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Detrended Fluctuation Analysis (DFA) is a popular method for assessing the fractal characteristics of biosignals, recently adapted
for evaluating the heart-rate multifractal and/or multiscale characteristics. However, the existing methods do not consider the
beat-by-beat sampling of heart rate and have relatively low scale resolutions and were not applied to cardiovascular signals other
than heart rate. Therefore, aim of this work is to present a DFA-based method for joint multifractal/multiscale analysis designed to
address the above critical points and to provide the first description of the multifractal/multiscale structure of interbeat intervals
(IBI), systolic blood pressure (SBP), and diastolic blood pressure (DBP) in male and female volunteers separately. The method
optimizes data splitting in blocks to reduce the DFA estimation variance and to evaluate scale coeflicients with Taylor’s expansion
formulas and maps the scales from beat domains to temporal domains. Applied to cardiovascular signals recorded in 42 female
and 42 male volunteers, it showed that scale coefficients and degree of multifractality depend on the temporal scale, with marked
differences between IBI, SBP, and DBP and with significant sex differences. Results may be interpreted considering the distinct
physiological mechanisms regulating heart-rate and blood-pressure dynamics and the different autonomic profile of males and

females.

1. Introduction

Beat-by-beat measures of cardiovascular variables show an
intrinsic variability, even when the cardiovascular system
is observed in steady-state conditions. These spontaneous
changes may reflect the processes underlying the cardiovas-
cular homeostasis. Components of this variability show a
fractal nature and in the last two decades different authors
suggested that, at least for the heart rate, such components
may be the output of a complex system that generates self-
similar signals [1, 2]. In fact, the cardiovascular system,
like several complex dynamical systems, is composed of
interacting subsystems embedded in a fractal structure. In
particular, fractal networks of vessels and of nervous and
humoral pathways connect and hierarchically regulate local

blood flows among several vascular beds. Accordingly, the
cardiovascular system can be regarded as a dissipative system
that preserves homeostasis evolving toward a self-organized
state, not characterized by any intrinsic scale of time [3].
Properly assessing the fractal components of the spontaneous
variability of cardiovascular signals is important, because it
may help identifying early alterations in cardiovascular reg-
ulatory mechanisms and may contribute to stratifying more
precisely the cardiovascular risk.

The first descriptions of cardiovascular self-similarity
were based on modeling the heart rate as a time series belong-
ing to the families of fractional Gaussian noises or of fraction-
al Brownian motions and on estimating the corresponding
Hurst exponent [4]. Successive studies recognized that such
an approach oversimplifies a more complex phenomenon,
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because the fractal characteristics of heart rate appear to
depend on the scale of the observation [5]. This led some
authors to propose multiscale approaches that quantify the
cardiovascular complexity by a spectrum of self-similarity
coefficients evaluated at different temporal scales [6-8].
Other authors provided evidence of the multifractal nature
of heart rate [9-11], which means that the self-similar com-
ponents of variability result from the superimposition of dif-
ferent fractal processes, interwoven at the same scales. This
makes the inadequacy of methods based on monofractal
models to describe the cardiovascular complexity even more
apparent.

For these reasons, the more recent research in the field of
heart-rate variability is aimed at proposing methods that take
into account both the scale dependency of self-similarity and
its multifractal nature [12, 13]. Following this line of research,
the aim of the present study is to describe the multifractal
and multiscale characteristics of cardiovascular signals in
healthy subjects under controlled conditions. This is done by
adapting previously proposed methods of multifractal and
multiscale analysis and by comparing three cardiovascular
signals frequently recorded in physiological and clinical
studies: interbeat interval (IBI, inverse of heart rate), systolic
blood pressure (SBP), and diastolic blood pressure (DBP).
We expect different fractal dynamics for these three signals
because they are influenced by different cardiovascular effec-
tors: DBP is mainly modulated by changes in vascular resis-
tances, SBP by changes in cardiac output, and IBI by changes
in cardiac outflows of the autonomic nervous system. Since
males and females are characterized by a different autonomic
profile [14], the analysis also focuses on sex differences in the
multifractal and multiscale dynamics.

