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Abstract

A number of findings in the field of machine learning have given rise
to questions about what it means for automated scoring- or decision-
making systems to be fair. One center of gravity in this discussion
is whether such systems ought to satisfy classification parity (which
requires parity in accuracy across groups, defined by protected at-
tributes) or calibration (which requires similar predictions to have sim-
ilar meanings across groups, defined by protected attributes). Central
to this discussion are impossibility results, owed to Kleinberg et al.
(2016), Chouldechova (2017), and Corbett-Davies et al. (2017), which
show that classification parity and calibration are often incompatible.
This paper aims to argue that classification parity, calibration, and a
newer, interesting measure called counterfactual fairness are unsatis-
factory measures of fairness, offer a general diagnosis of the failure of
these measures, and sketch an alternative approach to understanding
fairness in machine learning.

Whether or not it draws on new scientific research, technology is a branch of
moral philosophy, not of science

-Paul Goodman

1 Introduction
Increasingly, judgments formed using patterns found in datasets are being
used to project a group or individual’s characteristics in order to make de-
cisions about them. The development of these data-driven judgments often
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involves the techniques of machine learning, the study of programming com-
puters to learn from data. Perhaps the most familiar example of such a
judgment is the credit score, a metric for predicting how likely an individ-
ual is to repay debt. In recent years, data, data storage, and computing
power—the materials needed for developing and assigning these data-driven
judgments at mass scale—have become cheap and abundant. As a result,
they are now ubiquitous.1

Recently, there has been an explosion of interest in the question of how
to determine whether a data-driven judgment is “fair”, that is, (roughly)
not wrongfully biased against members of protected classes.2,3 Bias against
members of protected classes is especially pernicious in this context because
data-driven judgement systems have the capacity to reinforce and perpetuate
oppressive social practices at scale. The interest in the question of how to
determine whether a data-driven judgment is fair has given rise to the study
of fair machine learning, the study of how to detect and mitigate bias against
members of protected classes in judgments developed using the techniques of
machine learning.

One center of gravity of the current conversation about fair machine learn-
ing is Angwin et al. (2016), a ProPublica investigation of Northpointe Inc.’s
COMPAS4. COMPAS is software that generates data-driven judgments (which,

1If this is not apparent, consider consumer scores, scores used to project consumers’
characteristics (Dixon and Gellman (2014)). There are consumer scores for just about any-
thing, such as determining an individual’s age, ethnicity, gender, frequency of purchasing
general apparel, television usage, job security, allegiance to buying name-brand or generic
drugs, likelihood of moving to another merchant, likelihood of smoking, and likelihood of
being pregnant (Dixon and Gellman (2014)). There are scores for many hundreds, if not
thousands, of other characteristics (Dixon and Gellman (2014)). These scores are used to
determine which advertisements a consumer sees, which services she is eligible for, and
what price she will pay (which might differ from that of someone else buying the same
product at the same time from the same merchant (Turow (2017)). Some consumer scores
stand in as un- or under-regulated alternatives to credit scores and are used in decisions
relating to lending, housing, and employment (Pasquale (2015)). Each of us, whether we
know it or not, have many of these scores assigned to us (Dixon and Gellman (2014)).

2See, e.g., Kleinberg et al. (2016); Angwin et al. (2016); Northpointe Inc. (2016);
Chouldechova (2017); Corbett-Davies et al. (2017); Corbett-Davies and Goel (2018); Huq
(2019).

3Note that “fair” does not generally have such a narrow meaning. However, in the
context of fair machine learning, this typically what is meant by “fair.” In what follows,
this is what I will mean by “fair,” unless I specify otherwise.

4COMPAS is an acronym for Correctional Offender Management Profiling for Alter-
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in this context, are usually called “risk scores”) describing an individual’s
risk of recidivism. Its scores are used to assist in decisions pertaining to sen-
tencing, bail, parole, and pretrial release. Angwin et al. (2016) purported to
find that COMPAS was unfair: they discovered that the software violated a
measure known as predictive equality, as it falsely identified black defendants
as future criminals at almost twice the rate as white defendants. COMPAS
also falsely identified white defendants as low risk more often than black
defendants. Northpointe Inc. defended COMPAS, saying that the software
was in fact fair. The company demonstrated that COMPAS satisfied another
ideal known as calibration, as within each COMPAS-generated “risk group”
(which are “low-,” “medium-,” and “high-risk”), defendants reoffended at sim-
ilar rates, regardless of race (Northpointe Inc. (2016)).

