run in k-degree polytime. How-

ever, again from Theorems 27 and 28, for any slightly more general learning

device M1 which EX-learns this C1, there will be an easy f , an f ∈ Z∗, so

that, on f , M1’s final program p will run worse than any k-degree polytime

bound on all but finitely many inputs.

One way to circumvent the complexity-deficiency-in-learned-programs price

of generality in the above examples is to consider a most general learning

criterion called BC∗-learning [6,11]. In this type of learning, in contrast to

EX-learning, one foregoes syntactic convergence in favor of semantic conver-

gence and one foregoes requiring the final programs to be perfectly correct at

computing the input function: convergence is to an infinite sequence of pro-

grams all but finitely many of which are each correct on all but finitely many

inputs. Harrington [6] showed that there is a learning device that BC∗-learns

every computable function. (On the other hand, fairly simple classes of com-

putable functions cannot be EX-learned [6].) One of our main positive results

(Theorem 31 in §8 below) says that there is a learning device M∗ that BC∗-

learns the CCFL for the polytime decidable languages in such a way that:

(i) all of M∗’s output conjectures run in polytime, (ii) for each k ≥ 1, on

each f ∈ DTIME(nk), all but finitely many of M∗’s outputs run in k-degree

polytime; and (iii) M∗ EX-learns all the linear-time computable functions.

There is, though, another kind of deficiency-in-learned-programs price for

generality of learning, and this affects BC∗-learning, EX-learning, and the

learning criteria of intermediate strength discussed beginning in §2 below.

Let PFk = DTimeF(nk) and QFk
α = DTimeF(nk · (log n) · α(n)). Let ϕq be

the (partial) function computed by multi-tape Turing machine (number) q.

Suppose M is any device BC∗-learning QFk
α. 2 Corollary 9 in §4 below says,

then, that there is an easy f , an f ∈ Z∗, so that, if M is fed the values of

f (which it at least BC∗-learns), then for all but finitely many of M’s cor-

responding output conjectures p, Peano Arithmetic [12] (PA) fails to prove

that some finite variant of ϕp is k-degree polytime computable. Of course, for

such p’s, some finite variant of ϕp, e.g., f , is trivially linear-time computable.

Hence, these p’s are information-deficient. If, for example, M∗, the learning

device of Theorem 31 (discussed in the previous paragraph), is used for M,

then, on the corresponding f , this M outputs a perfectly correct final program

p which runs in linear-time, but Peano Arithmetic cannot prove the weaker

result about this p that some finite variant of ϕp is k-degree polytime com-

putable. Hence, for the learning device of Theorem 31, its final output on f

is information-deficient, but not complexity-deficient. Corollary 9 discussed

2 One of many special cases of this hypothesis is that M actually EX-learns QF k
α.

3

in this paragraph is one of several corollaries of Theorem 8, our first main

sufficient condition result, all given in §4.

Here is another example. Let C0 = REG and C1 = CF , where REG and CF are

the CCFLs of regular and context free languages, respectively. Of course, for

this example, the separation is not particularly tight. However, importantly,

for this example, direct, aggressive diagonalization methods such as those

mentioned above are not available. Let coZ∗ be the CCFL for the co-finite

languages, i.e., the languages whose complements are finite. Clearly, coZ∗ is

an especially simple, proper subclass of REG. First note that some learning

device outputs only deterministic finite automata and EX-learns REG [4],

where deterministic finite automata should be thought of as a degenerate case

of Turing machines that use no tape squares for workspace [3]. EX∗-learning

is the variant of EX-learning in which the final program need be correct only

on all but finitely many inputs. By contrast, still in §4 below, as a corollary of

our other main sufficient condition result, Theorem 14, we have Corollary 17

as follows. Suppose M EX∗-learns CF and k, n ≥ 1. 3 Then there is an easy

f , an f ∈ coZ∗, such that, if p is M’s final program on f , for some distinct

x0, . . . , xn−1, program p uses more than k workspace squares on each of inputs

x0, . . . , xn−1. This is a complexity-deficiency result for (REG, CF). Theorem 14

has other complexity-deficiency corollaries, e.g., Corollary 18, an interesting

one for (P,NP) — assuming they separate. See also Remark 20 for a related in-

teresting corollary involving BQP, a quantum version of polynomial-time [13],

instead of NP. In these results the complexity deficient learned programs have

unnecessary non-determinism or quantum parallelism. Corollaries 10 and 11 of

Theorem 8 provide information-deficiency results for (REG, CF) and (P,NP),

respectively. Remark 12 provides information-deficiency corollaries of Theo-

rem 8 for (P,BQP) as well as other examples.

Those corollaries, discussed in the previous paragraph, of our sufficient con-

dition results, Theorems 8 and 14, involve classes (C0, C1) for which direct,

aggressive diagonalization is (apparently) not available. These sufficient condi-

tion results are proved herein with the aid of some refined inseparability results

from [9]. §3 below provides the details. In [9] the inseparabilities were used to

characterize relative program succinctness between (possibly barely) separated

subrecursive programming systems. Herein they are used to obtain higher-type

inseparabilities providing our sufficient conditions (not characterizations) for

deficiencies in machine-learned programs. We also use Theorem 8 to obtain

all our information-deficiency results, including the one for (PF k,QFk
α) de-

3 One of many special cases of the hypothesis that M EX∗-learns CF is that M

actually EX-learns CF .

4

scribed above. Actually, Theorem 14 can be used to prove a weak special case

of our strong complexity-deficiency result (Theorem 28) for (PF k,QFk
α). This

is Corollary 16. In this corollary the quantifier order between the f ∈ Z ∗ and

the k-degree polynomial-time bounds is weakened and the for-all-but-finitely-

many-inputs-x quantifier is weakened to exists-n-distinct-inputs.

Some of our results whose proofs employ tricks from [9] can also be shown

through related methods from [14–16], but we do not pursue this further here.

The order of presentation in this introduction differs from that of the remain-

ing sections. The latter order was dictated, to some extent, by the need to

introduce required technology in a particular order.

2 Conventions and notation

Strings and numbers. N denotes the set of non-negative integers. Each element

of N is identified with its dyadic representation over {0,1 }. Thus, 0 ≡ ε,

1 ≡ 0, 2 ≡ 1, 3 ≡ 00, etc. We will freely pun between x ∈ N as a number

and a 0-1-string. Let |x| = the length of the dyadic representation of x ∈ N.

By convention, for ~x ∈ Nn, |~x| = |x0| + · · · + |xn−1|.

Encoding tuples. Let 〈·, ·〉 be a linear time pairing function. That is, 〈·, ·〉 : N×

N → N is 1–1 and onto and each of λx, y 〈x, y〉, π0 = λ〈x, y〉 x, and π1 =

λ〈x, y〉 y is computable on a multi-tape deterministic Turing Machine in time

linear in the lengths of its inputs. Examples of such pairing functions can

be found in [17,9]. By convention, for each n ≥ 2 and x0, . . . , xn ∈ N, we

inductively define 〈x0, . . . , xn〉 = 〈x0, 〈x1, . . . , xn〉〉.

Functions. A → B (respectively, A ⇀ B) denotes the set of all total (re-

spectively, possibly partial) functions from A to B. For f : A ⇀ B, f(x)↓

means f is defined on x and f(x)↑ means that f(x) is undefined on x; ↑ by

itself denotes undefined. Suppose f, g : N ⇀ N. For each n ∈ N, f =n g

means that {x f(x) 6= g(x) } is of size n or less, and f =∗ g means that

{x f(x) 6= g(x) } is finite, i.e., that f and g are finite variants. For each

f : N → N, let

O(f)
def
= { g : N → N (∃a)(∀x)[g(x) ≤ a · (f(x) + 1)] }.

By convention O(f(n)) is short for O(λx f(|x|)). For each C ⊆ (N → N),

let C0-1 denote the 0–1 valued elements of C. PR denotes the set of partial

5

recursive functions and R denotes the total recursive functions. Let log 0 = 0

and, for each positive integer x, log x = blog2 xc.

Programming systems. A partial recursive ψ : N2 ⇀ N is a programming

system for S ⊆ PR if and only if S = {λx ψ(i, x) i ∈ N }. We typically write

ψi(x) for ψ(i, x). Let ϕ be an acceptable programming system of PR based on

deterministic multi-tape Turing machines [3,18]; ϕ being acceptable means that

for any other programming system for an S ⊆ PR, say θ, there is an effective

translation of θ-programs into equivalent ϕ-programs, i.e., a computable t with

ϕt(i) = θi for all i. By convention, for each i and x, x0, . . . , xk, ϕi(x0, . . . , xk) =

ϕi(〈x0, . . . , xk〉); Φi(x) = the run time of TM i on input x; and ΦWS
i (x) = the

work space used by TM i on input x, provided ϕi(x)↓; ∞, otherwise.