2. Methods

2.1. Multifractal-Multiscale DFA. Our estimator of the mul-
tifractal-multiscale characteristics of beat-by-beat cardiovas-
cular signals was based on detrended fluctuation analysis
(DFA), a method originally proposed for calculating a scale
exponent, «, strictly related to Hurst’s exponent of monofrac-
tal time series [5]. DFA has been successively extended to
analyze multifractal time series, obtaining distributions of «
coeflicients that describe the superposition of different fractal
processes [15]. Moreover, DFA has been also extended to
provide multiscale evaluations, that is, a spectrum of « coef-
ficients function of the observation scale [6, 16]. Therefore,
DFA is a versatile technique easily adaptable for multifractal
or multiscale analysis. In this regard, recently Gierattowski
et al. combined both the approaches: they proposed a mul-
tifractal and multiscale method for the DFA of heart-rate
variability, exploiting the possibility of adapting the multi-
fractal DFA algorithm in order to provide estimates separately
at different scales [12]. This method was recently applied
for modeling heart-rate variability during sleep and blood-
pressure variability [17, 18]. In the present study, we followed
asimilar approach, introducing, however, important variants.
These took into account specific properties of the beat-to-beat
cardiovascular dynamics that regard the way local slopes are
derived and their proper mapping in the time domain.
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Given a time series of the cardiovascular variable x(j)
with mean y, evaluated over N consecutive heart beats (1 <
j < N), its cumulative sum

=3 () -n) 0

was calculated for 1 < i < N. Then, fixing a block size
n in number of beats, y(i) was split into M blocks each
containing a data segment of n beats. Often DFA is evaluated
considering nonoverlapping consecutive blocks: in this case,
M = int(N/n) and a short segment of N-nM data at the end
of the series is not included in any of the M blocks if N is
not multiple of # [19]. By contrast, we overlapped consecutive
segments so that two successive blocks had n — 1 beats in
common (maximal overlapping), M was equal to (N —n+ 1)
and all the data were included in at least one block for any
size n. Asillustrated in Figure 1, maximal overlapping reduces
the estimator variance substantially (this will allow evaluating
the local slopes & with numerical differentiation formulas).
Data were detrended in each of the M blocks with a least-
square polynomial fitting of order 1. The standard deviation
of the detrended data was calculated in each block k, o, (k),
forl <k < M.

Data splitting was repeated for block sizes n between 6
and N /4 beats. Block sizes were selected as the closest integers
to a distribution evenly spaced on a logarithmic scale, with
density of about 13 samples per decade. For instance, for
N = 8400 beats, corresponding to a 2-hour recording at the
heart rate of 70 bpm, we considered 34 block sizes n between
6 and 1827 beats. Because of the low size of the smallest
block, we set the order of the fitting polynomial equal to 1, to
avoid overfitting the data with a too high order, which might
remove not only the trend but also the significant components
of variability.

According to the multifractal approach for DFA [15], a
family of variability functions, F,(n), which depend on the
multifractal parameter g, are calculated for each block size #,
as

| M a/2\ /i
E,m=| — (o2 k) > forq#0
' <M Ll 2)
F,(n) = LMD Tl 0 (k) g q=0.

If x(i) has a power law correlation—like fractional Gaussian
noises or fractional Brownian motions—then F,(n) increases
as a power of 1 for any choice of the parameter g: F,(n) oc n*.
For monofractal time series, the exponent « is associated with
Hurst’s exponent H, being « = H for fractional Gaussian
noises and « = H + 1 for fractional Brownian motions. By
contrast, if x(i) is a multifractal series with fractal com-
ponents of different amplitude, « reflects the superposition
of different power law correlations. In particular, « mainly
reflects the fractal components with larger amplitude if g > 0
and the fractal components with smaller amplitude if g <
0. Therefore, o coeflicients that depend on q are sign of
multifractal dynamics.
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FIGURE 1: Examples of multifractal F,(n) functions plotted versus the block size n at different q values for nonoverlapped (a), 50% overlapped (b),
and maximally overlapped blocks (c). Data from beat-to-beat IBI series of 2-hour duration recorded in a healthy volunteer sitting at rest.