Paradoxically, both Angwin et al. (2016) and Northpointe Inc. (2016)
were right about the underlying facts: COMPAS falsely identifies black defen-
dants as future criminals at higher rates than white defendants; yet, within
any given risk group, COMPAS’s accuracy rates are uniform across racial
groups. As Kleinberg et al. (2016), Chouldechova (2017), and Corbett-Davies
et al. (2017) have since shown, in many contexts—including the one COMPAS
operates in—parity in overall error rates and parity in accuracy rates within
risk groups are mutually exclusive options (this result is described in detail in
section 3.2). Whether COMPAS is fair, then, depends on which—if either—of
these standards tracks the proper conception of fairness.

In this paper, I survey some of the central concepts of machine learning.
I present two measures of fairness that are popular in the machine learn-
ing literature, one corresponding to the standard that ProPublica used (i.e.,
predictive equality) and the other corresponding to the the standard North-
pointe Inc. used (i.e., calibration). I show each, as well as a newer measure
called counterfactual fairness, to be unsatisfactory. I then argue that these
measures ultimately fail for the same reason: they merely track formal fair-
ness, the equal and impartial application of rules (Hooker (2005)), which
is too narrow a conception of fairness to do the job requested of fairness
measures, i.e., to detect wrongfully biased judgements against members of
protected groups. This is because, as we will see, the issues that matter in
fair machine learning are not merely matters of formal fairness: securing for-
mal fairness is neither necessary nor sufficient for avoiding making wrongfully
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biased judgements against members of protected groups.5

2 Machine learning and fairness
To discuss these issues, it will be helpful to have some background on the
basics of machine learning. In this section, I provide a very simple example
of how one might render a data-driven judgement using machine learning.6
The example is not meant to give an insight into how all machine learning
and data-driven judgment-making works. Instead, it is meant to give those
unfamiliar with machine learning enough of a sense of how it works to under-
stand how judgement calls and data collection errors can contribute to the
construction of unfair machine learning systems.

2.1 How machines learn: a brief introduction7

Let’s suppose you have trouble telling Boston Terriers and French Bulldogs
(Frenchies) apart and want to develop a system for telling the difference.
To get better, you might go into the local dog park with an expert, make
some notes on the dogs the expert classifies as Boston Terriers and Frenchies,
look for patterns in your notes, and use those patterns as a guide to future
attempts at categorizing Boston Terriers and Frenchies. If you did this in
a rigorous way—such as the one outlined below—you’d be doing the same
thing that a computer does when it uses machine learning to mine data
sets to find patterns to render data-driven judgements. By understanding
the method, classification, we can achieve an understanding of some of the
basics of machine learning.

Let’s look at classification, step-by-step.
At step one, you choose what to take notes on. Before you go into the

field, you want to know what you plan to take notes on (Length? Weight?
Etc.) When you choose what to take notes on, you are engaging in something
called feature selection. When you choose which labels to use for the thing

5Many thanks to Gerard Vong for helping me see this.
6A bit more specifically, the example is an example of supervised machine learning, ma-

chine learning that involves the use of a labeled data set. Unsupervised machine learning,
in contrast, is machine learning that does not involve the use of any such sets. For helpful
introduction to unsupervised learning, see Gerrish and Scott (2018), especially chapter 7.

7This presentation was greatly influenced by Green et al. (2017).
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you care about (Boston Terrier, Frenchie, etc.) you are defining your target
variables, the variables you want to learn about.

At step two, you take notes. When you go into the field with an expert,
you’re engaging in data collection, with the goal of creating a data set that
you will try to learn from. You will use this data to train yourself to better
tell Boston Terriers from Frenchies; this data set is your training data.8

Your notes (data) might look like this:

Height Weight Breed
15” 15lbs Boston Terrier
11” 25lbs Frenchie
12” 28lbs Frenchie
17” 16lbs Boston Terrier
... ... ...

At Step three, you find patterns. Here’s one way to organize the training
data such that the pattern in it are obvious (where •’s represent Boston
Terriers and ×’s represent Frenchies):

Weight

Height

0

×××××××
×× ××××

×

××××
••
••
••• •• •••• ••••

•• ••
••
••

8Note that even though feature selection precedes data collection in this example, it
isn’t the case that feature selection must precede data collection. In fact, these steps are
often done in the reverse order. I assumed height and weight will help us discriminate
between Boston Terriers and Frenchies, but these might not be (and indeed probably
are not) the best features to use for our predictions. In a more sophisticated example, we
might start with data that we have already collected (perhaps you own a pet food company
and already have a large dataset about about your customer’s animals), and then—using
the data you already have—make a determination of which features are predictive of the
target variable. This complication is worth noting because features selected via certain
methods might be inscrutable to us and could track membership to a protected class.
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Imagine you want a simple rule for telling Boston Terriers from Frenchies.
So, you draw a vertical line that puts most ×’s to the right while putting
most •’s to the left. Let’s say the line belongs here:

Weight

Height

0

30”

30 lbs

×××××××
×× ××××

×

××××
••
••
••• •• •••• ••••

•• ••
••
••

Let’s do the same, with a horizontal line.

