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Abstract

Mechanisms are usually viewed as inherently hierarchical, with lower levels
of a mechanism influencing, and decomposing, its higher-level behaviour. In
order to adequately draw quantitative predictions from a model of a mech-
anism, the model needs to capture this hierarchical aspect. The recursive
Bayesian network (RBN) formalism was put forward as a means to model
mechanistic hierarchies (Casini et al., 2011) by decomposing variables. The
proposal was recently criticized by Gebharter (2014) and Gebharter and
Kaiser (2014), who instead propose to decompose arrows. In this paper,
I defend the RBN account from the criticism and argue that it offers a better
representation of mechanistic hierarchies than the rival account.
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Introduction
Mechanisms are usually viewed as inherently hierarchical, with lower levels of a
mechanism influencing, and decomposing, its higher-level behaviour. In order to
adequately draw quantitative predictions from a model of a mechanism, the model
needs to capture this hierarchical aspect. The recursive Bayesian network (RBN)
formalism was put forward as a means to model mechanistic hierarchies (Casini
et al., 2011). The formalism is an extension of the Bayesian network (BN) for-
malism, already used to model same-level causal relations probabilistically (Pearl,
2000). In RBNs, higher-level variables decompose into lower-level causal BNs.

This proposal was recently criticized by Gebharter (2014) and Gebharter and
Kaiser (2014), on two main grounds: descriptive adequacy—it is unclear when the
formalism is applicable to real mechanisms—and conceptual adequacy—RBNs
do not allow one to draw interlevel inferences for explanation and intervention. To
overcome these alleged limitations, Gebharter (2014) and Gebharter and Kaiser
(2014) have made the alternative proposal that decomposition involves arrows
rather than variables. In particular, Gebharter (2014) proposes an alternative for-
malism, also extending the BN formalism, namely multilevel causal models (ML-
CMs). Instead, Gebharter and Kaiser (2014) make an informal proposal, which as
we shall see, does not coincide with MLCMs.

Decomposing variables and decomposing arrows are two very natural options
for representing mechanistic hierarchies, if one’s starting point is already a prob-
abilistic interpretation of causality. In this paper, I argue that the former option is
superior to the latter. I proceed as follows. In §1 I present and illustrate RBNs
and MLCMs. In §2 I argue against decomposing arrows. MLCMs lead to coun-
terintuitive notions of mechanistic decomposition and mechanistic explanation;
and Gebharter and Kaiser (2014)’s informal proposal goes only halfway towards
a solution. Finally, in §3 I defend RBNs from the criticism. RBNs do allow in-
terlevel causal explanation, via the uncoupling of interlevel causal relations into
a constitutional step and a causal step. RBNs also allow reasoning about inter-
level interventions; believing otherwise depends on either wrongly assuming that
changes cannot transmit along the constitutional downward-directed arrows, or
on demanding that the RBN formalism represent intervention variables, which
the formalism is not meant to represent.
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1 The two formalisms
Both RBNs and MLCMs are extensions of the BN formalism. A BN consists
of a finite set V = {V1, . . . ,Vn} of variables, each of which takes finitely many
possible values, together with a directed acyclic graph (DAG) whose nodes are
the variables in V , and the probability distribution P(Vi|Pari) of each variable Vi

conditional on its parents Pari in the DAG. Here is an example:
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DAG and probability function are linked by the Markov Condition (MC):

MC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NDi | Pari.

In words, each variable is probabilistically independent of its non-descendants,
conditional on its parents. The above figure implies for instance that V4 is in-
dependent of V1 and V5 conditional on V2 and V3. In the BN jargon, V2 and V3

‘screen off’ V4 from V1 and V5. A BN determines a joint probability distribution
over its nodes via P(v1 · · · vn) =

∏n
i=1 P(vi|pari) where vi is an assignment Vi = x

of a value to Vi and pari is the assignment of values to its parents induced by the
assignment v = v1 · · · vn.

In a causally-interpreted BN, the arrows in the DAG are interpreted as direct
causal relations and the network can be used to infer the effects of interventions as
well as to make probabilistic predictions (Pearl, 2000). In this case, MC is called
the Causal Markov Condition (CMC).

1.1 Recursive Bayesian networks
RBNs represent hierarchies by decomposing variables (Casini et al., 2011). One
of the motivations behind this choice is that scientists often talk of properties at
different levels that stand in a constitutive relation with one another.1 Another

1 Famously, Craver (2007) has proposed a criterion for identifying constitutive relations,
namely the ‘mutual manipulability’ of higher- and lower-level properties that stand in the relation.
Casini et al. (2011) refer to Craver’s intuition to further motivate RBNs. Arguments against the
compatibility between Craver (2007)’s account of constitution and interventionism (Woodward,
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motivation—which was only implicit in (Casini et al., 2011)—is that decompos-
ing variables has the additional advantage of making ‘interlevel causation’ intelli-
gible, by uncoupling (problematic) cases of interlevel downward or upward cau-
sation into two (less-problematic) steps, a constitutional, across-level step and a
causal, same-level step (Craver and Bechtel, 2007). RBNs make this idea formally
precise, thereby adding an additional justification to it.