Subrecursive classes of functions. For each recursive t : N → N, let DTimeF(t)

= {ϕi (∃a)(∀x)[Φi(x) ≤ a · (t(x) + 1)] } and DTIME(t) = (DTimeF(t))0-1.

For each k > 0, let

PFk def
= DTimeF(λx |x|k),

the functions computable in O(nk) time on a deterministic multi-tape TM,

and let PF = ∪k>0PF
k, the polynomial-time computable functions. Let

LS low
def
=

{

f ∈ PF1 f is nondecreasing and unbounded
}

.

By standard results [19,20], for each recursive, increasing, unbounded f , there

is an s ∈ LS low that grows slower than the inverse of f in the sense that

s(f(x)) ≤ x for all x. For each k > 0 and s ∈ LS low,

QFk
s

def
= DTimeF

(

λx |x|k · (log |x|) · s(|x|)
)

.

By standard results [2,3], (QFk
s −PFk)0-1 6= ∅ for each k > 0 and s ∈ LS low.

Let Z∗ (respectively, coZ∗) denote the class of 0–1 valued functions that

are 0 (respectively, 1) almost everywhere. Let NP , BPP, P, CF , and REG

respectively denote the classes of characteristic functions of NP, BPP [21],

polynomial-time decidable, context free, and regular languages over {0,1 }∗.

(Recall: N ≡ {0,1 }∗.)

S ⊆ R is an r.e. subrecursive class when there is a programming system for S.

By standard results, P, Pk, QFk
s , NP , . . . are each r.e. subrecursive classes.

Finite initial segments. For f : N → N and n ∈ N, f |n denotes the sequence

f(0), f(1), . . . , f(n−1), the length-n initial segment of f . So, f |0 = the empty

6

segment. Let SEG = the set of all such finite initial segments; σ, with or

without decorations, ranges over SEG. If σ = a0, a1, . . . , an−1 and m ≤ n,

then σ|m = a0, a1, . . . , am−1.

Inductive inference machines. An inductive inference machine [4] is an al-

gorithmic device that computes a SEG ⇀ N function. M, with or without

decorations, ranges over such machines. Since SEG can be coded into N, an

M can be viewed as computing an element of PR. M on f converges to i

(written: M(f)↓ = i) when, for all but finitely many n, M(f |n) = i; M(f)

is undefined if no such i exists. The point of convergence of M on f is, if it

exists, the smallest m with M(f |m)↓ and M(f |n) = M(f |m) for each n > m.

The EX and EX∗ identification criteria. Suppose f ∈ R and S ⊆ R. M

EX-identifies f if and only if, for some i, M(f)↓ = i and i is a program for f

(i.e., ϕi = f). M EX-identifies S if and only if S ⊆ EX(M)
def
= { f ∈ R M

EX-identifies f }. EX
def
= {S some M EX-identifies S }. EX-identification

originated with Gold [4] who showed that every r.e. subrecursive class is in

EX. M EX∗-identifies f if and only if, for some i, M(f)↓ = i and ϕi =∗ f .

EX∗(M) and EX∗ are defined analogously to our definitions of EX(M) and EX.

EX∗-identification is due to Blum and Blum [5] who showed that EX (EX∗.

The BC, BCn, and BC∗ identification criteria. Suppose f ∈ R, S ⊆ R,

and k ∈ N. M BCk-identifies f if and only if, for all but finitely many n,

ϕM(f |n) =k f . M BCk-identifies S if and only if S ⊆ BCk(M)
def
= { f ∈ R M

BCk-identifies f }. BCk def
= {S some M BCk-identifies S }. We usually write

BC0 as simply BC. The BC∗ criterion is defined in the obvious fashion. BC-

identification was first formalized by Bārzdiņš [22]. Independently, Case and

Smith [6] defined BCm- and BC∗-identification. Steel [6] showed EX∗ ⊆ BC,

Harrington and Case showed this inclusion to be proper [6], and Case and

Smith [6] showed BC0 (BC1 (BC2 (· · · (BC∗. Moreover, as noted in §1,

Harrington [6] showed that R ∈ BC∗.

Arithmetic sets. The Σ0- and Π0-predicates over Nk are just the recursive

predicates over Nk. P is a Σn+1 predicate over Nk when, for some m, there

is a Πn predicate Q over Nk+m such that P (~x) ≡ (∃y1) . . . (∃ym)Q(~x, ~y). P is

a Πn+1 predicate over Nk when, for some m, there is a Σn predicate Q over

Nk+m such that P (~x) ≡ (∀y1) . . . (∀ym)Q(~x, ~y). A is a Σn (respectively, Πn)

set if and only if A = {x P (x) } for some Σn (respectively, Πn) predicate P .

Let 〈W n
i 〉i∈N

be an acceptable indexing of the Σn-sets [23].

7

��
��

A ��
��

B

S

Fig. 1. S separates B from A.

3 Inseparability notions

Suppose A, B, and S are subsets of some fixed set U . We say that S separates

B from A if and only if B ⊆ S ⊆ A. (See Figure 1.)

Definition 1. Suppose A and B ⊆ N. B is Σn-inseparable from A if and

only if A and B are nonempty and disjoint, but no Σn-set separates B from

A. Also, B is effectively Σn-inseparable from A if and only if A and B are

nonempty and disjoint and there is a recursive f such that, for each i, f(i) ∈

(W n
i ∩ A) ∪ (W n

i ∩ B), i.e., f(i) witnesses that B ⊆ W n
i ⊆ A fails. 3

Definition 2. Suppose R ⊆ (N → N)k × N`. R is recursive if and only if

the characteristic function of R is a total recursive functional of type (N →

N)k × N` → { 0, 1 }. R is arithmetical if and only if either R is recursive or

R =
{

(~f, ~x) (Q1 y1) . . . (Qm ym)[S(~f, ~x, ~y)]
}

(1)

where each Qi is either ∃ or ∀ and where S ⊆ (N → N)k × N`+m is recursive.

(N.B. All the quantifiers in (1) are numeric.) R is in Σ(fn)
n if and only if R is

recursive or R is expressible as in (1) with the quantifiers in Σn form. R is in

Π(fn)
n if and only if R’s complement is in Σ(fn)

n . 3

Indexings. For each k, `, and n, let 〈W (fn),k,`,n
i 〉i∈N

be an acceptable indexing

of the class of all R ⊆ (N → N)k ×N` in Σ(fn)
n . (See [23, §15.2]). For each i, let

Wn
i = W

(fn),1,0,n
i .

Next we introduce the higher-type inseparabilities needed for our results.

Definition 3. Suppose A and B ⊆ (N → N). B is Σ(fn)
n -inseparable from A

if and only if A and B are nonempty and disjoint, but no Σ(fn)
n -set separates

B from A. Also, B is effectively Σ(fn)
n -inseparable from A if and only if A and

B are nonempty and disjoint and there is a recursive f such that for each i,

ϕf(i) ∈ (Wn
i ∩ A) ∪ (Wn

i ∩ B). 3

The next proposition gives us a way of establishing an Σ
(fn)
2 -inseparability

through the Σ2-inseparability of certain sets of programs.

8

Proposition 4. Suppose the following:

(i) C is a subrecursive class with programming system ψ.

(ii) A and B are disjoint and both A ∩ C and B ∩ C are nonempty.

(iii) { i ψi ∈ B } is effectively Σ2-inseparable from { i ψi ∈ A}.

Then B is effectively Σ
(fn)
2 -inseparable from A.

Proof. Suppose r witnesses the effective Σ2-inseparability of { i ψi ∈ B }

from { i ψi ∈ A}. By standard results (see [23, §15.2]), there is a recursive

R ⊆ (N → N) × N3 such that, for all j, W2
j = { f (∃m)(∀n)R(f,m, n, j) }.

By a few more standard results, there is a recursive function g such that, for

all j, W 2
g(j) = { i (∃m)(∀n)R(ψi,m, n, j) } = { i ψi ∈ W2

j }. Let t be a

recursive function such that ϕt(i) = ψi for all i. It follows that r′ = t ◦ r ◦ g is

recursive and witnesses the effective Σ
(fn)
2 -inseparability of B from A.

The next proposition provides an alternative, often handier, way of showing

Σ
(fn)
2 -inseparability. Note, however, the proof of this proposition depends on

Proposition 4. Recall: PF 1 = the linear-time computable functions and (C)0-1
= the 0–1 valued elements of C.

Proposition 5. Suppose that C0, C1 ⊆ (N → N) are such that:

(i) Both C0 and C1 are closed under 0–1 valued finite variants.

(ii) PF1 ⊆ C0 ∩ C1.

(iii) For each f ∈ PF1 and g, h ∈ C1, f ◦g, g◦f , and λx 〈g(x), h(x)〉 ∈ C1.

(iv) There is a programming system for C1.

(v) (C1 − C0)0-1 6= ∅.

Then, (C1 − C0)0-1 is effectively Σ
(fn)
2 -inseparable from Z∗.