Weight

Height

0

30”

30 lbs
A

B C

D

×××××××
×× ××××

×

××××
••
••
••• •• •••• ••••

•• ••
••
••

Notice that we now have quadrants.
Now we can define a rule: If you come across a Boston Terrier or

Frenchie, take its height and weight. If the data you collect places you in
quadrant D, classify it as a Frenchie. Otherwise, classify it as a Boston Ter-
rier. We’ll call the rule for making classifications a classification rule; the
classification itself is an example of a data-driven judgement.

This will be an accurate way to discriminate Boston Terriers from Frenchies.
You will make some mistakes, but much fewer than you did before. The mis-
takes you will make with respect to the training data are described in this
confusion matrix (a table that describes the performance of a classification
rule with respect to a particular data set):
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Classified as: Boston Terrier Classified as: Frenchie
Actually: Boston Terrier 23 0

Actually: Frenchie 5 13

If the degree of accuracy supplied by this rule is sufficient for your purposes,
you are done. You’re ready to use the rule to classify future Boston Terriers
and Frenchies. If not, you may want to collect more data, track more than
two features, and experiment with drawing angled and maybe curvy lines (as
opposed to drawing two perpendicular lines) to track patterns.

As we can see from these suggestions, classification can get difficult and
complicated quickly. To improve accuracy, you might track more than two
features, which means you’re tracking patterns that might be hard for hu-
mans to spot. You might also use angled and curved dividers to sort patterns
across several dimensions. This is difficult work for the unaided human mind,
but common computers can do it with ease. This is why methods like classi-
fication are associated with machines. Computers are great at classification
in contexts where humans struggle. Further, computing is cheap and using
the methods of machine learning is an effective way to increase accuracy
across all sorts of contexts, such as lending, predicting future criminality,
and advertising. This is why machine learning has become so popular.

2.2 How machines learn to be unfair9

There are many ways to inadvertently construct a rule via classification whose
application would be unfair. Here, I’ll show how unfairness can be introduced
at each stage of the process.

Unfairness can be introduced through choices about what to take notes
on. Consider a case:

Hiring Teachers.10 You are hiring teachers and want to know
which ones will be effective. You decide to look to your past hires
to see which teachers added the most “value” to their students’
education, measured using test scores from the year before and

9The conceptual organization of this section was influenced by Barocas and Selbst
(2016).

10This example is loosely based on a real case, described in Quick (2015).
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the year after that student had them as a teacher. You find that
teachers that went to certain colleges added more value. So, you
only call back teachers that went to those schools.

In our example, you have located a pattern that exists in the data, but
this does not mean that using the rule will be fair. To see this, suppose
that the following correlations hold in the school districts you run: Minority
teachers gravitate towards schools with higher portions of minority students;
The higher the portion of minority students, the poorer the funding for that
school; Poor funding causes test scores to be stubborn; The colleges that
have produced “effective” teachers are not diverse. You’ve now introduced
unfairness into the hiring process that wasn’t there before, and you’ve done
this simply by choosing which features to track.

Unfairness can also be introduced via uneven data collection. Consider
another case:

Pretrial Release. You are deciding who to release while await-
ing trial. You only want to release people who will not reoffend
while awaiting trial. You have data about past defendants that
suggests that the number of past arrests a defendant has is pos-
itively correlated with future arrests. You use this to construct
a rule that recommends only releasing those with few previous
arrests.

Again, we have located a pattern that exists in the data, but that does not
mean that using the resulting classification rule will be fair. We can suppose
further that in our case—as in reality, sadly—there are many types of crimes
which white people and black people commit at similar rates, but that black
people get arrested for much more often (Bunting et al. (2013)). Using arrests
as a proxy for reoffense, then, is a way of formalizing and reinforcing an unfair
pattern that already exists.

Finally, unfairness can be introduced at the last stage, where patterns
are found in the data you’ve collected. Where to draw your lines reflects
your values. How much do you weigh being wrong about taking away the
freedom of a person who wouldn’t commit a future crime vs. being wrong
about letting someone free who would? How much do you weigh missing
a qualified teacher vs. hiring an ineffective one? In Hiring Teachers and
Pretrial Release, where you draw your lines will not only settle these matters,
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it will also determine the proportion of black-to-white non-reoffenders denied
pretrial release, black-to-white qualified teachers that do not get a call-back,
and so on.