The multifractal exponent «(q) can be estimated from
Fq(n) in (2) as the slope of a least-square linear regression
between log Fq(n) and logn [20]. In this way, however, local
deviations from the linear trend occurring at specific scales
n cannot be detected. The assessment of local deviations may
reflect changes in the sympathetic and vagal cardiac control
not otherwise visible [7, 16], revealing subtle alterations in
the overall autonomic regulation of the cardiovascular system
[21] and characterizing pathological conditions [6, 22]. To
evaluate a local slope, that is, « as function of n, methods
with higher scale resolution are required. A simple way to
obtain a multiscale representation is to calculate the least-
square linear regression over a running window with constant
width over the log n axis [12]. The estimated slope, a(qg, 1),
is associated with the central scale n of the running window.
However, the length of the running window influences the
“smoothness” of the a(g,n) curves and limits the range of
scales where « is estimated. Alternatively, a(g,n) could be
estimated as derivative of log F, (1) versus logn, as proposed
for monofractal DFA [16]. We followed this approach and
since n was approximately spaced evenly on the logarithmic
scale, we applied formula derived from Taylor’s expansion.
Let us call {n;} with 1 < I < [ ,x the set of I ;,x block sizes,
where we calculated F,(n) in (2). The 3-point expression of

q
the derivative of log F, (n) versus logn is

log F, (ry,,) — log Fy ()
log (r;,1) —log ()

In (3), the pedix B of oy means that the scale coefficient is
evaluated on the beat domain, n. For I = 1 and I = [y,x (3)

(3)

&p (q’ ”1) =

is not defined, and we used the expressions for right and left
derivatives:

xp (% ”l)

o, (o) + 410gF, () - 3logF, (n)
log (2) ~ Tog (%)

forl=1,
(4)
ag (g.m)

_ log F, (n,_,) —4log E, (n_;) + 3logF, ()
log (m;) - log (n,_,)

fOI‘ l = lMAX'

Equations (3) and (4) approximate the first derivative of
log F_(n) versus log n with errors proportional to the
amplitude of the derivatives of order higher than 2. A better
approximation is provided by the formula on 5 points with
errors proportional to derivatives of order higher than 3.
Therefore, instead of (3), for 2 < I < Iy;ax — 1 we used the
following equation:

ag (g, 1)
_ 8(logF, (my) ~log Fy () - (log Fy () ~ log Fy (m )~ ()
3 (log () ~ log (n,)) '

Figure 2 illustrates how (3)-(5) derive az(g, 1) in a real case.
Since ay is a function of the scale expressed in number
of beats, when series with different mean heart rate are
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FIGURE 2: Example of local slopes estimation. (a) shows the same F,(n) function plotted for maximally overlapped blocks and g =
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Figure I; the straight lines spanning over 5 points centered around the diamond symbols at n = 20, n = 40, n = 161, and n = 646 represent
the local slopes a () evaluated by the 5-point derivative of (5). (b) shows the corresponding spectrum of local slopes.
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a(q, 7), for IBI, SBB, and DBP. Data recorded in a male, normotensive volunteer.

In this example, a(g, T) of IBI decreases steeply with 7 at scales shorter than 16 s, from values typical of fractional Brownian motions (« > 1)
to values typical of fractional Gaussian noises (« < 1). Even if « is lower than 1 at larger scales, the a(g, T) surface is not flat and a relative
maximum appears at T = 32 s, more pronounced for positive rather than for negative q values. SBP differs remarkably from IBI: & tends to
be greater at scales > 64 s, and pronounced local maxima appear when g < 0. DBP differs from IBI and SBP: a(g, 7) increases at T > 128 s for

any g, reaching values greater than 1; and no local maxima appear at 7 < 128 s.

compared (e.g., a bradycardic versus a tachycardic subject or
rest versus exercise conditions) the same scales #, in beats,
correspond to different temporal scales, 7, in seconds. There-
fore, to associate each scale coefficient with its temporal
scale, we mapped the beat domain into the time domain [7].
Given the agz(g, 17;) coefficients evaluated on the beat domain
for the {n;} set of scales, the coefficients evaluated on the
corresponding set of temporal scales, {1;}, are

(6)

a(q1) =ag(qm) forz=mxug

with pyp; being the mean IBI, in seconds.