There are many ways to establish this proposition using results from the struc-

tural complexity literature, for example [15,14,16,9]. The proof given below

uses a tool from [9], restated as the following lemma. The ϕ∗ of condition f is

an acceptable programming system for the partial recursive functions relative

to an oracle for the halting problem [23,9]. Notation: For each f, g, h : N ⇀ N,

define Cond : (N ⇀ N)3 → (N ⇀ N) by:

Cond(f, g, h)(x) =



















g(x), if f(x) > 0;

h(x), if f(x) = 0;;

↑, if f(x)↑.

(2)

Lemma 6 ([9, Theorem 9.11]). Suppose that C0, and C1 are subrecursive

9

classes, A ⊆ (C0 ∩ C1)0-1, D ⊆ C1, and there is a programming system ψ for

C1. Moreover, suppose that the following conditions hold.

a. There is a g1 ∈ (C1)0-1 with { f : N → { 0, 1 } f =∗ g1 } ⊆ (C1 − C0).

b. There is a g0 ∈ A with { f : N → { 0, 1 } f =∗ g0 } ⊆ A.

c. For each f ∈ D and g, h ∈ C1, Cond(f, g, h) ∈ C1.

d. For each f ∈ C1, f ◦ π0, f ◦ π1 ∈ C1.

e. For each m and n > 0, there is a computable function s such that, for

all i, x1, . . . , xm, y1, . . . , yn, ψs(i,~x)(〈~y 〉) = ψi(〈~x, ~y 〉).

f. There is an L ∈ D such that, for all i and x, limt→∞ L(〈i, x, t〉)

= ϕ∗
i (x), where ϕ∗

i (x)↓ = y ⇐⇒ (
∞

∀ t)[L(〈i, x, t〉) = y].

Then { i ψi ∈ (C1 − C0)0-1 } is effectively Σ2-inseparable from { i ψi ∈ A}.

Proof (of Proposition 5). Let A = Z∗ and D = PF1. By (ii), (iv), and

general results on programming systems in [9, §4.2], we may assume that ψ

is a programming system for C1 that satisfies condition e. We note that C0,

C1, A, D, and ψ together satisfy the hypotheses of the lemma. Specifically:

conditions a and b follow from (i) and (v), conditions c and d follow from

(ii) and (iii), condition e follows from our choice of ψ, and condition f follows

from (ii) and Theorem 7.4 of [9]. Hence by the lemma, { i ψi ∈ (C1 − C0)0-1 }

is effectively Σ2-inseparable from { i ψi ∈ A}. Therefore, by Proposition 4

we have that (C1 − C0)0-1 is effectively Σ
(fn)
2 -inseparable from Z∗.

Now, using Propositions 4 and 5 and few other results from the literature, we

can establish some sample Σ
(fn)
2 -inseparability results for some of the subre-

cursive classes introduced in §2.

Corollary 7. Suppose k > 0 and s ∈ LS low.

(a) (QFk
s −PFk)0-1 is effectively Σ

(fn)
2 -inseparable from Z∗.

(b) (CF −REG) is effectively Σ
(fn)
2 -inseparable from coZ∗.

(c) If P 6= NP, then (NP − P) is effectively Σ
(fn)
2 -inseparable from Z∗.

(d) If P 6= BPP, then (BPP − P) is effectively Σ
(fn)
2 -inseparable from Z∗.

Proof. Part (a). As previously noted, (QF k
s)0-1 and (PFk)0-1 separate by

classic results [2,3]. It is then straightforward that hypotheses (i) through (v)

of Proposition 5 are satisfied. Thus, part (a) follows from the proposition.

Part (b). By the proof of Corollary 11.17 of [9], there is a programming system

10

ψ for CF such that { i ψi ∈ (CF −REG) } is effectively Σ2-inseparable from

{ i ψi ∈ coZ∗ }. Thus, part (b) follows by Proposition 4.

Part (c). Suppose C1 = NP and C0 = P. Then it is straightforward that (i)

through (iv) of Proposition 5 are satisfied. The P 6= NP hypothesis implies

(v). Thus, part (c) follows from the proposition.

Part (d). This follows from an argument similar to the one for part (c).

4 Sufficient conditions theorems

In the following, think of A as some set of very modest functions (e.g., Z∗

above), B as some set of immodest functions, and G as some set of “good”

programs 4 such that no finite variant of a member of B has a program in G.

Theorem 8, our first sufficient condition theorem, provides us with our infor-

mation deficiency corollaries (Corollaries 9 through 11). Notation: FV(B) =

{ f : N → N f is a finite variant of some element of B }.

Theorem 8. Suppose that:

(i) B is Σ
(fn)
2 -inseparable from A.

(ii) G is a Σ1-set with FV(B) ∩ {ϕi i ∈ G } = ∅.

(iii) M is an IIM such that B ⊆ BC∗(M).

Then there is an f ∈ A such that for all but finitely many n, M(f |n) /∈ G.

Proof. Since G is a Σ1-set, there is a recursive predicate RG such that G =

{x (∃m)RG(x,m) }. Consider S = { f (
∞

∀n)[M(f |n) /∈ G]} =

{ f (∃n0)(∀n > n0)(∀m)[¬RG (M(f |n),m)] } .

Thus, S ∈ Σ
(fn)
2 . Also, by (ii) and (iii) it follows that B ⊆ S. Now suppose the

negation of the conclusion: that for all f ∈ A, (
∞

∃n)[M(f |n) ∈ G]. Clearly,

A ∩ S = ∅. Therefore, not (i) since S is a Σ
(fn)
2 -set separating B from A.

The next three corollaries involve provability and PA, Peano Arithmetic [12].

We write ` for the provability relation and 6 ` for ‘does not prove.’ The following

predicates are expressible in PA (and herein we do not distinguish between

4 E.g., the members of G may run efficiently and/or be easy to prove things about.

11

expressions in PA and expressions in the metalanguage).

Pk(i) ≡def (∃c)(∀x)[Φi(x) ≤ c · (|x| + 1)k].

P ∗
k (i) ≡def (∃j |ϕj =∗ ϕi)[Pk(j)].

P ∗(i) ≡def (∃k)[P ∗
k (i)].

Sk(i) ≡def (∀x)[ΦWS
i (x) ≤ k].

REG∗(i) ≡def (∃k)(∃j |ϕj =∗ ϕi)[Sk(j)].

N.B. Each of Corollaries 9, 10, and 11 remains true if PA is replaced by any

true and computably axiomatized theory [12] extending the language of PA.

Such theories, including PA itself, should be thought of as safe, algorithmic ex-

tractors of information: the safety is they prove only true sentences; and, since

they are computably axiomatized, there is an associated automatic theorem

prover, i.e., the set of theorems is r.e. [12].

Corollary 9. Suppose that k > 0, s ∈ LS low, and BC∗(M) ⊇ QFk
s . Then

there is an f ∈ Z∗ such that, for all but finitely many n, PA 6 ` P ∗
k (M(f |n)).

Proof. Let A = Z∗, B = (QFk
s − PFk), and G = { i PA ` P ∗

k (i) }. Now,

applying Corollary 7(a) and Theorem 8, we are done.

Interpretation. Let M and f be as in Corollary 9. 5 Then it must be the case

that, for all but finitely many n, the program M(f |n) computes a finite variant

of f , an almost everywhere zero function. Of course some program computes

f in linear time. Yet, even so, for sufficiently large n, the programs M(f |n) are

so information deficient that PA fails to prove of them that they compute a

finite variant of something (like f) that has some program running in k-degree

polynomial time. Analogous remarks apply to the next two corollaries.

Corollary 10. Suppose BC∗(M) ⊇ CF . Then there is an f ∈ coZ∗ such that,

for all but finitely many n, PA 6 ` REG∗(M(f |n)).

Proof. Let A = coZ∗, B = (CF − REG), and G = { i PA ` REG∗(i) }.

Now, applying Corollary 7(b) and Theorem 8, we are done.

Corollary 11. Suppose BC∗(M) ⊇ NP and that P 6= NP. Then there is an

f ∈ Z∗ such that, for all but finitely many n, PA 6 ` P∗(M(f |n)).

Proof. Let A = Z∗, B = (NP − P), and G = { i PA ` P ∗(i) }. Now,

applying Corollary 7(c) and Theorem 8, we are done.