Before moving on, it is worth noting that these examples do not reveal
problems that are unique to machine learning. Other methods of data-driven
decision making, such as doing statistical calculations by hand, are suscep-
tible to the exact same problems as those discussed in this section. I have
focused on machine learning due to the entirely contingent fact that machines
are an increasingly popular way to carry out data-driven decision making.
That said, it is worth keeping in mind why machine learning has become
so popular and how this connects to concerns about fairness. Machines can
carry out certain processes—such as developing or updating classification
systems—cheaply and at a scale that was recently practically impossible.
Further—as we have just seen—the systems they develop can be unfair, and
often in ways that can be hard to detect. This is owed to the exact same
capacity that makes these systems popular: their ability to leverage hard to
detect correlations in large datasets. This, among other things, has driven
the search for scalable methods for detecting unfairness in machine learning
systems, to which we will now turn.

3 Competing measures of fairness11

As the last section demonstrated, we can use classification to inadvertently
develop classification rules that are unfair to use. This has lead technologists
to ask how they might detect instances where a classification rule’s use is
unfair. In that discussion, two measures of fairness have emerged as front
runners (Corbett-Davies and Goel (2018)). In this section, I’ll introduce
these measures and demonstrate that satisfying either is neither necessary
nor sufficient for a classification rule’s use being fair. I will also introduce
and discuss counterfactual fairness and subject it to the same treatment. I
will then use this discussion to motivate a general explanation of why the
measures discussed here fail.

Before we begin, it will be helpful to note that the measures of fairness
we will consider focus on aspects of the predictions on which decisions are
based, and not the outcomes of the decisions they inform. This raises the
question of what these measures have to do with fairness per se, given that

11This section was greatly influenced by Corbett-Davies and Goel (2018).
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fairness is perhaps more naturally thought of as a feature of decisions or
outcomes. I take it that features of predictions are relevant to fairness, given
the context: the predictions serve (or at least are intended to serve) as the
basis of life-affecting decisions.

It is worth adding that this isn’t the full context, either. When we are
considering the objects to which fairness measures apply, we are considering
them under what we could call “normal operating conditions.” These are
the conditions under which life-affecting decisions (whether to subject indi-
viduals to treatment ϕ) are being based on some prediction (whether the
individuals are y); it is at least prima facie reasonable to base decisions as
to whether to give someone treatment ϕ on their status whether they are y;
and the decision-making system under discussion was developed at least min-
imally competently (in that its predictions are reliable and incorporated into
decisions in an at least prima facie sensible fashion), is functioning properly,
is being used as intended, and was not designed maliciously or with any sort
of discriminatory intent. I take it that if we can show that a satisfying mea-
sure is neither necessary nor sufficient for a system’s being fair under these
conditions, we have shown the measure to be neither necessary nor sufficient
for fairness in the sense that matters for the purposes of this paper.12

3.1 Parity and calibration

One popular fairness measure states that

Classification parity : predictive performance ought to be equal
across groups, defined by protected attributes (Corbett-Davies
and Goel (2018)).

Because there are different ways of measuring classification error—we could,
for example, look at false positive rates or false negative rates—there are
several fairness measures that pursue classification parity. For the purposes
of this paper, I will focus on one of these measures,

12This leaves room for the possibility that the measures could capture some other sense
of fairness, say some sense of fairness as it applies to predictions per se. My arguments
cannot rule this out, but I do not think that it is a problem for my project, as it is concerned
with the question of fair data-driven decision making. Whether there is some notion of
fairness as it applies to predictions per se will not change the substance of my conclusion,
as the arguments will have shown that being fair in this sense is neither necessary nor
sufficient for fair data-driven decision making.
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Predictive equality : the rate of false positives of a given rule ought
to be equal across groups, defined by protected attributes (Verma
and Rubin (2018)).

Predictive equality asks us to balance false positives. If we understand “high
risk” as the positive, predictive equality tells us that COMPAS is unfair be-
cause it is more likely to issue false positives for black defendants.