The a(g, 1;) coeflicients were interpolated over the 7 axis
with a spline function to obtain estimates at the same tempo-
ral scales for each recording. On the basis of the analysis of
synthesized series with known self-similarity structure (see
Appendix A), for our application on healthy volunteers (see
Section 2.3) we interpolated 256 points evenly spaced over

the logarithmic 7 axis, between 7 = 8s and 7 = 512s when
q > -3 and between 7 = 10s and 7 = 512s when g < -3.
The largest scale (7 = 512 s) corresponds to less than 10% the
average duration of the recordings. Estimates were obtained
for g between —5 and +5, with incremental step of 0.5. Figure 3
shows an example of estimated a(qg, 7) coeflicients.

Finally, we defined a concise index of multifractality,
function of the scale 7: MF (7). For this purpose, fixing a
parameter g, > 0, we considered the range —q, < q < q,,
symmetric around 0 with amplitude 2q,. For each temporal
scale 7, we calculated the standard deviation of all a(q,7)
values estimated over the +q, range, agy(7). The MF;(7)
index is defined as the ratio between «g(7) and the range
of corresponding g values:

ME; (1) = %20, %

r
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TaBLE 1: General characteristics of participants by sex.

N Age (years) Body mass index (kg/ m?) Prevalence of hypertension
Females 42 34.3(9.7) 22.6 (2.8) 38.1%
Males 42 34.4 (10.1) 23.6 (2.4) 38.1%
p 0.96 0.09

Since agp(7) > 0, also MF (1) > 0, reaching values close
to 0 if the series is monofractal at 7 (Appendix A shows an
example of MF,;(7) for synthesized monofractal series). In
this study, MF, () was calculated for 7 between 10 s and 512 s,
setting g, = 5.

2.2. Power Spectral Analysis. The power spectrum of each
cardiovascular series was also calculated. Beat-to-beat series
were interpolated linearly at 10 Hz and resampled at 5 Hz. The
Welch periodogram was estimated by splitting the resampled
series in 50% overlapping Hann windows of 1638.4 s duration,
by computing the FFT spectrum in each window and by aver-
aging the spectra over all the windows. The final periodogram
was smoothed with a broadband procedure [23].

2.3. Subjects and Experimental Protocol. We considered re-
cordings previously collected in two studies aimed at evaluat-
ing the influence of sodium sensitivity on the cardiovascular
control in normotensive [24] and hypertensive [25] healthy
subjects. The original dataset in normotensive subjects con-
sisted of recordings in 26 males and 45 females [24]. For
the present analysis, we included all the 26 male participants
and a subgroup of 26 female participants matched for age
and body mass index. The original dataset in hypertensive
subjects consisted of recordings in 30 males and 16 females,
and, for the present analysis, we included all the 16 female
participants and a subgroup of 16 male participants with age
and body mass index matched with the female group. Table 1
summarizes by sex the general characteristics of the selected
84 participants.

Each participant was studied in a quiet environment in
the morning, after 5 days of low-salt diet (30 mmol NaCl per
day) to minimize the confounding effects of dietary sodium
on cardiovascular variability. Continuous finger arterial
blood pressure was recorded for about two hours, in sitting
position at rest, by Portapres model-2 (Finapres Medical Sys-
tems B. V., Amsterdam, Netherlands). The finger cuft was
placed on the mid finger of the left hand. SBP, DBP, and IBI
(calculated as time interval between consecutive SBP values)
were derived beat-by-beat for the whole duration of the re-
cording. Brachial blood pressure was measured simul-
taneously with a cuff on the right arm every 15 minutes, and
the SBP and DBP readings of the brachial device were used
to calibrate beat-by-beat SBP and DBP values from the finger
cuff.