Mechanistic hierarchy is interpreted via the notion of ‘recursive decomposi-
tion’ of variables. An RBN is a BN defined over a finite set V of variables whose
values may themselves be RBNs. A variable is called a network variable if one or
more of its possible values is an RBN and a simple variable otherwise. A standard
BN is an RBN whose variables are all simple. An RBN x that occurs as the value
of a network variable in RBN y is said to be at a lower level than y; variables in y
are the direct superiors of variables in x while variables in the same network are
peers.2 If an RBN contains no infinite descending chains—i.e., if each descend-
ing chain of networks terminates in a standard BN—then it is well-founded. Only
well-founded RBNs are considered here.

Consider a toy RBN on V = {C, S }, where C represents whether some tissue in
an organism is cancerous, taking the possible values 1 and 0, while S is survival
after 5 years, taking the possible values yes and no. The corresponding BN is:

����
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S

P(C), P(S |C)

Figure 1.1.1

2003), on which Craver’s account is based, have been offered by Leuridan (2012) and Baumgart-
ner and Gebharter (2014). Two remarks are in order. First: in the light of Gebharter and Kaiser
(2014, 3.5.3)’s own endorsement of Craver (2007)’s interpretation of constitution, these arguments
may be negatively relevant to both RBNs and Gebharter and Kaiser (2014)’s proposal. Although
this issue is certainly worth considering, I do not discuss it further here. I should however point
out that RBNs do not define constitution. They only characterize it, probabilistically—and not
even in interventionist terms (cf. fn. 4). Interventions are only used to reason about interlevel
causation. Second: Gebharter (2014)’s MLCM formalism does not interpret hierarchy in terms
of constitution—let alone constitution in one specific sense. It is thus immune to this critique.
However, instead of being an advantage, this threatens to undermine MLCMs’ ability to represent
mechanistic hierarchies (see §2).

2A variable can have several superiors. If a variable appears more than once in an RBN,
the network should not imply incompatible things about it. Consistency is discussed in detail in
(Williamson, 2005, §§10.4–10.5).
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Suppose S is a simple variable but C is a network variable, with each of its two
values denoting a lower-level (standard) BN that represents a state of the mecha-
nism for cancer. I will ignore many of the factors, such as DNA damage response
mechanisms, also responsible for cancer, and only focus on the unregulated cell
growth that results from mutations in factors that control cell division, usually la-
belled ‘growth factor’, in short GF. When C is assigned value 1 we have a network
c1 representing a functioning control mechanism, with a probabilistic dependence
(and a causal connection) between growth factor G and cell division D.
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D

Pc1(G), Pc1(D|G)

Figure 1.1.2

On the other hand, when C is assigned value 0 we have a network c0 represent-
ing a malfunction of the growth mechanism, with no dependence (and no causal
connection) between G and D.
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Pc0(G), Pc0(D)

Figure 1.1.3

Since these two lower-level networks are standard BNs, the RBN is well-founded
and fully described by the three networks.3

If an RBN is to be used to model a mechanism, it is natural to interpret the
arrows at the various levels of the RBN as signifying causal connections. Just
as standard causally-interpreted BNs are subject to the CMC, a similar condition
applies to causally-interpreted RBNs, called the Recursive Causal Markov Condi-
tion (RMC). Let us indicate with NIDi the set of non-inferiors-or-descendants of
Vi and with DSupi the set of direct superiors of Vi. Then, RCMC says that

3Note that, as this example shows, an RBN may be used to represent several states of one and
the same mechanism—in this case, the RBN represents a functioning state as well as a malfunc-
tioning state. However, it need not be so used—it is also possible to build an RBN that represents
just one mechanism state by having the network variable take a unique possible value.
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RCMC. For any Vi ∈ V = {V1, . . . ,Vn}, Vi ⊥⊥ NIDi | DSupi ∪ Pari.

In words, each variable in the RBN is independent of those variables that are nei-
ther its effects (i.e., descendants) nor its inferiors, conditional on its direct causes
(i.e., parents) and its direct superiors. RCMC adds to CMC the condition that vari-
ables at different levels also stand in relations that fulfil a MC, namely variables
at any level are probabilistically independent of non-inferiors or peers given their
direct superiors. Intuitively, if one knows the value of C, knowledge of the value
of constituent variables G or D doesn’t add anything to one’s ability to infer to,
say, the causes of C (here, none) or to the effects of C (here, S ). Since the screen-
ing off that holds in virtue of RMC depends on constitutional rather than causal
facts, not all dependencies identified by the RCMC can be causally interpreted.