5 As noted in §1, an allowed special case is that M actually EX-learns QF k
α.

12

Remark 12. Corollaries 9, 10, and 11 provide only a small sample of the

wide range of situations to which Theorem 8 applies. For example, one can

replace NP in Corollary 11 with essentially any natural complexity class C

containing P; then under the assumptions that BC∗(M) ⊇ the class of charac-

teristic functions of members of C and C 6= P, one has the same conclusion as

Corollary 11. So for C one can have BPP (bounded probabilistic polynomial-

time [21]), BQP (a quantum version of polynomial-time [13]), PSPACE, and

so on. The only work involved in showing these results is in establishing the

analogue of Corollary 7(c) for each of these classes, and this is straightforward

using the results and tools of [9]. 6
3

Remark 13. We call the f asserted to exist in Theorem 8 a witness to the

deficiency. If we change “Σ
(fn)
2 -inseparable” to “effectively Σ

(fn)
2 -inseparable”

in Theorem 8, then we can strengthen that theorem’s conclusion to: there is

a computable function w such that, for each i, if i is the index of an IIM

satisfying hypothesis (iii), then ϕw(i) ∈ A and, for all but finitely many n,

M(ϕw(i)|n) /∈ G. So, thanks to Corollary 7, each of Corollaries 9, 10, and 11

can have its conclusion correspondingly strengthened. In particular situations

we can do much better than this. For example, using the tools of [9] we can

improve the conclusion of Corollary 9 to: There is a linear time computable

function w such that, for all i, Φw(i) ∈ O(nk · log n · s(n)) and, if i is the index

of an M with BC∗(M) ⊇ QFk
s , then ϕw(i) ∈ Z∗ and, for all but finitely many

n, PA 6 ` P ∗
k (M(ϕw(i)|n)). 3

Theorem 14, our second sufficient condition theorem, provides us with com-

plexity deficiency corollaries (Corollaries 16 through 19). Recall: FV(B) =

{ f (∃g ∈ B)[f =∗ g]}.

Theorem 14. Suppose that:

(i) B is Σ
(fn)
2 -inseparable from A.

(ii) G is a Π2-set such that FV(B) ∩ {ϕi i ∈ G } = ∅.

(iii) M is an IIM such that A ∪ B ⊆ EX∗(M).

Then there is an f ∈ A such that M(f) /∈ G.

6 BQP is not discussed in [9]. However, as BQP amounts to a quantum version of

BPP, all the results needed to show the BQP analogue of Corollary 7(c) can be

obtained by a straightforward modification of the BPP results in [9]. Of course,

then, [9, Corollary 11.10], a relative program succinctness result for, for example,

BPP vs. P, also holds for BQP vs. P (each assuming separation).

13

Proof. Since G is a Π2-set, there is a recursive predicate RG such that G =

{x (∀m)(∃n)RG(x,m, n) }. Consider S = { f M(f)↓ /∈ G] } =

{

f (∃i,m)(∀n0, n1 ≥ m)
[

M(f |n0
) = i & ¬RG(i,m, n1)

] }

.

Thus, S ∈ Σ
(fn)
2 . Also, by (ii) and (iii) it follows that B ⊆ S. Now suppose

the negation of the conclusion: that for all f ∈ A, M(f)↓ ∈ G. Then clearly,

A ∩ S = ∅. Therefore, not (i) since S is a Σ
(fn)
2 -set separating B from A.

Scholium 15. The fact that G ∈ Π2 in Theorem 14 fails to provide as much

generality as one might hope. Here is why. It is a well-worn observation that

if C is closed under total finite variants and P is a Σ2-set such that C = {ϕi

i ∈ P }, then there is an r.e. set P ′ such that C = {ϕi i ∈ P ′ }. It is a minor

variation on this observation that if hypotheses (ii) and (iii) of Theorem 14

hold, then there is a Π1-set G
′ such that {ϕi i ∈ G } ⊆ {ϕi i ∈ G′ } ⊆

(PR−FV(B)). Hence, G in Theorem 14 might as well be Π1—which is what

it is in our applications of this theorem. 3

As was mentioned in §1, the following corollary of Theorem 14 provides a

weak special case of our strong complexity-deficiency result (Theorem 28)

for (PFk,QFk
α): the quantifier order between the f ∈ Z∗ and the k-degree

polynomial-time bounds is weakened and the “for all but finitely many inputs

x” quantifier is weakened to “there exist n distinct inputs.”

Corollary 16. Suppose a, k, n > 0, s ∈ LS low, and EX∗(M) ⊇ QFk
s . Then

there is an f ∈ Z∗ such that, for some i, M(f)↓ = i, but there are distinct

x0, . . . , xn−1 such that for each j < n, Φi(xj) > a · (|xj| + 1)k.

Proof. Let A = Z∗, B = (QFk
s − PFk), and G = { i (∀x0, . . . , xn−1|x0 <

· · · < xn−1)(∃j < n)[Φi(xj) ≤ a · (|xj| + 1)k] }. Now, applying Corollary 7(a)

and Theorem 14, we are done.

As mentioned in §1, the next three corollaries seem difficult to establish by

aggressive diagonalization techniques. It is open for each as to whether the

quantifier on the inputs to the programs i can be strengthened.

Corollary 17. Suppose EX∗(M) ⊇ CF and k, n > 0. Then there is an f ∈

coZ∗ such that, for some i, M(f)↓ = i, but, there are distinct x0, . . . , xn−1

such that for each j < n, ΦWS
i (xj) > k.

Proof. Let A = coZ∗, B = (CF −REG), and G = { i (∀x0, . . . , xn−1|x0 <

· · · < xn−1)(∃j < n)[ΦWS
i (xj) ≤ k] }. Now, applying Corollary 7(b) and The-

14

orem 14, we are done.

Interpretation. Suppose M EX∗-identifies CF . 7 Then by Corollary 17, there

are members of coZ∗ for which M infers programs that use arbitrarily large

(but finite) amounts of workspace on arbitrarily large (but finite) sets of inputs.

Thus M is quite far from inferring space efficient programs for easy members

of REG, and members of REG have programs that use no workspace at all.

Let ϕND be based on a natural programming system of nondeterministic,

multi-tape Turing machines for accepting sets. Let Pathsi(x) = the number of

paths in the computation tree of ϕND-program i on input x.

Corollary 18. Suppose P 6= NP. Suppose M EX∗-identifies NP using poly-

nomial-time (deterministic and nondeterministic) ϕND-programs, 8 q is a poly-

nomial, and n > 0. Then there is an f ∈ Z∗ for which there are distinct

x0, . . . , xn−1 such that for i = M(f) and for x = x0, . . . , xn−1, ϕ
ND-program i

on input x runs non-deterministically and, in fact, Pathsi(x) > q(|x|).

Proof. Let A = Z∗, B = (NP − P), and G = { i (∀x0, . . . , xn−1|x0 <

· · · < xn−1)(∃j < n)[Pathsi(xj) ≤ q(|xj|)] }. G is easily shown to be in Π1. So,

applying Corollary 7(c) and Theorem 14, we are done.

Interpretation. Suppose M EX∗-identifies NP using polynomial-time (deter-

ministic and nondeterministic) ϕND-programs. 9 Then by Corollary 18, there

are members of Z∗ for which M infers programs that employ arbitrarily poly-

nomially many unpleasant non-determinist paths on arbitrarily large (but fi-

nite) sets of inputs.

Our final corollary of Theorem 14 concerns the probabilistic complexity class

BPP. This corollary and its setup are representative of how one obtains

complexity-deficiency results for probabilistic [21], counting [24], and quan-

tum [13] complexity classes.

Let ϕPR be the modification of ϕND in which all nondeterministic branch

points are binary and decided upon by the flip of a fair coin. A ϕPR-program’s

run time on an input is the length of the longest possible computation of the

program on that input. For δ ∈ (1
2
, 1], a ϕPR-program is said to δ-confidently

7 As noted in §1, an allowed special case is that M actually EX-learns CF .
8 Note: NP ∈ EX trivially as witnessed by some M

′ also outputting ϕND-programs.
9 As noted in §1, an allowed special case is that M actually EX-learns NP.

15

decide A when, for all x,

x ∈ A =⇒ Prob[the program accepts x] ≥ δ;

x /∈ A =⇒ Prob[the program rejects x] ≥ δ.















(3)

BPP
def
= {A (∃i)(∃δ ∈ (1

2
, 1])[ϕPR-program i runs in polynomial time and

δ-confidently decides A] }. It turns out [25] that for any fixed δ0 ∈ (1
2
, 1),

BPP = {A (∃i) [ϕPR-program i runs in polynomial time and δ0-confidently

decides A] }. Let Flipsi(x) = the maximum number of coin-flip branch points

along any branch of ϕPR-program i’s computation tree on input x. Note: if i is

a polynomial-time ϕPR-program that δ-confidently decides A with Flipsi(x) ∈

O(log |x|), then A ∈ P .

For each A ⊆ N, let χA = the characteristic function of A. An IIM M is said

to δ-confidently EX-identify BPP when, for each A ∈ BPP, M(χA)↓ = iA,

a polynomial-time ϕPR-program that δ-confidently decides A. Similarly, M is

said to δ-confidently EX∗-identify BPP when, for each A ∈ BPP, M(χA)↓ =

iA, a polynomial-time ϕPR-program such that, for all but finitely many x,

(3) holds. It turns out that, for each δ ∈ (1
2
, 1), there is an IIM Mδ that

δ-confidently EX-identifies BPP. 10

Corollary 19. Suppose P 6= BPP. Suppose that M δ-confidently EX∗-ident-

ifies BPP where δ ∈ (1
2
, 1) and that k and n are positive integers. Then there

is an f ∈ Z∗ for which there are distinct x0, . . . , xn−1 such that for i = M(f)

and for x = x0, . . . , xn−1, we have Flipsi(x) > k · log |x|.