2.4. Statistics. We described statistical patterns in «(g, 7) esti-
mates showing means and standard error of the means over
the group, on the basis of previous observations reporting

that DFA coeflicients follow a normal distribution [26] and
in MF;(7) estimates showing median and standard error
of the median, this latter estimated by bootstrapping using
100 bootstrap samples. Statistical inferences were performed
with nonparametric tests for all the estimates not to make
any assumption on the distribution of scale coefficients and
multifractal indices at any 7. In particular, a(g, ) coeffi-
cients were compared between signals (IBI versus SBP, IBI
versus DBP and SBP versus DBP) by the paired Wilcoxon
test; a(g,7) and MF (1) were compared between males
and females by the unpaired Mann-Whitney test. Power
spectra were compared between genders by unpaired ¢-test
after log-transformation, to obtain normal distributions of
power spectra [27]. The analyses were performed with “R:
A Language and Environment for Statistical Computing”
software package (R Core Team, R Foundation for Statistical
Computing, Vienna, Austria, 2017).

3. Results

Figure 4 shows « as a function of 7 for specific q values over
the whole group (for comparison, the traditional multiscale
analysis corresponds to « values evaluated for g = 2 only,
and the traditional multifractal analysis corresponds to the
generalized Hurst exponents shown in Appendix B). Figure 4
confirms patterns suggested in the example of Figure 3. IBI
coefficients decrease with 7 from values greater than 1 (as
for fractional Brownian motions) at the shorter scales to
values lower than 1 (as for fractional Gaussian noises) at the
larger scales, with a minimum at 7 around 250s. A relative
maximum appears at 7 = 30s for g > 2. Moreover, «
increases as g decreases, at any 7. At the shorter scales also
o of SBP decreases steeply with 7 from values >1, with greater
« estimates at lower g values. However, unlike « of IBI, it
remains stable around 1 (as for “1/f” processes) when 7 >
30ss. Similarly to IBI and to SBP, also « of DBP decreases with
7 at the shorter scales. However, unlike IBI and SBP, at larger
scales it shows an increasing trend with 7.

Figure 5 compares scale coefficients among signals, at
different g. Comparing IBI with SBP when g = 0 and q =
4, « is significantly greater for SBP almost at all the scales;
however, this is not the case for scales 7 between 16 and 35,
where « of IBI shows a local maximum. When g = —4,
differences between IBI and SBP are less significant, and their
scale coeflicients coincide at scale 7 < 16s.

Similarly, comparing IBI and DBP, « is greater for DBP
almost at all the scales when g = 0 and g = 4. In this
case, however, at the scales where « of IBI displays a relative
maximum, « of DBP shows an absolute minimum, becoming
as a result significantly lower than the IBI scale coeflicients.
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FIGURE 4: Multifractal and multiscale coefficients, «(g, T). Mean * standard error of the mean over the group (N = 84) as function of 7 for
five q values between —4 and +4. For clarity, the horizontal axis is plotted in a log scale.

Also SBP and DBP scale coeflicients differ importantly.
For g = 0 and g = 4, « of SBP is significantly greater within
20 < 7 < 100s. Similar differences appear for g = —4 butin a
slightly higher band (45 < 7 < 2405s). At T < 165, « is greater
for DBP when g = —4 while when g = +4, SBP and DBP scale
coefficients coincide.

These results make it clear that the degree of multifractal-
ity is a function of 7 and of the type of cardiovascular signal.
This is summarized by Figure 6, which shows the index of
multifractality, MF,(7), for IBI, SBP, and DBP separately. IBI
reaches its highest degree of multifractality at 7 = 10s;
MF () of IBI decreases at larger scales up to a minimum at
T = 30s. A different pattern characterizes MF, () of DBP and
SBP: the highest degree of multifractality is not reached at the
shortest scale (t = 10 s) as for IBI but between 16 and 32 s; and
the lowest degree is reached at 7 = 64s.