Notice that, while some authors treat CMC as a necessary truth, others argue
against its universal validity (see, e.g., Williamson, 2005). Here a similar stance
is adopted with respect to RCMC. RCMC is a modelling assumptions in need of
testing or justification, rather than as a necessary truth. From this, it follows that
whether or not the formalism allows one to adequately represent a mechanism
is an empirical matter, rather than a matter of stipulation. For instance, whether
or not C adequately screens off S from G and D depends, among other things,
on the assumption that G and D affect S only via C. If this is not true, because
S or G participate in other mechanisms for S , RCMC is violated. Recovering
RCMC would then require including other network variables that cause S , and
that decompose into, among other variables, G and/or D.

Inference in RBNs proceeds via a formal device called a flattening. Let V =

{V1, . . . ,Vm} (m ≥ n) be the set of variables of an RBN closed under the inferior-
ity relation: i.e., V contains the variables in V , their direct inferiors, their direct
inferiors, and so on. Let N = {V j1 , . . . ,V jk} ⊆ V be the network variables in V.
For each assignment n = v j1 , . . . , v jk of values to the network variables we can
construct a standard BN, the flattening of the RBN with respect to n, denoted by
n↓, by taking as nodes the simple variables in V plus the assignments v j1 , . . . , v jk
to the network variables, and including an arrow from one variable to another if
the former is a parent or direct superior of the latter in the original RBN. The con-
ditional probability distributions are constrained by those in the original RBN—in
the RBN where V ji is the direct superior of Vi, P(Vi|Pari ∪ DSupi) = Pv ji

(Vi|Pari).
Notice that MC holds in the flattening because the RCMC holds in the RBN.
Only, since the arrows in the flattening that link variables to their direct inferiors
are constitutional, CMC is not satisfied.4

4 It should now be clear that the role of RCMC—and of RBNs more generally (see fn. 1)—is
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The flattenings suffice to determine a joint distribution over the variables inV
via P(v1 · · · vm) =

∏m
i=1 P(vi|paridsupi) where the probabilities on the right-hand

side are determined by a flattening induced by v1 · · · vm.5 In the cancer example,
for assignment c1 of network variable C we have the flattening c↓1:
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Figure 1.1.4

with probability distributions P(c1) = 1 and P(S |c1) determined by the top level
of the RBN, and with P(d1|g1c1) = Pc1(d1|g1) determined by the lower level (sim-
ilarly for g0 and d0). The flattening with respect to assignment c0 is c↓0:
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Figure 1.1.5

Again, P(d1|c0) = Pc0(d1) etc. In each case the required conditional distributions
are determined by the distributions given in the original RBN.

Having determined a joint distribution, the causally-interpreted RBN may, in
just the same way as can a standard causal BN, be used to draw quantitative in-
ferences for explanation and intervention, inferences that may involve variables
at the same level as well as—so we claimed in (Casini et al., 2011, §2)—across
levels.

not to define constitutional relations. With respect to the flattening, the choice of calling some
arrows ‘causal’ and other arrows ‘constitutional’ is not dictated by MC. Any use of RCMC to
find out what does (not) constitute what presupposes a prior distinction between the variables
at the different levels. Yet, given the distinction between the levels, RCMC does characterize
constitutional relations in terms of certain probabilistic dependencies and independencies.

5Pv jl
(Vi | Pari) may be obtained from observed frequencies in a dataset. Instead, P(Vi |

PariDSupi) can be obtained in either of two main ways. Either one determines the corresponding
observed frequencies from the original dataset, or one selects from all functions that satisfy the
probabilistic constraints imposed by the RBN the function Q with maximum entropy (Williamson,
2010), and sets P(Vi | PariDSupi) = Q(Vi | PariDSupi).

7



1.2 Multilevel causal models
According to Gebharter (2014), RBNs fail to allow interlevel causal inferences,
due to the lack of an explicit representation of interlevel causal arrows, over
which causal influence propagates. These objections, I maintain, are based on
the (mis)interpretation of RBNs. I postpone this discussion to §3.

Gebharter’s proposed formalism purports to remedy these alleged deficiencies
by decomposing causal arrows rather than variables. More precisely, mechanistic
hierarchy has for him to do with ‘marginalizing out’ variables when moving from
a lower-level graph to a higher-level graph.