Another popular conception of fairness states that

Calibration: outcomes (e.g., rearrest) ought to be probabilisti-
cally independent of membership to protected a protected group,
given one’s data-driven judgement (e.g., “high-risk”) (Corbett-
Davies and Goel (2018)).13

One way to understand calibration is that it requires a rule’s judgements to
mean the same thing for anyone subject to it. COMPAS meets this standard:
the black and white defendants it identifies as “high risk” reoffend at similar
rates (Northpointe Inc. 2016).14

To see why predictive equality (and other measures that pursue classifica-
tion parity) and calibration are often at odds with each other, let’s consider a

13There is a third popular conception, anti-classification, which forbids classification
rules from taking as inputs data about whether someone belongs to a protected group.
Anti-classification is much less plausible than the two we will discuss. In many instances,
including Hiring Teachers and Pretrial Release, labels not directly tracking membership
to a protected group can serve as a proxy for that membership. For this reason, rules
that do not take protected status directly as inputs can discriminate against these groups
using proxies. Further, knowing a subjects’ protected status might improve accuracy in
ways that are required to achieve fair outcomes. Consider, for instance, the fact that in
some contexts women reoffend less often than men (Skeem et al. (2016), Binns (2017),
DeMichele et al. (2018), Corbett-Davies and Goel (2018)). In these contexts, gender is
predictive of reoffense. If we are building a rule to predict reoffense, blinding ourselves
to gender will make us less accurate in ways that will systematically disproportionately
adversely affect women, because it will lead to our overestimating their likelihood of re-
offense (Corbett-Davies and Goel (2018)). As these observations demonstrate, refraining
from taking as inputs data about whether someone belongs to a protected class is neither
necessary nor sufficient for a classification rule’s use being fair: unfair discrimination can
occur without using taking group membership as an input, and using group membership
might be important for achieving fairness.

14This is also true of the low and medium risk groups.
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simplified example based on COMPAS.15 Suppose a hypothetical pretrial risk
assessment tool, ASTROLABE.16 ASTROLABE identifies defendants as “Low”
(low risk of committing a crime while out on bail) and “High” (high risk
of committing a crime while out on bail). The following chart summarizes
ASTROLABE’s performance:
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Note that the following is true of ASTROLABE:17

1. The proportion of low risk defendants who are rearrested—20%—is the
same regardless of race, and the proportion of high risk defendants who
are rearrested—80%—is the same regardless of race. Put another way:
within any given groups, rearrest rates are in parity for white and black
defendants.

15I owe much of this explanation to Corbett-Davies et al. (2016). The example is mine,
but the general arch of the explanation is theirs. For a similar explanation of these issues,
see Rubel et al. (2021).

16I am using a hypothetical tool so that I can stipulate numbers that make the salient
aspects of the COMPAS case a bit easier to see.

171.-4. are also true of COMPAS (Corbett-Davies et al. (2016)).
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2. The overall rearrest rate for black defendants—60%—and is not equal
to the overall rearrest rate for white defendants—40%.

3. Black defendants are more likely than white defendants to be classified
as high risk. (2/3 vs. 1/3.)

4. Black defendants who are not rearrested are twice as likely to be misiden-
tified as high risk than their white counterparts. (2/15 vs. 1/15.)

Note that 1. and 2. guarantee 3. and 4. (cf. Corbett-Davies et al. (2016)).
The stacked bar chart can help us see this. We can generalize a bit and say
the fact that the system is calibrated and not perfectly accurate (which is
entailed by 1.), when combined with the fact that the black rearrest rate
is higher than the white rearrest rate (which is entailed by 2.), guarantees
that predictive equality does not hold (which is entailed by 4). Therefore,
classification parity is not achieved. We are now in a position to see that
wide class of cases, calibration and classification parity are incompatible (cf.
Kleinberg et al. (2016)).

Now that we have an understanding of predictive equality, calibration,
and a sense of why we often can’t satisfy both, I will explain why neither is
a very good measure of fairness.

Let’s begin with predictive equality. To see why abiding by predictive
equality is not required for a machine to be fair, consider a case inspired by
the fact that in some contexts, men reoffend more often than women:

Violent Offense. You are deciding which defendants to give free
anger management counseling to. There are a limited number of
counselors, and your task is to increase public safety by giving
counseling vouchers to defendants that are at high risk of com-
mitting violent offenses while out on bail. Male defendants are
much more likely to commit violent crimes while out on release
than female defendants, and your data reflect this. You construct
an accurate—but not perfectly accurate—and calibrated system
for identifying individuals that are at high risk of committing vi-
olent offenses while out on bail. You give “high risk” individuals
vouchers.

Your system will involve a rule that behaves much like ASTROLABE in that
your rule will violate predictive equality. This time, however, it is male defen-
dants (as opposed to black defendants) who are more likely to be misidentified
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as high risk, and those defendants will be offered optional anger management
counseling as opposed to being denied bail.