Gender Differences. Figure 7 compares a(q, 7) for g = -4, q =
0, and g = +4, in males and females. When g = +4 or g = 0,
« is greater in females at the larger scales (i.e., 7 > 60 s for IBI
and SBP; 7 > 20s for DBP). These differences vanish when
q = —4. In addition, when g = 0 and g = —4, « is lower in
females at 7 < 10s. The fact that differences between males
and females depend on g suggests sex-related differences also
in the level of multifractality: these are actually highlighted
by Figure 8, which shows a higher degree of multifractality in
males, at scales shorter than 16 s for IBI and at scales centered
around 20 s for SBP and 32 s for DBP.

Figure 9 compares IBI, SBP, and DBP power spectra by
gender. The three signals have common spectral patterns,
all showing a peak around 0.10 Hz and a “1/f” component
at frequencies lower than 0.03 Hz; moreover, IBI and SBP
spectra also show a respiratory component at frequencies
around 0.30 Hz. Although these patterns appear in both

sexes, spectra differ significantly between males and females.
IBI spectral powers are greater in males between 0.008 and
0.13 Hz. Also SBP spectral components are greater in males,
but in a larger band including all frequencies higher than
0.004 Hz. By contrast, DBP spectra coincide in men and
women, with exclusion of the spectral peak around 0.10 Hz,
higher in men.

4. Discussion

We presented a novel algorithm for quantifying cardio-
vascular complexity based on previous researches that in
various ways adapted DFA for assessing multifractal or/and
multiscale aspects of heart-rate variability. By applying our
method to data collected in healthy volunteers, we provided
the first detailed description of differences in multifractal and
multiscale features among those cardiovascular time series
more often recorded in clinical settings or in physiological
studies: IBI, SBP, and DBP.

Three were the main results of our study. First, not only
do self-similarity coefficients depend on the observational
scale, but also the way « changes with 7 depends on the
cardiovascular series (IBI, SBP, or DBP). Second, the degree
of multifractality also depends on 7 and on the type of
cardiovascular signal. Third, at the scales where the signals
show a multifractal nature (e.g., at 7 < 32s), increasing
the multifractal index g from negative to positive values
progressively decreases the estimate of «, thus indicating that
fractal components with the lower o contribute more to the
overall variability because positive g values emphasize com-
ponents with larger amplitude. In addition, we also showed
significant gender differences in these complex self-similarity
structures. Although this study was designed to provide a
solid description of the multifractal and multiscale features
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and SBP and DBP. Dashed horizontal lines represent the 5% threshold of statistical significance; W values above the threshold are marked by
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of cardiovascular signals and not to find the mechanisms
responsible for these features, in the following we may try to
speculate on the possible origin and physiological meaning of
our results.

We showed that a(g, ) of IBI decreases with 7 in healthy
individuals sitting at rest, from values typical for fractional
Brownian motions to values typical for fractional Gaussian
noises. A similar behavior has been previously observed in
other studies that applied DFA with traditional monofractal
approaches (i.e., with ¢ = 2 only) to analyze the heart-rate