Let us indicate a causal model as 〈V, E, P〉, where 〈V, E〉 is a DAG, defined over
a variable set V and a set of edges E among them, and P an associated probability
distribution. Let X ↔ Y indicate that two variables X and Y are effects of a latent
common cause, i.e., a cause of X and Y not represented within the graph of some
variable set V . Also, let us indicate with P∗ ↑ V the ‘restriction’ of the probability
distribution P∗ to variable set V . The restriction of a lower-level causal model
〈V∗, E∗, P∗〉 to a higher-level causal model 〈V, E, P〉 is so defined (2014, 147):

Restriction. 〈V, E, P〉 is a restriction of 〈V∗, E∗, P∗〉 if and only if

a V ⊂ V∗, and

b P∗ ↑ V = P, and

c for all X,Y ∈ V:

c.1 if there is a directed path from X to Y in 〈V∗, E∗〉 and no vertex on
this path different from X and Y is in V , then X → Y is in 〈V, E〉,
and

c.2 if X and Y are connected by a common cause path π in 〈V∗, E∗〉
or by a path π free of colliders containing a bidirected edge in
〈V∗, E∗〉, and no vertex on this path π different from X and Y is in
V , then X ↔ Y is in 〈V, E〉, and

d no path not implied by c is in 〈V, E〉.

That is, the lower-level structure 〈V∗, E∗, P∗〉 represents the mechanism for the
higher-level structure 〈V, E, P〉 iff 〈V, E, P〉 is the restriction of 〈V∗, E∗, P∗〉 uniquely
determined when V∗ is restricted to V . The restriction is such that all and only the
directed paths and common cause paths in 〈V∗, E∗〉 are preserved by 〈V, E〉, and
the probabilistic information of P∗ is consistent with P upon marginalizing out
variables in {V∗ \ V}.
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A “multi-level causal model” (MLCM) is then so defined (2014, 148):

MLCM. 〈M1 = 〈V1, E1, P1〉, . . . ,Mn = 〈Vn, En, Pn〉〉 is a multi-level causal model
if and only if

a M1, . . . ,Mn are causal models, and

b every Mi with 1 < i ≤ n is a restriction of M1, and

c M1 satisfies CMC.

That is, a MLCM is an ordered set of causal models 〈M1 = 〈V1, E1, P1〉, . . . ,Mn =

〈Vn, En, Pn〉〉, where the bottom-level, unrestricted causal model M1 satisfies CMC.
(Instead, higher-level models may or may not satisfy CMC.) Each causal model
in the MLCM, for Gebharter, represents a mechanism.

The information on the hierarchical relations among the nested mechanisms
in the MLCM is contained in a “level graph”, which is so defined (2014, 149):

Level graph. A graph G = 〈V, E〉 is called an MLCM 〈M1 = 〈V1, E1, P1〉, . . . ,Mn =

〈Vn, En, Pn〉〉’s level graph if and only if

a V = {M1, . . . ,Mn}, and

b for all Mi = 〈Vi, Ei, Pi〉 and M j = 〈V j, E j, P j〉 in V: Mi → M j is in G
if and only if Vi ⊂ V j and there is no Mk = 〈Vk, Ek, Pk〉 in V such that
Vi ⊂ Vk ⊂ V j holds.

A level graph G = 〈V, E〉 is constructed from a MLCM by adding dashed (non-
causal) arrows between any two models Mi and M j, Mi → M j, if and only if Vi

is the largest proper subset of V j in MLCM, so that Mi is, so to say, the smallest
restriction of M j. Here is an example of level graph from (Gebharter, 2014, 150):

Figure 1.2.1
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Notice that the ordering among graphs is not strict, so there may be pairs of
graphs (e.g.: M2 and M3; M4 and M3) that do not stand in a restriction relation.

Below is a more concrete illustration from (Gebharter, 2014, 151), the repre-
sentation of a water dispenser mechanism, on two levels,

Figure 1.2.2

such that M1 contains the following direct causal relations: the room temperature
T activates (and is measured by) a sensor S ; S , together with the status of a
tempering button, B, cause the heater to be on or off, H; H in turn causes the
temperature of the water dispensed, W.6

2 Criticism of MLCMs
It is debatable whether hierarchies, as represented by the level graphs in figures
1.2.1 and 1.2.2, are mechanistic—whether they represent mechanistic decompo-
sitions, and grant mechanistic explanations.