Proof. Let A = Z∗, B = (BPP − P), and G = { i (∀x0, . . . , xn−1|x0 <

· · · < xn−1)(∃j < n)[Flipsi(xj) ≤ k · log |x|] }. G is easily shown to be in Π1.

So, applying Corollary 7(d) and Theorem 14, we are done.

Interpretation. Suppose M δ-confidently EX∗-identifies BPP as supposed in

the above corollary. 11 Then the corollary implies that there are members of Z∗

for which M infers witnessing programs that employ arbitrarily logarithmically

many unpleasant coin flips on arbitrarily large (but finite) sets of inputs.

10 E.g., let Mδ(σ) = the least i ≤ |σ|, if any, such that for each x ∈ dom(σ): (i)

ϕPR-program i runs in i · (|x| + 1)i-time, and (ii) for ϕPR-program i, for A = {x

σ(x) = 1 }, and for each x ∈ dom(σ), (3) holds; let Mδ(σ) = 0 if there is no such i.

Note that if ϕPR-program i runs in polynomial time, but not in time i · (|x| + 1)i,

then there is a larger, padded version of i, say i′, that will run in time i′ · (|x|+1)i′ .
11 An allowed special case is that M actually δ-confidently EX-learns BPP .

16

Remark 20. Corollaries 16 through 19 provide only a small sample of the

wide range of situations to which Theorem 14 applies. For example, as in

Remark 12, one can replace NP in Corollary 18 with essentially any natural

complexity class C containing P; then under the assumptions that EX∗(M) ⊇

the class of characteristic functions of members of C and C 6= P, one has

the same conclusion as Corollary 18. So for C one can have BQP (a quantum

version of polynomial-time [13]), PSPACE, and so on. The main work involved

in showing these results is (i) a set up, as for Corollaries 18 and 19, to handle

the computational resource in question and (ii) establishing the analogue of

Corollary 7(c) for each of these classes, and the results of [9] make this later

straightforward. (For BQP, the remarks of footnote 6 again apply.) Then, for

example, for C = BQP6= P, the corresponding complexity deficient learned

programs exhibit unnecessary quantum parallelism—just as in Corollary 19,

if P 6= BPP, the corresponding complexity deficient learned programs exhibit

unnecessary amounts of randomization. 3

Remark 21. Applications of Theorem 14 (e.g., Corollary 18 above) typically

involve details of specific programming systems and resource measures. Be-

cause of this Theorem 14 does not have the same breadth of generality as

Theorem 8. We also note that if one changes “Σ
(fn)
2 -inseparable” to “effectively

Σ
(fn)
2 -inseparable” in Theorem 14, then one can strengthen that theorem’s con-

clusion so that witnesses are effectively found. 3

5 A few more diagonalization and structural tools

Here we state a few more tools for the proofs of the results in the next three

sections. These tools depend on a few special features of our programming

system ϕ and its associated complexity measure Φ introduced in §2. The

details of these features are mostly straightforward and are omitted here, but

can be found in Chapter 3 of [9].

The first of these tools is simply a uniform version of the classic result of

Hennie and Stearns [26] on the cost of simulations. (Note: “uniform” here

means that the cost of interpreting the program is taken into account.)

Proposition 22 (The cost of simulations, [9] Theorem 3.6). Suppose

S, T : N3 → N are given by:

S(i, x, t) =







ϕi(x), if Φi(x) ≤ |t|;

0, otherwise.
T (i, x, t) =







1, if Φi(x) ≤ |t|;

0, otherwise.

17

Then S and T are computable in time O(|x| + (|i| + 1) · (|t| · log |t| + 1)).

Next is a technical proposition about the complexity overhead of applying

simple control structures such as, in part (a), conditionals to sub-programs.

Part (b) is about the overhead of storing data or programs inside programs,

and part (c) is about complexity-bounded self-reference. Machtey, Winklmann,

Young [27,28] and Kozen [29] were among the first to establish “polynomial-

time overhead” results of these sorts. The proposition below is based on some-

what more refined work in [9]. Recall that Cond was defined by (2) in §3.

Proposition 23 (Complexity-bounded control structures). Suppose

that m,n ≥ 1. In the following i, j, and k range over N, and ~x and ~y over Nm

and Nn, respectively.

(a) (Conditionals, [9] Lemma 3.14.) There is a linear-time computable

ifm and an am ∈ N such that, for all i, j, k, and ~x:

ϕifm(i,j,k)(~x) = Cond(ϕi, ϕj, ϕk)(~x).

Φifm(i,j,k)(~x) ≤



















Φi(~x) + Φj(~x) + am · (|~x| + 1), if ϕi(~x) > 0;

Φi(~x) + Φk(~x) + am · (|~x| + 1), if ϕi(~x) = 0;

∞, if ϕi(~x)↑.

(b) (S-m-n, [9] Theorem 4.4.) There is a linear-time computable sm,n and

an am,n ∈ N such that, for all i, ~x, and ~y:

ϕn
sm,n(i,~x)(~y) = ϕm+n

i (~x, ~y).

Φn
sm,n(i,~x)(~y) ≤ Φm+n

i (~x, ~y) + am,n · (|~x| + |~y| + 1).

(c) (Self-reference, [9] Theorem 4.6.) There is a linear-time computable

rm,n and an am,n ∈ N such that, for all i, ~x, and ~y:

ϕn
rm,n(i,~x)(~y) = ϕm+n+1

i (rm,n(i, ~x), ~x, ~y).

Φn
rm,n(i,~x)(~y) ≤ Φm+n+1

i (rm,n(i, ~x), ~x, ~y) + am,n · (|~x| + |~y| + 1).

Kleene [30] showed that any nonempty r.e. set is the range of some primitive

recursive function. The next proposition takes the basic idea behind Kleene’s

construction, lowers the complexity, slows the enumeration, and recasts things

in terms of the ranges of partial recursive functions.

18

Proposition 24 (Delayed enumeration, [9] Theorem 7.1). For eachm

> 0 and s ∈ LS low, there is a linear-time computable function rngm,s such

that, for all i with ϕi total and all ~w ∈ Nm, there is a strictly increasing

sequence of numbers y0, y1, y2, . . . such that

(a) for each y ∈ { 0, . . . , y0 − 1 }, rngm,s(i, ~w, y) = 0, and

(b) for each x and each y ∈ { yx . . . , yx+1 − 1 }, rngm,s(i, ~w, y) = 1 +ϕi(~w, x),

and moreover, |ϕi(~w, x)| ≤ s(|max(i, ~w, y)|).

Convention: For each m, let rngm = rngm,s where s = λn max(1, log(2)(n)).

6 Negative, almost everywhere results for EX∗ and BC0

For simplicity of the technical exposition we begin with two theorems essen-

tially announced in [31] and based on a suggestion of Sipser for the EX case.

In [31] it was merely asserted without proof that the constructions could be

done in polytime. At that time, the machinery to supply really convincing

proofs of these results was not yet available (at least to us). For the present

paper we have the needed machinery not only for the results from [31], but also

for the two main results of this section (Theorems 27 and 28 below). These

main theorems provide considerably tighter complexity bounds and stronger

quantifier order than the results from [31].

Although EX∗ (BC0, Theorems 25 through 28 handle separately the cases

of EX∗ and BC0. This is because, if M witnesses that a class is in EX∗, the

same M need not witness the class is in BC0: the latter can require a different

machine M′.

Theorem 25. Suppose that BC0(M) ⊇ PF . Then for each polynomial q,

there is an f ∈ Z∗ such that (
∞

∀n)(
∞

∀x)[ΦM(f |n)(x) > q(|x|)].

Theorem 26. Suppose that EX∗(M) ⊇ PF . Then, for each polynomial q,

there is an f ∈ Z∗ such that (
∞

∀x)[ΦM(f)(x) > q(|x|)].

We start with the proof of Theorem 26 which is a bit simpler than that of

Theorem 25.

Proof (of Theorem 26). Fix a polynomial q. Terminology: We say that p

is available at w if and only if Φp(w) ≤ q(|w|). Since [Φp(w) ≤ q(|w|)] is

equivalent to [T (p, w,0q(|w|)) = 1], by Proposition 22 we have that availability

19

is testable in time polynomial in |p| and |w|. Let d be a ϕ-program such that,

for all e and x,

ϕd(e, x) =







↑, if, for some w < x, ϕe(w)↑;

M(ϕe|x), otherwise.

Now let u be a ϕ-program such that, for all e and y,

ϕu(e, y) =


















0, if (i) rng1(d, e, y) = 0 or rng1(d, e, y) =

1 + p, but p is not available at y;

1 .− S(p, y,0q(|y|)), (ii) otherwise, where rng1(d, e, y) = 1 + p.