Using the rule you construct in Violent Offense seems to be fair, despite its
violating predictive equality. If we stipulate that it’s highly reliable (maybe
it’s at least as good as ASTROLABE), it is hard to see how it could be con-
sidered unfair. Sure, some men who don’t need counseling will be offered it,
but they can always decline the invitation. And, of course, more men will be
mistakenly offered counseling, but, again, there seems to be no problem here,
especially if this is the best we can do with the data and resources we are
given.Violent Offense, then, teaches us that abiding by predictive equality is
not necessary for a rule’s use being fair: the use of the rule in this case is
intuitively fair, despite its violating predictive equality (for a similar analysis
see Corbett-Davies and Goel (2018); see Hedden (2021) for a different case
that shows that abiding by predictive equality is not necessary for a rule’s
use being fair).

A related case can teach us that achieving predictive equality is not suffi-
cient for a rule’s being fair. We can, as the following case illustrates, achieve
predictive equality to make up for the unequal false positive rate by system-
atically overestimating reoffense among women:

Violent Offense Two. You are deciding which defendants to
deny bail to. Your task is to increase public safety by identifying
defendants that are at high risk of committing violent offenses
while out on bail. Male defendants are much more likely to com-
mit violent crimes while out on release than female defendants,
and your data reflect this. Valuing predictive equality, You con-
struct a system that has lower standards for identifying women
as high risk than it does for men so that the false positive rates
among men and women will be in parity.

Despite its achieving predictive equality, this is a deeply unfair system: It
involves having different standards form men and women, such that a burden
is placed on certain women to make up for the bad behavior of men. As the
Violent Offense cases demonstrate, satisfying predictive equality is neither
necessary nor sufficient for a classification rule’s use being fair.

Let us now turn to calibration. If we return to ASTROLABE, we can
quickly see why abiding calibration is neither necessary nor sufficient for a
rule’s use being fair. Suppose that in ASTROLABE’s world—as in the United
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States (Bunting et al. (2013))—black people are disproportionately arrested
for crimes committed at equal rates by both white and black people. Imagine
this has a distorting effect on ASTROLABE, which leads it to overpredict
reoffense among black defendants, relative to their white counterparts. This,
it would seem, is the paragon of unfairness, despite ASTROLABE’s satisfying
calibration (as it is commonly measured, which is with rates of rearrest).

If we think through this example one step further, we can see that satis-
fying calibration isn’t necessary for a rule’s use being fair either. Suppose we
build a second device, SEXTANT, that produces scores adjusted for policing
bias. We can imagine that SEXTANT takes as inputs ASTROLABE’s judge-
ments as well as other data about disproportionate arrest rates and produces
adjusted scores that more closely track reoffense (as opposed to rearrest).
SEXTANT will violate calibration: “low risk” black defendants will be rear-
rested at higher rates than their white, “low risk” counterparts; yet, we’d be
loathe to consider SEXTANT unfair in virtue of this.

3.2 Counterfactual fairness

We can round out our consideration of fairness measures by considering a
newer measure that is markedly different from the ones we have considered
so far, in that—as we will soon see—that it uses the notion of causation to
understand unfairness:

counterfactual fairness : decisions ought to be the same in the
actual world and any counterfactual world where the individual
belongs to a different demographic group (Kusner et al. (2018)).

Counterfactual fairness may sound complicated, but it is in fact a fairly easy
measure to understand. What it amounts to is a prohibition on the use of
any variables for the use of prediction that are causally affected by protected
attributes. In other words, a prediction-based decision will be fair by the
lights of counterfactual fairness iff none of the variables used by the system
are affected by protected attributes.

Before moving on, it will be helpful to clarify why this last claim—i.e.,
that a prediction-based decision will be fair by the lights of counterfactual
fairness iff none of the variables used by the system are affected by race—is
true.

Counterfactual fairness understands counterparthood by reference to a
causal model that maps causal relations among the inputs and outputs of a
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given prediction-based decision system, as well as any protected attributes
that affect those the inputs and outputs. Take, for example, the following
hypothetical causal model, used by Kusner et al. (2018), as the model cor-
responding to a system used in a case called “Law School Success,” where a
machine learning system is used to predict success in one’s first year of law
school (in the model, “Success”) on the basis of one’s GPA (in the model,
“GPA”) and LSAT score (in the model, “LSAT”). In the model, “Knowledge”
stands for the student’s law knowledge, “Race” for their race, and “Sex” for
their sex. An arrow from one node—e.g., Race—to another—e.g., LSAT—
means that race affects LSAT scores.18. We will suppose that the arrows
represent (in this example, unspecified) equations, such that if we knew the
values of all nodes going into a node, we could calculate the value for that
node (e.g., if we know race, gender, and knowledge, we can compute GPA,
LSAT, and Success).

LSAT Knowledge

GPA

Success

Race

Sex

Causal model for Law School Success

Note that this model indicates that race and sex affect GPA, LSAT score, and
Success. The idea here is that one’s race and sex influence these variables in
a variety of ways via structural racism and sexism. Note that law knowledge
also affects these variables but that it is—however improbably—not affected
by race or gender.