variability in sitting volunteers at rest [16, 28]. A possible
explanation for this trend has been already proposed, based
on the hypothesis that the heart-rate dynamics depend on
the superposition of two fractal processes simultaneously
modulating the heart rate [7, 29]. One process, with relatively
homogeneous fractal characteristics at all scales, resembling
fractional Gaussian noise, depends on the cardiac vagal out-
flow. The other process depends on the cardiac sympathetic
outflow: it appears as a fractional Gaussian noise at the
longer scales and as a Brownian motion at the shortest scales,
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due to a low-pass filter with time constant of 66s caused
by the time of removal of noradrenaline released by the
sympathetic endings. The mixture of these two processes
may therefore explain the « decreasing trend with 7 from
fractional Brownian motion to fractional Gaussian noise and
may explain why &, when evaluated at the shortest scales
only, can be considered index of sympathovagal balance [30].
However, if this hypothesis holds, it should predict some
specific features of the multifractal dynamics of heart rate.
First, we should expect that the heart rate is multifractal
at the shortest scales, where it depends on two processes
with different dynamics (fractional Gaussian noise for the
vagal modulations, Brownian motion for the sympathetic
modulations) and with different amplitude (greater for vagal
than for sympathetic modulations). Second, we should expect
that multifractality decreases at scales 7 larger and closer to
the time constant of the low-pass filter on the sympathetic
outflow, because amplitude and fractal dynamics of sympa-
thetic heart-rate modulations should become more similar
to amplitude and fractal dynamics of vagal modulations of
heart rate. Third, we should also expect that, at scales shorter
than the time constant of the low-pass filter modeling the
sympathetic outflow dynamics (= 665s), « increases when g
decreases. In fact, negative g exponents in (2) amplify the
contribution of the fractal components with lower amplitude
and reduce the contribution of the fractal components with
higher amplitude in multifractal dynamics. Since at the
shorter scales the sympathetic modulations of heart rate
have lower amplitude than the vagal heart-rate modulations,
negative g values should emphasize the Brownian motion
contribution of the sympathetic outflow (with high «) rather
than the fractal noise contribution of the vagal outflow (with
low «). These three properties are actually demonstrated by
our results on (g, 7) of IBI, which therefore support our
interpretative hypothesis.

Interestingly, we found gender differences in a(g, ) of
IBI at 7 < 12s but only for g = 0 and g = —4. When
q = +4, in fact, « coefficients are the same in males and
females over these scales (Figure 7). The IBI power spectra

(Figure 9) indicate that males and females have the same
amplitude for spectral components falling in the high-
frequency band (>0.15 Hz) where only vagal modulations of
heart rate are present and that males have higher amplitude
of spectral components in the low-frequency band (around
0.1Hz) where the heart rate is modulated importantly by
both sympathetic and vagal outflows [31]. This means that,
among our volunteers, males and females have a similar vagal
tone, but males have a higher sympathovagal balance. In our
interpretative hypothesis, « at the shorter scales represents
mainly the vagal fractal modulation when g is high, and
when g decreases the sympathetic contribution to & increases.
Coherently, we observed that « at the shorter scales is greater
in males, as expected for an index of sympathovagal balance,
but only for low values of g. No differences are found for
q = +4, when we expect « to represent mainly the vagal com-
ponent of the fractal dynamics, in line with the observation
that the high-frequency spectral power associated with pure
vagal modulations of heart rate are the same in males and
females. The presence of similar vagal modulations of heart
rate in males and females and of a higher sympathetic tone in
males would also explain the higher IBI multifractal index in
males at the shorter scales (Figure 8).

We found marked differences between «(qg, 7) of IBI and
DBP (Figure 5). While (g, 7) of IBI should reflect a mixture
of fractal processes produced by the autonomic nervous
system through vagal and sympathetic modulations of heart
rate, a(g, 7) of DBP is expected to mainly reflect modulations
of total peripheral resistances, which the autonomic nervous
system modulates through vascular sympathetic outflows
only. This would explain why the highest degree of multi-
fractality occurs at the shortest scale for IBI, where the two
branches of the cardiac autonomic nervous system modulate
the heart rate with different fractal dynamics. By contrast,
DBP shows the highest degree of multifractality between 16
and 32 s (Figure 6). A possible explanation is that the total
peripheral resistance results from the combined effect of
individual vascular resistances of several vascular beds, each
with its own local regulation hierarchically controlled at
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the central level through vascular sympathetic outflows.
Therefore, at scales around 16 and 32s the DBP multi-
fractal dynamics would reflect the superimposition of vari-
ous local regulations associated with different vascular dis-
tricts.