Terminology: If (ii) holds above for a particular input e and y, we then say that

the p is canceled for e at y. Since S, rng1, and the availability predicate are all

polynomial-time computable, it is straightforward that ϕu is polynomial-time

computable. So, without loss of generality, we assume that Φu is polynomially

bounded. Thus by Proposition 23(c), there is a ϕ-program e0 and a polynomial

q0 such that, for all y, ϕe0(y) = ϕu(e0, y) and Φe0(y) ≤ q0(|y|). Hence, ϕe0 ∈

PF . Thus, λx ϕd(e0, x) is total. Also note that if p is canceled for e0 at y,

then ϕe0(y) = 1 .− ϕp(y) 6= ϕp(y).

Since ϕe0 ∈ PF , by hypothesis there is a p0 such that M(ϕe0)↓ = p0 and

ϕp0 =∗ ϕe0 . So by the definition of d, we have that for all but finitely many

x, ϕd(e0, x) = p0. Hence, by Proposition 24 we have that, for all but finitely

many y, rng1(d, e0, y) = 1 + p0.

Claim: p0 is canceled for e0 only finitely many times. Proof: Since ϕp0 =∗ ϕe0 ,

the claim follows from the definition of cancellation.

Since for all but finitely many y, rng1(d, e0, y) = 1+p0 and since by the claim

p0 is canceled for e0 only finitely many times, it follows that p0 is available

only finitely many times, i.e., for all but finitely many y, Φp0(y) > q(|y|). It

also follows that there are only finitely many y on which any p is canceled for

e0. Hence, by the construction of u, ϕe0 ∈ Z∗.

Notation: For the next proof and for the proofs of Theorems 30 and 31

below, we introduce a low-complexity way to encode lists of numbers. For

each x, y ∈ N (∼= {0,1 }∗), let x � y = the concatenation of x and y. For

each x ∈ N, let E(x) = 1|x|0 �x. Note that {E(x) x ∈ N } is a collec-

tion of prefix codes [32, §1.4]. Let [] = 0, and for each x0, . . . , xk ∈ N, let

[x0, . . . , xk] = E(x0) � · · · �E(xk). Elements of N not of the form [x0, . . . , xk]

20

are considered as coding the empty list. It is clear from our definition of [·]

that concatenations, projections, and so on, involving coded lists are all linear-

time computable.

Proof (of Theorem 25). Fix a polynomial q. Terminology: We again say

that p is available at w when Φp(w) ≤ q(|w|). For each σ, define the set

Candidates(σ) =











p

for some n ≤ |σ|, p = M(σ|n) and,

for each w ∈ dom(σ), if p is avail-

able at w, then ϕp(w) = σ(w)











.

Let d be a ϕ-program such that, for all e and x,

ϕd(e, x) =















↑, if, for some w < x, ϕe(w)↑;

[p1, . . . , pk], otherwise, where { p1 < · · · < pk } =

Candidates(ϕe|x).

Intuitively, when ϕd(e, x)↓ = [p1, . . . , pk], then p1, . . . , pk is a list of conjectures

that M makes on ϕe that are candidates for diagonalization. Now let u be a

ϕ-program such that, for all e and y,

ϕu(e, y) =






































0, if (i) rng1(d, e, y) = 0 or rng1(d, e, y) =

1 + [p1, . . . , pk], but none of the pi’s is

available at y;

1 .− S(p, y,0q(|y|)), (ii) otherwise, where p is the least pi avail-

able at y.

Terminology: If (ii) holds above for a particular input e and y, we then say that

the p is canceled for e at y. Since S, rng1, and the availability predicate are all

polynomial-time computable, it is straightforward that ϕu is polynomial-time

computable. So without loss of generality, we assume that Φu is polynomially

bounded. Thus by Proposition 23(c), there is a ϕ-program e0 and a polynomial

q0 such that, for all y, ϕe0(y) = ϕu(e0, y) and Φe0(y) ≤ q0(|y|). Hence, ϕe0 ∈

PF . Thus, λx ϕd(e0, x) is total.

Claim 1: No p is canceled for e0 infinitely many times. Proof: Suppose p is

canceled for e0 on some number. Then it follows by the definition of ϕd that,

for all but finitely many x, p is not on the list output by ϕd(e0, x). Thus, by

the definition of rng1, for all but finitely many y, p /∈ { py
1, . . . , p

y
ky
} where

1+[py
1, . . . , p

y
ky

] = rng1(d, e0, y). Hence, by the definition of u, Claim 1 follows.

Claim 2: Suppose ϕM(ϕe0 |n) = ϕe0 . Then M(ϕe0|n) is never canceled for e0

21

on any y. Proof: If p is canceled for e0 on y, then ϕp(y)↓ and ϕe0(y)↓ = 1 .−

ϕp(y) 6= ϕp(y). Hence the claim follows.

Claim 3: Suppose ϕM(ϕe0 |n) = ϕe0. Then it is the case that, for all but finitely

many y, ΦM(ϕe0 |n)(y) > q(|y|). Proof: Suppose by way of contradiction that

M(ϕe0|n) is available for e0 on infinitely many y. Then it follows by standard

arguments that M(ϕe0|n) is eventually canceled for e0 on some y, contradicting

Claim 2. Hence, the present claim follows.

Since M BC-identifies ϕe0 , it follows from Claim 3 that, for all but finitely

many n and all but finitely many y, ΦM(ϕe0 |n)(y) > q(|y|).

It follows from Claims 1 and 2 and the BC-identification of ϕe0 by M that

there are only finitely many y on which any p is canceled for e0. Thus, by the

definition of u, ϕe0 ∈ Z∗. Therefore, the theorem follows.

By a more delicate choice of complexity classes and a correspondingly more

careful complexity analysis of the proofs of the previous two theorems, we can

obtain the following two improvements which are our main theorems of the

present section.

Theorem 27. Suppose M BC0-identifies QFk
s , where k ≥ 1 and s ∈ LS low.

Then there is an f ∈ Z∗ such that (∀a)(
∞

∀n)(
∞

∀x)[ΦM(f |n)(x) > a · (|x|+1)k].

Theorem 28. Suppose M EX∗-identifies QFk
s , where k ≥ 1 and s ∈ LS low.

Then there is an f ∈ Z∗ such that (∀a)(
∞

∀x)[ΦM(f)(x) > a · (|x| + 1)k].

Interpretation. Let M, k, s and f be as in Theorem 27. 12 Then for all most all

n, the program M(f |n) must compute f , an almost everywhere zero function,

yet the run time of this program is almost everywhere worse than any degree-k

polynomial in the size of the input. This is a profound failure of M to infer

anything like asymptotically optimal programs for even easy members of PF k.

Similar remarks apply to Theorem 28.

Proof (of Theorem 27). Let s′ ∈ LS low be such that limn→∞
(s′(n))2

s(n)
= 0.

(Without loss of generality we assume s and s′ are everywhere nonzero.) The

construction is identical to the one given in the proof of Theorem 25 with q

replaced by λn s′(n) · (n+ 1)k and rng1 replaced by rng1,s′ .

Let us consider the cost of computing the function ϕu. Recall that p is available

at y if and only if Φp(y) ≤ s′(|y|)·(|y|+1)k if and only if T (p, y,0s′(|y|)·(|y|+1)k

) =

12 As noted in §1, an allowed special case is that M actually EX-learns QF k
s .

22

1. By standard time-constructibility results [3], given y (in dyadic representa-

tion), constructing a string of 0’s of length ` can be done in time O(`). Hence

by Proposition 22, testing, for a given p and y, whether p is available at y can

be done in O((|p| + 1) · (|y| + 1)k · (1 + log |y|) · s′(|y|)) time.

Recall from Proposition 24 that rng1,s′ is linear time computable and, for

all d, e, and y, |rng1(d, e, y)| ≤ s′(max(|d|, |e|, |y|)). It thus follows that

when rng1(d, e, y) = 1 + [p1, . . . , pm], each of m, |p1|, . . . , |pm| is less than

s′(max(|d|, |e|, |y|)). Hence we have that searching for the least i such that pi

is available at y can be done in O((s′(max(|d|, |e|, |y|)))2 ·(|y|+1)k ·(1+log |y|))

time. Since, by Proposition 22, computing S(p, y,0s′(|y|)·(|y|+1)k

) has the same

complexity as testing whether p is available at y, it follows from Proposi-

tion 23(a) that ϕu on input (e, y) is computable in O((s′(max(|e|, |y|)))2 ·(|y|+

1)k · (1+log |y|)) time. (Since d is a constant, its contribution can be absorbed

into the constant hidden by the O.) Without loss of generality, we can assume

that Φu has such an upper bound. Therefore, by Proposition 23(c), there is

an e0 such that, for all y, ϕe0 = ϕu(e0, y) and Φe0(y) has an upper bound

which is in O
(

(s′(max(|e0|, |y|)))2 · (|y| + 1)k · (1 + log |y|) + (|y| + 1)
)

which

by some algebra is contained in O(|y|k(log |y|) · s(|y|)). It thus follows that M

BC0 identifies ϕe0 . Now the rest of the proof follows the argument given for

Theorem 25.