Now suppose that a given system predicts Success on the basis of GPA
and LSAT, letting in only those who it predicts will be successful. Is such
a system counterfactually fair? To determine this, let’s consider a given

18For a similar discussion, see Castro et al. (n.d.).
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applicant, Hanlon. Here’s the causal model with the values for Hanlon filled
in:

130 Medium

A−

Y es

White

Male

Causal model for Hanlon

To determine whether this system is fair we need to either find a counterpart
of Hanlon who has different protected attributes and does not get in, or show
that all his counterparts with different protected attributes would get in. For
the purposes of counterfactual fairness, one’s counterpart is anyone who has
the same assignments for all variables not affected by protected attributes.
In this case, everyone with a medium level of law knowledge is a counterpart
for Hanlon.

Let us now demonstrate that the system is counterfactually unfair. Let
us suppose that if we fill “Black” in for race and “Female” in for gender, we
get the following:

140 Medium

B+

No

Black

Female

Causal model for Hanlon′s counterpart
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Given that Hanlon’s counterpart gets a different answer—“No”—this system
is not counterfactually fair. Note also that we would have a counterfactually
fair system if we let applicants in only on the basis of law knowledge, because
with such a system we would never have a situation where someone gets in
but their counterpart belonging to a different demographic does not.

We can now ask our familiar questions: is being counterfactually fair
necessary for a rule’s use being fair? Is it sufficient? Characteristically, I will
say that it is not in both cases.

Let’s start by asking whether being counterfactually fair is necessary.
Consider a case, call it Internship, where we are testing for fluency in a
language.19 Presumably, it is legitimate to require fluency in a language for
some positions and that fluency could be determined via a test. Suppose,
then, that we set up a system where taking such a test is part of applying
for an internship. Let us stipulate that the causal model looks like this:

Score

Ethnicity Studied

If we specify that Spanish is a legitimate qualification of the position, that
all applicants had an opportunity to achieve Spanish fluency by formally
studying Spanish, and that applicants pass the test iff they are fluent, then
it is safe to assume that this system is fair. Yet, counterfactual fairness will
judge that it is not. We can imagine a candidate who fails the test because
they are non-Hispanic and did not study Spanish. Such a candidate will have
a Hispanic counterpart that passes the test even though the counterpart did
not formally study Spanish; thus, the system is not counterfactually fair.
Yet, the system is fair; so, being counterfactually fair is not necessary for
being fair.

Let us now turn to the question of whether being counterfactually fair
is sufficient for a rule’s use being fair. To see why it is not, consider the
following highly stylized case:

Sundial. You are deciding who to release while awaiting trial.
Valuing counterfactual fairness, you have tossed out COMPAS.

19This case has many features in common with a case discussed in Castro et al. (n.d.).
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Your new system, SUNDIAL bases its prediction of recitivism off
of two features of defendants that are not casually influenced by
any protected attributes: law knowledge and mischievousness.
The system detects presence of both features, and it deems those
who have both to be high risk. Due to policing practices—such
as placing police in certain schools but not others—no white peo-
ple with law knowledge ever face SUNDIAL, meaning no innocent
white defendants face SUNDIAL; yet, many innocent black defen-
dants do. As a result, SUNDIAL deems innocent black people high
risk more often than their white counterparts.

It might help with what follows to suppose that when SUNDIAL was adopted
you very well could have adopted RADAR, which ignores law knowledge and
instead detects kinds of mischeviousness, one of which is evenly distributed
among the white and black defendants that you see and thus does not dispro-
portionately disadvantage black defendants in the way that SUNDIAL does.

In case it is helpful, here is a model for SUNDIAL:

Risk

Knowledge Mischievousness

As the causal model makes clear, SUNDIAL is counterfactually fair. Yet, its
use is unfair. It serves to only identify black defendants as high risk—it is
unfair much in the same way that COMPAS is. For these reasons, counterfac-
tual fairness—like predictive equality and calibration—is neither necessary
nor sufficient for a rule’s use being fair.

3.3 Why the measures fare poorly

I would now like to attempt a general diagnosis of why the measurements of
fairness we have considered fared so poorly.