6Gebharter contrasts the virtues of this MLCM with an RBN of the ‘same’ mechanism (2014,
142-3). However, this is somewhat misleading. Gebharter’s RBN is defined over a larger variable
set, which includes a network binary variable D, superior to S and H, caused by T and B, and
causing W. It is obvious that his RBN cannot represent the same mechanism as his MLCM.
On the assumption that the RBN is faithful, it should be possible to order the RBN’s flattening
(Gebharter, 2014, 144), call it M0, as prior with respect to M1—since M1’s variable set V1 is
{V0 \ D}. However, M1 is incompatible with the restriction of M0 obtained by marginalizing out
D, call this M1∗ . (M1∗ would contain S ↔ H, S ↔ W, H ↔ W and B→ S . Instead, M1 contains
S → H, H → W and B → H.) Thus, rather than one model being a correct representation and
the other being a wrong representation of one and the same mechanism, the two models represent
different mechanisms, and are thus are not directly comparable. In the following, I shall defend
RBNs with reference to the toy model introduced in §1.1.
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First, it is not clear if MLCMs adequately represent mechanistic decomposi-
tions. High-level causal models in a MLCM, for instance models M2 in figure
1.2.1, are just more coarse-grain representations of one and the same mechanism,
viz. M1, such that some of the information in M1 is missing at the higher level,
as the term ‘restriction’ suggests. Is, for instance, T → S → H → W a mech-
anistic decomposition of T → W, although entities and properties involved are
the same at both levels, and only some activities (or relations) are different? Per-
haps this counts as a different, equally legitimate, notion of decomposition, call it
decomposition∗. The question is: How intuitive is decomposition∗?

Second, it is not clear if MLCMs adequately represent mechanistic explana-
tions. One may concede that there is a legitimate sense in which one explains the
relation between, say, the room temperature T and the water temperature W by
blowing up the process from the former to the latter and uncovering the mediating
role of the sensor S and the heater H. However, this sort of explanation is differ-
ent from the equally legitimate explanation whereby one redescribes the cancer
mechanism C in figure 1.1.1 into more fine-grain terms, and uncovers the role of
damage G and response D. G and D have an obvious mechanistic role. Instead,
S and H seem to have an etiological role. Perhaps S and H still explain mech-
anistically, according to some different notion of mechanistic explanation, call it
explanation∗. But just how intuitive is explanation∗?

The counterintuitive nature of decomposition∗ and explanation∗ is made more
explicit by a careful scrutiny of the level graph in figure 1.2.1. To begin with, con-
sider the ‘decompositions’ that correspond to restricting (i) V1 to V2, (ii) V1 to V3,
and (iii) V3 to V5. In all such cases, instead of opening a black box (as is common
in mechanistic explanation), one ‘creates’ a box, and does not, strictly speaking,
decompose anything. Let us consider (i). Here the decomposition is ‘filling a
blank’: the absence of probabilistic and causal dependencies among variables is
explained by direct causation, a hidden common cause structure, or combinations
thereof that involve new variables, too. The absence of probabilistic and causal
dependencies between X and Z in M2 is explained by the structure X ↔ Y ← Z
in M1 (more on this alleged case of ‘explanation’ below). Since there is no arrow
between X and Z in M2, and since mechanisms require causal dependencies, what
mechanism is X ↔ Y ← Z in M1 a decomposition of? Next, consider cases (ii)
and (iii). Here the decomposition is in fact ‘adding stuff’. For instance, Z ↔ W
in M5 is ‘decomposed’ into Y ← Z ↔ W in M3. But in what sense is a lower-
level mechanism that includes an isolated effect not included in the higher level a
decomposition of the higher level mechanism?

Relatedly, to some of the represented restrictions do not seem to correspond
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‘explanations’ either. Consider the restriction of M4 to M5. Here, the common
cause structure Z ↔ W is ‘explained’ by the absence of probabilistic or causal
dependence between Z and a new variable X, which is apparently disconnected
from whatever mechanism is responsible for Z ↔ W. An even more striking case
of lack of explanation is the ‘decomposition’ of X and Z in M2 into X ↔ Y ← Z
in M1. A first and more obvious issue, which is clearly non-intentional, is that the
presence of a bidirected arrow in M1 violates condition c of a MLCM, namely that
M1 satisfies CMC.7 Still, even if condition c is satisfied, the more general problem
remains that, if decompositions are to explain, this sort of decomposition should
not be allowed at any level. Intuitively, hidden common cause structures such
as X ↔ Y are just that, hidden, and thus non-explanatory. They add a mystery
rather than remove it. A—drastic—solution that immediately comes to mind is to
forbid bidirected arrows at any level. This would entail, however, that restrictions
that marginalize out common causes are disallowed, too, which is undesirable
because—if one buys into the MLCM framework—the corresponding decompo-
sitions would seem (more) explanatory. One may of course impose further condi-
tions that distinguish good from bad restrictions. However, it is not obvious how
one should proceed in a non ad hoc way, in the absence of clear intuitions on the
explanatory value of bidirected causal arrows.

The above reasons lead to scepticism about the formalism’s capacity to rep-
resent mechanistic decompositions and explanations. Such worries are in part,
but not fully, mitigated by the (orthogonal) suggestion in (Gebharter and Kaiser,
2014) that levels be ontologically distinct and the requirement that hierarchical
relations are (partly) defined by constitutional part-whole relations.