The proof of Theorem 28 is left to the reader. We note that in Theorems 27

and 28 we could have replaced QF k
s and “ΦM(f |n)(x) > a · (|x| + 1)k” with

DTIME(T2(n)) and “ΦM(f |n)(x) > T1(|x|)” where T2 is a nonzero, fully time-

constructible function [3] and limn→∞(T1(n) log T1(n)/T2(n)) = 0. The cost

of this would be somewhat more involved proofs. Analogous remarks hold for

Corollaries 9 and 16 above and Theorem 29 below.

7 Infinitely often results for BCm

In this section we deal with the criteria BCm, especially for m ≥ 1. The

stronger version of the m = 0 case was handled in Theorem 27. It is technically

surprising that the m ≥ 1 cases provably do not permit as strong a quantifier

on the inputs x as does the m = 0 case.

Theorem 29. Suppose M BCm-identifies QFk
s , where k ≥ 1 and s ∈ LS low.

Then there is an f ∈ Z∗ such that (∀a)(
∞

∀n)(
∞

∃x)[ΦM(f |n)(x) > a · (|x|+ 1)k].

23

The proof is a straightforward modification of Theorem 27’s proof; however,

to prove Theorem 29 we need to diagonalize over m + 1 points at once. It is

not possible to replace the (
∞

∃x) in Theorem 29 with an (
∞

∀x) as shown by:

Theorem 30. There is an M that both:

(a) EX-identifies PF 1 and moreover, for each f ∈ PF 1, there is a constant cf

such that (
∞

∃x)[ΦM(f)(x) ≤ cf · |x|], and

(b) BC1-identifies PF using programs having polynomial-bounded run times.

Proof. Define g : N → N recursively by g(0) = 0 and g(m + 1) = 0k, where

k = 22|g(m)|
. Clearly g is strictly increasing. It is straightforward that range(g)

is linear time decidable and, in fact, that:

invg = λx







0, if x /∈ range(g);

1 + [g(0), . . . , g(m− 1)], if m = g−1(x).

is O(|x|) time computable and invg ∈ O(log2 |x|). (Recall that [·] is our linear-

time encoding of lists.) Our goal is to define an M such that:

(1) For each f ∈ PF1, M EX-identifies f and there is a constant cf such

that, ΦM(f)(x) ≤ cf · |x| for all x ∈ range(g).

(2) For each f ∈ (PF − PF 1), for sufficiently large n, ϕM(f |n)(x) = f(x) for

all x except perhaps for one x ∈ range(g) (so, M BC1 identifies f).

The fact that the elements of range(g) are spaced so far apart will help with

the “looking back” part of the construction.

Let u be such that, for all i0, i1, and x,

u(i0, i1, x) =







































0, if for some m, g(m) = x and, for each

w ∈ { g(0), . . . , g(m−1) }, we have that

Φi0(w) ≤
√

|x| , Φi1(w) ≤
√

|x| , and

ϕi0(w) = ϕi1(w);

1, otherwise.

(4)

It follows from the noted properties of invg, Proposition 22, and a little algebra

that u is O(|i0| + |i1| + |x|) time computable.

Suppose for the moment that i is a ϕ-program with polynomial run time. Then

it follows from the noted properties of invg that, for all but finitely many m,

we have, for each w ∈ { g(0), . . . , g(m−1) }, that Φi(w) ≤
√

|g(m)|. From this

24

and (4) we have:

Claim: Suppose i0 and i1 are ϕ-programs with polynomial run times and, for

all x ∈ range(g), ϕi0(x) = ϕi1(x). Then, for all but finitely many x ∈ range(g),

u(i0, i1, x) = 0.

Now, since u is linear time computable, it follows from Proposition 23 that

there is a recursive h and a constant c0 such that, for all i0, i1, and x:

ϕh(i0,i1)(x) =







ϕi0(x), if u(i0, i1, x) = 0;

ϕi1(x), otherwise.
(5)

Φh(i0,i1)(x) ≤







Φi0(x) + c0 · (|i0| + |i1| + |x|), if u(i0, i1, x) = 0;

Φi1(x) + c0 · (|i0| + |i1| + |x|), otherwise.
(6)

Fix M0 and M1 such that (i) M0 EX-identifies PF1 and outputs only conjec-

tures that run in linear time, and (ii) M1 EX-identifies PF and outputs only

conjectures that run in polynomial time. Define M by:

M(σ) = h(M0(σ),M1(σ)). (7)

Since both M0 and M1 output only conjectures with polynomial run times, it

follows from (6) and (7) that M also outputs only conjectures with polynomial

run times.

Suppose f ∈ PF1. Then both M0 and M1 EX-identify f . Let n be the

maximum of the points of convergence of M0 and M1 on f . Then by (7),

M(f |n) = M(f). Since ϕM0(f) = ϕM1(f), it follows from (5) and (7) that

ϕM(f) = f and it follows from the claim and (6) that there is a constant cf

such that, for all x ∈ range(g), ΦM(f) ≤ cf · |x|. Therefore, part (a) follows.

Suppose f ∈ (PF − PF1). Then M1 EX-identifies f . Let n be greater than

or equal to the point of convergence of M1 on f and set i0 = M0(f |n), i1 =

M1(f |n), and p = M(f |n). Note that ϕi1 = f . We claim that ϕp =1 f . If

ϕp = f , we are done. So suppose that for some x, ϕp(x) 6= f(x). By (4),

(5), and (7) it follows that x ∈ range(g) and that u(i0, i1, x) = 0. Let x0 be

the least such x. But then, for each x ∈ range(g) with x = g(m) > x0, we

have that x0 ∈ { g(0), . . . , g(m − 1) } and ϕi0(x0) 6= ϕi1(x0). Thus, u(i0, i1, x)

cannot be 0. Therefore, u(i0, i1, x) = 1 for all x > x0. Hence, by (5) and (7),

ϕp =1 ϕi1 = f as required. Therefore, part (b) follows.

25

8 Positive, almost everywhere results for BC∗

This section contains our strongest positive results. After the theorem’s proof,

we state informally a generalization.

Theorem 31. There is an IIM M∗ that BC∗-identifies PF with all outputs

running in polynomial time and such that:

(a) For each k ≥ 1 and each f ∈ PFk, (
∞

∀n)[ΦM∗(f |n) ∈ O(λx |x|k)].

(b) Moreover, M∗ EX-identifies PF1.

Interpretation. In contrast to Theorems 25 through 29, the above result is

quite a surprise. Not only does the M∗ of the theorem BC∗-infer programs

that have O(nk) run-time bounds for each member of PFk for every k, but for

each f ∈ PF1, M∗ also syntactically converges to a program for this f that

has an O(n) run-time bound. However, as noted in §1, Corollary 9 applies to

M∗ of the above theorem. Hence, for each ` ≥ 1, there is an f ∈ Z∗ such

that M∗ EX-identifies f and the perfectly correct ϕ-program M∗(f) has a

linear run-time bound (by Theorem 31); however, by Corollary 9, M∗(f) is

so information deficient that PA fails to prove even that it computes a finite

variant of something having some program running in `-degree polynomial

time. Thus part of the price M∗ pays for the asymptotically optimal run times

of its output programs is that these programs, even on some easy functions,

must necessarily be highly information deficient.

Proof. For each n, let Pn = { 〈k, a, p〉 k, a, p ≤ n }, triples(n) = [〈k1, a1, p1〉,

. . . , 〈km, am, pm〉], where the list enumerates Pn in lexicographical order, i.e.,

〈0, 0, 0〉, 〈0, 0, 1〉, . . . , 〈0, 0, n〉, 〈0, 1, 0〉, . . . , 〈n, n, n〉, and `(n) = the length of

triples(n). Let d be a ϕ-program such that, for all j0, j1, n, and x,

ϕd(j0, j1, n, x) = (8)






























































↑, if (i): for some w ≤ x, ϕj0(w)↑ or ϕj1(w)↑;

0, if (ii): for all w ≤ x, ϕj0(w)↓ = ϕj1(w)↓;

i, if (iii): not [(i) or (ii)] and i is the least number,

if any, such that 〈ki, ai, pi〉 ∈ triples(n) and,

for each w ≤ x, Φpi
(x) ≤ ai · (|w| + 1)ki and

ϕpi
(w) = ϕj1(w);

`(n) + 1, otherwise.

Since rng3 is linear time computable, it follows from parts (a) and (c) of

26

Proposition 23 that there is a recursive function g and, for each j0, j1, and n,

there is a constant cj0,j1,n such that, for all y:

ϕg(j0,j1,n)(y) = (9)






















































ϕj0(y), if rng3(d, j0, j1, n, y) = 0;

ϕp1(y), if rng3(d, j0, j1, n, y) = 1 and Φp1(y) ≤ a1 · (|y| + 1)k1;
...