A final consideration regards the different physiological
information derivable from traditional spectral analyses and
from a multifractal-multiscale analysis of cardiovascular sig-
nals. We found gender differences in (g, 7) but not in power
spectra at the corresponding frequencies, and vice versa we
found power spectral differences without significant differ-
ences in the fractal structure at the corresponding scales. For
instance, a(qg, ) of DBP is greater in females for T between
32 and 256 s and g = 0 or g = +4, but at the corresponding
frequencies (between 0.031 and 0.004 Hz) the DBP spectra are
exactly the same in males and females. On the other hand,
a(g, T) of SBP is very similar in males and females at T < 64,
while the SBP spectra differ markedly by gender at frequen-
cies higher than 0.01 Hz. This means that complexity methods
and spectral methods are complementary approaches and
that one method of analysis may reveal aspects of cardiovas-
cular dynamics that go undetected with the other method.
This is a promising perspective for designing new clinical
tools based on multifractal-multiscale analysis that, used in

addition to traditional frequency-domain and time-domain
methods, might substantially increase the risk stratification in
the healthy population or improve the prediction of adverse
events in cardiac patients.

Appendix

A. Multifractal-Multiscale DFA of
Synthesized Time Series

To evaluate the range of scales where our algorithm provides
reliable estimates of multifractal coefficients, we applied it on
synthesized series with known self-similarity structure. For
this aim, we generated 100 series each of N = 8400 samples
to simulate a 2-hour beat-by-beat cardiovascular recording
at the mean heart rate of 70 bpm, which corresponds to the
average heart rate of the participants to our study. The series
were generated by the MATLAB pinknoise function (version
1.6, made available at http://goo.gl/PiiPw7 by H. Zhivomirov),
which is expected to simulate a pure “1/f” monofractal
process with « 1. We selected a pink-noise generator
because the “1/f” process is considered the monofractal
noise that better reproduces the fractal structure of cardiovas-
cular signals. The F,(n) functions shown in Figure 10(a) were
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calculated as described in methods for block sizes n between
6 and N/4 beats and q between —5 and +5. They appear
as parallel straight lines with deviations from the constant
slope at the shorter blocks for g < —3. The corresponding
multifractal-multiscale coeflicients (g, n) calculated as in
(3)-(5) are shown in Figure 10(b). The estimated coeflicients
are close to the o« = 1 theoretical value that characterizes
“1/ f” processes almost over all the scales, with the exception
of the estimates for g < -3 which deviate largely from
the theoretical value at blocks shorter than n = 12 beats
(corresponding to the time scale of 10s at 70 bpm). On the
basis of these results, we considered reliable estimates of
a(g,7) for 8s < 7 < 512s when g > -3 and for 10s < 7 <
512s when g < -3.

The multifractal index of monofractal signals should,
in theory, be equal to zero. In practice, however, we expect
MF;(7) values greater than zero also for monofractal signals
for two reasons. At the shorter block sizes, deviations from
the constant slope & may occur for negative g values, as we
observed in Figure 10. In addition, at all the block sizes «
might not be the same when evaluated at different g values
even for monofractal series because of the intrinsic variability
of the estimate. The estimator variability may increase with
the time scale because at the larger block sizes n the

number M of independent blocks for estimating (2)
decreases. Figurell shows MF,(7) estimated for the
synthesized series of Figure 10 and plotted for 7 between 10 s
and 512 s, where a(g, T) can be reliable estimated at all g. As
expected, MF;(7) decreases from the shortest scale up to
a minimum at 7 = 16s and shows an increasing trend for
T > 165, but remaining lower than 0.2 over the whole range
of scales considered in this study.

B. Traditional Multifractal Analysis

As reference, we also performed a traditional multifractal
analysis for each cardiovascular series. For this purpose, we
calculated the generalized Hurst exponents, h(g), as slope of
the regression line fitting log F, (n) and log n over all the block
sizes n for each g between —5 and +5, using the MATLAB
implementation provided in [20]. Mean and 95% confidence
intervals are shown in Figure 12. The analysis reveals greater
generalized Hurst exponents for blood pressure than for heart
rate at all ¢ values. It also shows that the generalized Hurst
exponents are greater at the lower g than at the higher ¢
for all the cardiovascular signals, the relation between h(q)
and ¢q decreasing almost linearly for IBL. These features,
highlighted by the traditional multifractal analysis, are also
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described by the multifractal-multiscale approach proposed
in this work. However, unlike the proposed multifractal-
multiscale approach, traditional multifractal analysis cannot
indicate that these features regard some scales more than
others.
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