In our approach one can generate a hierarchic causal model by replac-
ing such a causal arrow [between two variables X and Y] by another
causal structure. This causal structure should be on a lower ontolog-
ical level than X and Y , it should contain at least one constitutively
relevant part of X and at least one of Y , and there should be at least
one causal path going from the former to the latter at the micro- level.
(Gebharter and Kaiser, 2014, §3.6)

In the paper, Gebharter and Kaiser focus on modelling this sort of hierarchical
relation with reference to the inhibitory feedback mechanism for the regulation of

7Gebharter himself emphasizes that “the graph of a causal model that contains bidirected ar-
rows no longer determines the Markov factorization [...].” (2014, 146, fn. 8).
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the biosynthesis of fatty acids in Brassica napus. The mechanism may be repre-
sented as follows (see figure 1.2).

Figure 2

The product of a reaction pathway, in this case the 18:1-acyl carrier protein (P)
acts as a feedback signal, which inhibits an enzyme earlier in the pathway, in this
case the plastidic acetyl-CoA carboxylase (ACCase), whose operation promotes
the production of P itself via the transformation of the substrate acetyl-CoA (S ).
ACCase has two relevant properties: it is a (positive) cause of the concentration
of P (Eactive); and it is (in its P-bound state) an effect of the concentration of P
(EP−bound). EP−bound is in turn a (negative) cause of Eactive (because P-bound AC-
Case becomes inactive) and so on and so forth, in a cycle. In addition, Eactive is also
a negative cause on EP−bound, which is represented by a negative influence on S .
Between the binding of P to E and the inactivation of E a lower-level mechanism
takes place, namely the conformational change of the substrate binding site. The
binding B between functional groups of 18:1-acyl and the effector interaction site
of the enzyme causes an allosteric switch X, which in turn brings about changes
at sites S 2 and S 4 of the enzyme ACCase. This, then, prevents the substrate from
being able to bind to the enzyme.8

It is now demanded that the levels be ontologically distinct, partly by way
of decomposing properties, rather than just the relation EP−bound → Eactive, as
follows: B is a property of a part contained in the whole that has the property
EP−bound; and S 4 and S 2 are properties of parts contained in the whole that has
the property Eactive. Between parts and wholes there are relations of constitutive

8To get a causal model, Gebharter and Kaiser propose that the causal graph in figure 1.2 be
associated with a probability distribution over a variable set that unrolls the cycle, so as to get
a dynamic causal graph. This way of treating cycles is similar to the one adopted in the RBN
approach (Clarke et al., 2014), with the notable difference that MC is not satisfied here (see below).
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rather than causal relevance, in the sense of Craver (2007): a change in a part
results in a change in the whole, and vice versa. More precisely, constitutive
relations are represented by dashed two-headed arrows that stand at either side of
the decomposition relation. As a result, decomposing arrows should apparently
explain both causally and constitutionally.

Gebharter and Kaiser require that a causal arrow X → Y is decomposed by a
lower-level causal structure only if it contains at least one constitutively relevant
part of X and at least one of Y , and there is at least one causal path going from the
former to the latter at the microlevel (2014). This eliminates two counterintuitive
features of MLCMs, namely that mechanistic decompositions may ‘fill blanks’
(there must be a higher-level relation to begin with) and ‘add stuff’ (there must
be at least one lower-level causal path). Still, two questions arise, related to the
interpretation of the dashed bidirected arrows.

First, is this interpretation of mechanistic hierarchy compatible with MLCMs?
As Gebharter and Kaiser notice, “since the two-headed dashed arrows in our hi-
erarchic dynamic CM transport the influences of interventions in both directions,
CMC does not hold in such models”. Since M1 would contain bidirected arrows,
too, it would not satisfy CMC. This entails that the Brassica napus mechanism
cannot be represented by the MLCM formalism.

Second, does the causal model in (Gebharter and Kaiser, 2014, §3.5) of-
fer an adequate formal representation of a mechanistic hierarchy, alternative to
MCLMs? I think that a positive answer would require that constitutional relations
be ascribed distinctive formal properties. Although constitutional relations are
characterized informally by part-whole relations, they don’t come with distinc-
tive probabilistic features, as one would expect from a probabilistic representation
of mechanistic hierarchies. In contrast, RBNs do offer a probabilistic character-
ization of constitution: properties at different levels that stand in a constitutional
relation relate to other properties as described by RCMC.9

3 Defense of RBNs
Still, the shortcomings of MLCMs would be a small consolation for the RBN ad-
vocate, if RBNs did not survive the objections raised by Gebharter (2014) and
Gebharter and Kaiser (2014). In this section I will consider, and try to rebut, such
objections one by one. RBNs interpret mechanistic hierarchy via the operation of