...

ϕp`(n)
(y), if rng3(d, j0, j1, n, y) = `(n) and Φp`(n)

(y) ≤

a`(n) · (|y| + 1)k`(n);

ϕj1(y), otherwise;

Φg(j0,j1,n)(y) = (10)


























Φj0(y) + cj0,j1,n · (|y| + 1), if rng3(d, j0, j1, n, y) = 0;

cj0,j1,n · ai · (|y| + 1)ki , if 0 < rng3(d, j0, j1, n, y) = i ≤ `(n)

and Φpi
(y) ≤ ai(|y| + 1)ki ;

Φj1(y) + cj0,j1,n · (|y| + 1), otherwise;

where [〈k1, a1, p1〉, . . . , 〈k`(n), a`(n), p`(n)〉] = triples(n).

Now let M0 be an IIM that EX-identifies all of PF1 and that outputs only

conjectures that run in linear time, and let M1 be an IIM that EX-identifies

all of PF and that outputs only conjectures that run in polynomial time.

Moreover, we assume without loss of generality that, for each f ∈ (PF−PF 1),

M0 on f has infinitely many mind changes. For each σ, define

M∗(σ) = g(M0(σ),M1(σ),mσ), where

mσ = max











m

0 < m ≤ |σ| and either

M0(σ|m−1) 6= M0(σ|m) or

M1(σ|m−1) 6= M1(σ|m)











.

(Recall that max(∅) = 0.)

The argument for part (b). Suppose f ∈ PF 1. Let m be the maximum of the

points of convergence of M0 and M1 on f . Thus, for all n ≥ m, mf |n
= m.

Let j0 = M0(f |m) = M0(f) and j1 = M1(f |m) = M1(f). By the definition

of M∗, we have that, for all n ≥ m, M∗(f |n) = g(j0, j1,m). Since ϕj0 = ϕj1,

by (8) we have, for all n and x, ϕd(j0, j1, n, x) = 0. Hence by (9) and (10),

ϕg(j0,j1,m) = ϕj0 and, for all y, Φg(j0,j1,m)(y) ≤ Φj0(y)+cj0,j1,m ·(|y|+1). By our

hypotheses on M0, ϕj0 = f and Φj0 is linearly bounded. Therefore, part (b)

follows.

27

The argument for part (a). Suppose f ∈ (PF − PF 1). Let m be the point

of convergence of M1 on f and j1 = M1(f |m) = M1(f). Let k be the least

number such that f ∈ PFkand let a be the least number such that

ϕp = f and, for all x, Φp(x) ≤ a · (|x| + 1)k (11)

for some p. Let p be the least number such that (11) holds. Finally, let σ be

an initial segment of f with the property that mσ ≥ max(m, k, a, p). Since

f ∈ (PF−PF1), by hypothesis M0 on f makes infinitely many mind changes,

hence, all but finitely many initial segments of f have this property. Let j0 =

M0(σ). By our definition of M∗, M∗(σ) = g(j0, j1,mσ). Part (a) will thus

follow if we show that ϕg(j0,j1,mσ) =∗ f and that Φg(j0,j1,mσ) has an O(nk)

bound.

By our hypotheses on M0 and M1 and our choices of m and mσ, it follows that

ϕj0 is total and 6= f and that ϕj1 = f . Hence, by (8) and our choices of k, a, p,

andmσ, it follows that, for all but finitely many x, we have ϕd(j0, j1,mσ, x) = i,

where 〈ki, ai, pi〉 is the element of triples(mσ) with ki = k, ai = a, and pi = p.

It thus follows from (9), (10), and (11) that, for all but finitely many y:

ϕg(j0,j1,mσ)(y) = ϕpi
(y) = ϕp(y) = f(y).

Φg(j0,j1,mσ)(y) ≤ Φp(y) + cj0,j1,mσ
· (|y| + 1)

≤ a · (|y| + 1)k + cj0,j1,mσ
· (|y| + 1).

Therefore g(j0, j1,mσ) is as required and part (a) follows.

A generalization of Theorem 31 also holds by a similar proof. In the general-

ization one introduces an arbitrary j ≥ 1 but requires k ≥ j in part (a); then

part (b) becomes M∗ EX-identifies PF j with all but finitely many of M∗’s

conjectures running in time O(nj).

Acknowledgments. Thanks to the anonymous referee for several suggestions

that helped tighten and improve the paper. Special thanks go to Prof. Dr. Klaus

Ambos-Spies for some very helpful suggestions and observations. Grant sup-

port was received by J. Case from NSF grant CCR-0208616, by S. Jain from

NUS grant R252-000-127-112, and by J. Royer from NSF grant CCR-0098198.

References

[1] T. Cormen, C. Leiserson, R. Rivest, C. Stein, Introduction to Algorithms, 2nd

Edition, MIT Press, 2001.

28

[2] J. Hartmanis, R. Stearns, On the computational complexity of algorithms,

Transactions of the American Mathematical Society 117 (1965) 285–306.

[3] J. Hopcroft, J. Ullman, Introduction to Automata Theory Languages and

Computation, Addison-Wesley Publishing Company, 1979.

[4] E. M. Gold, Language identification in the limit, Information and Control 10

(1967) 447–474.

[5] L. Blum, M. Blum, Toward a mathematical theory of inductive inference,

Information and Control 28 (1975) 125–155.

[6] J. Case, C. Smith, Comparison of identification criteria for machine inductive

inference, Theoretical Computer Science 25 (1983) 193–220.

[7] S. Jain, D. Osherson, J. Royer, A. Sharma, Systems that Learn: An Introduction

to Learning Theory, 2nd Edition, MIT Press, Cambridge, Mass., 1999.

[8] R. Ladner, On the structure of polynomial time reducibility, Journal of the

ACM 22 (1975) 155–171.

[9] J. Royer, J. Case, Subrecursive Programming Systems: Complexity &

Succinctness, Birkhäuser, 1994.

[10] M. Blum, A machine independent theory of the complexity of recursive

functions, Journal of the ACM 14 (1967) 322–336.

[11] J. Case, K. Chen, S. Jain, Costs of general purpose learning, Theoretical

Computer Science 259 (2001) 455–473.

[12] E. Mendelson, Introduction to Mathematical Logic, 4th Edition, Chapman &

Hall, London, 1997.

[13] E. Bernstein, U. Vazirani, Quantum complexity theory, SIAM Journal of

Computing 26 (1997) 1411–1473.

[14] D. Schmidt, The recursion-theoretic structure of complexity classes, Theoretical

Computer Science 38 (1985) 143–156.

[15] U. Schöning, A uniform approach to obtain diagonal sets in complexity classes,

Theoretical Computer Science 18 (1982) 95–103.

[16] K. Regan, The topology of provability in complexity theory, Journal of

Computer and System Sciences 36 (1988) 384–432.

[17] K. Regan, Minimum-complexity pairing functions, Journal of Computer and

System Sciences 45 (1992) 285–295.

[18] N. Jones, Computability and Complexity From a Programming Perspective,

MIT Press, 1997.

29

[19] P. Chew, M. Machtey, A note on structure and looking back applied to the

relative complexity of computable functions, Journal of Computer and System

Sciences 22 (1981) 53–59.

[20] L. Landweber, R. Lipton, E. Robertson, On the structure of sets in NP and

other complexity classes, Theoretical Computer Science 15 (1981) 181–200.

[21] J. Gill, Computational complexity of probabilistic complexity classes, SIAM

Journal of Computing 6 (1977) 675695.

[22] J. A. Bārzdiņš, Two theorems on the limiting synthesis of functions, In Theory

of Algorithms and Programs, Latvian State University, Riga, U.S.S.R 210 (1974)

82–88.

[23] H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw

Hill, New York, 1967, reprinted. MIT Press. 1987.

[24] L. Fortnow, Counting complexity, in: A. Selman, L. Hemaspaandra (Eds.),

Complexity Theory Retrospective II, Springer Verlag, 1997, pp. 81–107.

[25] C. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[26] F. Hennie, R. Stearns, Two-tape simulation of multitape Turing machines,

Journal of the ACM 13 (1966) 433–446.

[27] M. Machtey, K. Winklmann, P. Young, Simple Gödel numberings, SIAM

Journal of Computing 7 (1978) 39–60.

[28] M. Machtey, P. Young, An Introduction to the General Theory of Algorithms,

North Holland, New York, 1978.

[29] D. Kozen, Indexings of subrecursive classes, Theoretical Computer Science 11

(1980) 277–301.

[30] S. Kleene, General recursive functions of natural numbers, Math. Ann. 112

(1936) 727–742.

[31] K. Chen, Tradeoffs in machine inductive inference, Ph.D. thesis, SUNY at

Buffalo (1981).

[32] M. Li, P. Vitányi, An introduction to Kolmogorov Complexity and its

applications, second edition, Springer-Verlag, 1997.

30