The problem that predictive equality, calibration, and counterfactual fair-
ness (and anti-classification, which is discussed in footnote 13) share in com-
mon is that they are merely measures of formal fairness. To see this, distin-
guish a classification rule (e.g., “if a suspected Frenchie’s height and weight
put in it quadrant D, predict Frenchie”) from the rule—call it the ultimate
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rule—that the classification rule attempts to satisfy (e.g., “Label Frenchies as
Frenchies”). The measures of fairness that we have considered tell us whether
using a classification rule—which attempts to satisfy some ultimate rule by
giving instructions about what to do—results in the unequal or partial ap-
plication of its ultimate rule. What they do not do is check to see if, say, a
given application of the ultimate rule is applied with sensitivity to the needs
of the worse off, imposes unjustifiable burdens arbitrarily, or reinforces and
perpetuates an oppressive social practice.

One of the major problems with the focus on formal fairness is that
many of our complaints about fairness in machine learning are broader than
anything captured by formal fairness. Imagine a case where a community
wants to save resources by developing a pretrial risk assessment tool that
predicts who will be rearrested—as opposed to who will reoffend—if released.
If black arrest rates in the community are much higher than white arrest
rates due to uneven policing, using the pretrial risk assessment tool is unfair
regardless of whether it is applying its ultimate rule equally and impartially.
This is because applying the ultimate rule “label as high risk those who would
be rearrested” is itself unfair. This helps us see why, as a general matter,
showing that a pretrial risk assessment tool is or isn’t calibrated (or does
or doesn’t satisfy anti-classification, predictive equality, or counterfactual
fairness) does not guarantee that it is (un)fair: many of our concerns with
fairness go beyond questions whether a rule—regardless of what it is asking
for and regardless of the broader context—is being equally and impartially
applied.

We can apply this lesson to COMPAS. It explains why Northpointe Inc.’s
response (that COMPAS is fair because it satisfies calibration) to ProPublica’s
complaint (that COMPAS is unfair because it violates predictive equality) was
hardly enough to show that ProPublica hadn’t located a problem with the use
of COMPAS. Northpointe Inc.’s response leaves open the question of whether
COMPAS violates predictive equality because it picks up on and recreates
arrest patterns due to uneven policing (as opposed to actual reoffense). If
it has, the fact that it perpetuates this injustice while being formally fair
is largely besides the point. Our real concern is about the inequality that
drives COMPAS to violate predictive equality and whether COMPAS may be
playing a role in perpetuating that inequality.

Our discussion also reveals that a moral criticism of COMPAS based on
ProPublica’s findings is incomplete until it explains why the violation of for-
mal fairness ProPublica discovered is unfair in this context. This is because,
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as we saw in 3.2, predictive equality is not required for the application of a
rule to be fair. Now, I take it that COMPAS is unfair, and that this has to
do with the fact that it places greater burdens on the worse off. This, as I
will discuss in the next section, shows that even though predictive equality
(as well as various other fairness measures) isn’t required for being unfair, it
can serve as a useful heuristic in detecting unfairness.20

4 Lessons and loose ends
Suppose what I have said so far is correct. What follows?

For one, when it comes to fairness in machine learning, we should worry
less about articulating fairness measures that merely track formal fairness.
Instead, we should start worrying about better understanding the demands
of fairness that got us to worry about machine fairness in the first place.
Throughout this paper, we have seen that one perennial concern with ma-
chine learning systems is how they treat members of disadvantaged groups.
Our investigation has taught us both how automated systems can further
disadvantage members of these groups (e.g., by systematically making errors
in a way that further disadvantages them) and how satisfying extant fairness
measures is not enough to ameliorate these worries.

We should also work towards better understanding how the fairness mea-
sures discussed in this paper might serve as reliable heuristics for diagnosing
and addressing matters of fairness. In this paper we have caught a glimpse of
how this might work. As the ASTROLABE example helps make clear, if a cal-
ibrated system violates predictive equality, this is evidence of an underlying
inequality in the populations. If members of one population tend to be worse
off than another and the system benefits the better off and burdens the worse
off, then there will be serious cause for concern from the vantage point of
fairness. The upshot here is that predictive equality and calibration can be
used in conjunction with one another to detect potentially noxious inequal-
ities that we risk compounding through the use of a data-driven judgment
system.

Finally, a worry. Understanding fairness as it applies to data-driven judg-
ments in the way that I have carved our here will be a large and messy under-
taking. But, as I hope to have convincingly argued, there is no alternative:

20See Hellman (2020) for a defense of a similar claim.
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we must be deeply suspicious of any one-size-fits all solutions—such as pre-
dictive equality, calibration, and counterfactual fairness—that promise to be
both operationalizable and informative enough to algorithmically measure
fairness. Instead, we must patiently use a plurality of tools from moral and
political philosophy as well as statistics and computer science to answer these
questions in piecemeal fashion. And this is as it should be: the question of
whether we are permitted to pursue an ultimate rule, and if so, how, just is
the question of how and whether to pursue an end (i.e., the central question
of ethics).
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