9To reiterate a point already made in fn. 4, RCMC does not itself distinguish the levels, and
thus it cannot be used to define constitution. Still, it does characterize it.
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‘recursive decomposition’, which in turn depends on RCMC. Two kinds of ob-
jections are raised against RCMC. First, about empirical adequacy: it is unclear
when RCMC holds, so it is unclear if the formalism is applicable to real mech-
anisms. Second, about conceptual adequacy: RCMC prevents RBNs from being
useful for interlevel reasoning for explanation and intervention. Let us begin with
the first objection:

it is neither obvious that RCMC holds in general, nor is it clear how
one could distinguish cases in which it holds from cases in which it
does not. (Gebharter and Kaiser, 2014, §3.5.3)

Agreed, RCMC may not hold in general. But Casini et al. (2011) don’t claim that
it does. When does it hold, then? What RCMC adds to CMC, which is not called
into question here, is RMC. RMC has to do with the (in)dependencies among
variables at different levels. In the cancer example, RMC depends on C screening
off G and D from S .

Gebharter and Kaiser then argue that the RBN approach would be unable to
adequately model the EP−bound → Eactive mechanistic decomposition:

it is not clear how the submechanism represented by EP−bound →

Eactive could be analyzed in Casini et al.’s (2011) approach. They
would need to add a network variable N between EP−bound → Eactive

(EP−bound → N → Eactive). But then and because there is no interme-
diate (macro-level) cause N between EP−bound and Eactive, it is unclear
what this network variable N should represent at the mechanism’s
macro-level. (Gebharter and Kaiser, 2014, §3.5.3)

I do not dispute that there may be cases where it is hard or implausible to find
network variables that stand for lower-level causal structures. However, this is an
empirical problem, and not necessarily a problem with the formalism. RBNs are
meant to represent a natural decomposition strategy of functional properties into
structural properties. The structural properties may be then regarded as functional
with respect to other structural properties, and so on and so forth. When does
a network variable N exist? This depends on identifying properties at different
levels, which in turn depends on a meaningful distinction between the levels.

I propose a few conditions for distinguishing between variables in a consti-
tutional relation.10 First, between the whole and its parts are mereological rela-
tions, such that properties of the whole can be explained by their probabilistic

10I don’t claim that the list is exhaustive or that each of the listed conditions is necessary.
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dependence on the structure of (causal relations among) its parts’ properties. Sec-
ond, properties at the different levels have different explanatory roles, such that
they typically enter into causal explanations involving different sets of properties.
Third, there is a difference in epistemic conditions, such that the way one ob-
serves, or intervenes on, a variable at some higher level does not coincide with
the the way one observes, and intervenes on, one of its constituting variables at
the lower level.11 When a distinction between variables informed by the above
conditions is possible, the distinction between the levels seems legitimate.12

A network variable N exists insofar as the lower-level BN is the decomposi-
tion of one functional property, which, according to the aforementioned criteria,
corresponds to a whole’s property that has its own explanatory role and epistemic
autonomy. These conditions seem satisfied by many descriptions of mechanisms
in science. For instance, tissues are made of cells. Scientists talk of the cancerous
state of a tissue as having an explanatory role with respect to survival. One may
observe the state of a tissue or change it, for instance by replacing the whole tis-
sue. One may use this knowledge to then infer to the probability of survival. This
does not require knowing, or (surgically) intervening on, the state of GF. 13

Finally, let us come to the objection that RBNs do not support interlevel rea-
soning for explanation and for prediction of the results of interventions:

[Casini et al.’s] approach does (i) not allow for a graphical represen-
tation of how a mechanism’s macro variables are causally connected
to the mechanism’s causal micro structure, which is essential when it
comes to causal explanation, and it (ii) leads to the fatal consequence
that a mechanism’s macro variables’ values cannot be changed by
any intervention on the mechanism’s micro structure whatsoever [. . . ]
(Gebharter, 2014, 139)

Explanation first. Since there are no arrows between variable at different levels
screened off by network variables, Gebharter claims that it is unclear over which
causal paths probabilistic influence propagates between such higher- and lower-
level variables (cf. 2014, 143-4). I reply that it is true, there are no such arrows.

11Baumgartner and Gebharter (2014) develop this intuition into a ‘fat-handedness’ criterion for
constitution. (Ironically, there an argument is proposed to defend an interpretation of mechanistic
hierarchy based on decomposing variables rather than arrows.)

12The conditions only provide a useful heuristics. They do not belong to the RBN formalism.
Still, RBNs give a probabilistic characterization of constitution, thanks to RCMC (cf. fn. 4).

13For more realistic examples, see (Casini et al., 2011), (Clarke et al., 2014) and (Casini, 2014).
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But this is because, by assumption, screened off variables influence each other, if
at all, only via the network variables. So, when RCMC is satisfied, the probabilis-
tic influence propagates constitutionally (rather than causally) across the dashed
arrows in the flattenings, and causally across the same-level solid arrows.

Let us now consider the second objection. With reference to the example in
figures 1.1.4 and 1.1.5, I claimed that one may, for instance, reason about the result
of a lower-level intervention on D on the probability of the higher-level variable
S . Given the observed value of P(s1), calculated as

P(s1) = P(c0)P(s1|c0) + P(c1)P(s1|c1),

one may ask: What is the effect of setting D = d1 on the probability of observing
S = s1? To answer, one calculates as follows. First, one removes the arrow
G → D from c1, so that both flattenings have the same structure below.

����
ci -

?

HHH
HHj

����
S

����
G ����

D

Figure 3.1

Then, one calculates P(s1||d1) = P(s1d1)/P(d1), where:

P(s1d1) = P(c0s1d1) + P(c1s1d1) = P(c0)P(s1|c0)Pc0(d1) + P(c1)P(s1|c1)Pc1(d1);

P(d1) = P(c0)Pc0(d1) + P(c1)Pc1(d1).

Gebharter objects that “according to the RBN approach, intervening on a
mechanism’s microvariables does not have any probabilistic influence on any
one of the macrovariables whatsoever” (2014, 145) because if one were to use
an intervention variable I to intervene on a lower-level variable, the intervention
“would—and this can directly be read off the BN’s associated graph’s topology
[...]—not have any probabilistic influence on any macrovariable at all” (ibid.). In
the cancer example: an intervention IR on R would not have any effect on S . There
is either one of the following problems with this objection.

First, it is true that ci screens off D from S , and thus there is no D→ S causal
arrow. However, concluding that interventions on R can make no difference to S
would be wrong. The lack of causal connections in the flattening does not block
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changes along constitutional arrows. It is important to stress that, although the
dashed arrows point downwards in the flattening, this is due to technical reasons
only, having to do with the condition for MC to hold across levels. Still, one
may use the downward-pointing arrows to reason—constitutionally—in both di-
rections. Here, changing D makes a constitutional difference to C, which makes a
causal difference to S . The overall difference is calculated with the RBN.

Second, there may be a more basic interpretive problem regarding how inter-
ventions are represented in RBNs. True, RCMC says that S is independent of any
variable that is not an effect or an inferior (here, none), conditional on its direct
causes (here, C) and direct superiors (here, none). But notice that RCMC is as-
sumed to hold true of variables inV = {M, S ,G,D}, and not of such an expanded
V+ = {M, S ,G,D, ID}. The reason for this is not ad hoc. RBNs are meant to
represent decompositions of (properties of) wholes into (properties of) their parts.
They are not meant to represent parts that do not belong to any whole—which
is what ID is. The graph topology cannot represent such parts. As a result, one
cannot read off the graph topology that such interventions variables have no effect.
More generally, in an RBN, everything one gets at lower levels must be the result
of (recursively) decomposing the top level.

This should not be seen as a limitation, but as a means to achieve some
end. In the RBN formalism one cannot represent interventions as variables—
unless the variables describe properties of either the top level mechanism or of
submechanisms at some lower level, obtained by way of (recursive) decomposi-
tions. But this would mean that the intervention is not external to the mechanism,
contrary to the original intention. One can, instead, straightforwardly represent
interventions as (new) values of either top-level variables or lower-level variables
into which network variables (recursively) decompose. The two ways correspond
to two well-known ways for representing interventions. Woodward (2003)’inter-
ventionist semantics, which represents interventions as variables, is an example
of the former. Pearl (2000)’s do-calculus, which represents interventions as val-
ues of variables, is an an example of the latter. Although both representations are
legitimate, only the latter is suitable to the task for which RBNs were developed,
namely to represent mechanistic decompositions.

Conclusion
Decomposing variables and decomposing arrows are two very natural options for
representing mechanistic hierarchies by means of BNs. These two options have
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been made precise by two formalisms, RBNs and MLCMs. I argued that RBNs
are better than MLCMs at analysing mechanistic hierarchies and interpreting the
interlevel reasoning that depends on them. Still, one might think that the two for-
malisms are not in competition against one another. Perhaps RBNs and MLCMs
represent two different ways in which mechanistic decompositions cab obtain?
Since ‘marginalizing out’ and ‘recursively decomposing’ are very different no-
tions, I want to caution against interpreting the two formalisms as two species of
the same genus. Having said this, I do not exclude that there is a sound way to
formalize the intuition in (Gebharter and Kaiser, 2014), and thus develop an al-
ternative analysis of mechanistic hierarchy with respect to RBNs. In that case, it
would be interesting to see how this alternative relates to RBNs.
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