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This paper addresses a biobjective production-distribution planning problem. The problem is formulated as a mixed integer
programming problem with two objectives. The objectives are to minimize the total costs and to balance the total workload of the
supply chain, which consist of plants and depots, considering that it represents a company vertically integrated. In order to solve
the model, we propose an adapted biobjective GRASP to obtain an approximation of the Pareto front. To evaluate the performance
of the proposed algorithm, numerical experimentations are conducted over a set of instances used for similar problems. Results
indicate that the proposed GRASP obtains a relatively small number of nondominated solutions for each tested instance in very
short computational time.The approximated Pareto fronts are discontinuous and nonconvex. Moreover, the solutions clearly show
the compromise between both objective functions.

1. Introduction

Nowadays, supply chains and manufacturing systems must
be responsive, agile, and flexible to adapt to changes and
requirements of the markets. Globalization and the fierce
competition in the markets impose more challenges to
such systems, increasing their complexity. The emergence of
disruptive technologies in which data can be captured by
sensors in real-time represents an opportunity to improve
decision-making, but it is necessary to integrate it with
proper analytical models to support planning and scheduling
decisions along the supply chain andmanufacturing systems.

One of the main goals of Supply Chain Management is
the coordination of the different echelons and the related

planning decisions such as supply, manufacturing, inventory
management, and distribution [1]. A typical approach is to
address previous planning decisions as independent prob-
lems and obtain an overall solution hierarchizing the order
of the decisions and solving the problems sequentially.This is
motivated by the complexity of modeling them into a single
integrated problem, but it has some drawbacks as it does
not consider the interrelations among the decisions. Hence,
the use of integrated problems provides a more effective
and efficient way to obtain solutions for the underlying real
problem and reduce total landed costs.

There is a very close linkage between production and
distribution planning decisions [2], reason for which these
problems have been addressed in the literature as a joint
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production-distribution planning problem. Several contribu-
tions can be found in the literature addressing coordination in
the supply chain in which production and distribution prob-
lems are integrated. In this paper, we address a production-
distribution planning problem for a single product faced
by a manufacturing company. According to the specific
characteristics of the company, the problem is formulated as
a biobjective mixed integer programming model. The objec-
tives consider the minimization of the total costs incurred by
the company and the balancing of the total workload assigned
to the plants and depots of the company. This is justified
as we are considering the case of a vertically integrated
supply chain. Hence, the company is interested not only on
the minimization of total costs, but also on a better resource
utilization. Balancing the workload content in the supply
chain contributes to achieve a better utilization of the
resources already installed in the supply chain network, in
addition to avoid congestion at the plants and depots. To
solve themodel, we propose an adapted biobjectiveGRASP to
obtain an approximation of the Pareto front.

1.1. Literature Review. One of the earliest contributions on
production-distribution planning in the literature is pro-
vided by [3]. They address a multicommodity, single-period
production-distribution problem and propose a solution
methodology based on Benders decomposition. Another
early contribution is provided by [4].They propose amethod-
ology that considers the relationship between a multistage
production and distribution system, capturing the stochastic
and dynamic interactions. The proposed model is composed
by a material control submodel, a production submodel, a
stockpile inventory submodel, and a distribution submodel.

There exist several survey articles in the literature that
provide a framework or taxonomy of related production-
distribution planning problems. We briefly review the exist-
ing surveys and cite some of the contributions found in the
literature, with special emphasis on the most recent ones
found in the literature. An overview of the literature related to
the coordination of production planning among multiple
plants assuming vertically integrated firms is provided by [5].
A review of the literature related to coordinated planning
between two or more decisions/echelons of the supply chain
is presented by [6]. One of the categories analyzed correspond
to production-distribution planning problems.They propose
a taxonomy of the contributions as buyer-vendor coordina-
tion, production-distribution coordination, and inventory-
distribution coordination. A taxonomy of themajor decisions
for integrated production-distribution planning is provided
by [7]. They emphasize the complexity of the operations
and make a reference to the emergence of philosophies as a
response to competitive pressures of markets, such as Total
Quality Management and Flexible Manufacturing Systems
and Supply Chain Management. In this case, the aim is to
achieve flawless quality of products and quick response and
agile manufacturing at low cost and an efficient distribution
of products to the consumer points with low stocks.

In addition, a review of the strategic production-distri-
bution models is presented by [8], emphasizing global lo-
gistics systems and mixed integer programming models.

They classify the contributions into four categories: previous
reviews, optimizationmodels, additional issues formodeling,
and case studies. Another review of integrated analysis of
production-distribution systems is presented by [9]. The aim
of their review is to determine how the different logistics
aspects can be included in an integrated analysis and what
competitive advantages can be obtained when integrating
production and distribution decisions. They include only
those contributions that explicitly address transportation
systems and provide a classification of distribution-inventory
models pointing out the contributions found in the literature
[10–15].

Another related survey is presented by [16]. They catego-
rize the contributions and provide a framework for the exist-
ing literature and define a research agenda. A classification
of production-distribution scheduling is proposed in [17].
They point out that given that production and distribution
stages in a supply chain are often linked by an inventory stage,
contributions in the literature often involve inventory deci-
sions and noticed that the literature that consider scheduling
decisions has recently attracted the attention of researchers
in the literature [18–21]. They divide existing models into
five classes: (i) models considering individual and immediate
delivery, (ii) models with batch delivery to a single customer
by direct shippingmethod, (iii) models with batch delivery to
multiple customers by direct shipping method, (iv) models
with batch delivery tomultiple customers by routingmethod,
and (v) models with fixed delivery departure dates [22–26].

On the other hand, a review the existent approaches
based on the modeling approach and the solution techniques
employed is presented by [27]. They provide a taxonomy
of the contributions in the field. The most recent review is
provided by [28] that considers the evolution of production-
distribution planning problems towards the collaborative
production-distribution planning in Supply Chain Manage-
ment. They analyze how the integrated approaches have an
impact on the industry and their real requirements.

In terms of the solution techniques, it is possible to
findmathematical programming-based approaches or solved
directly by a commercial solver (e.g., [3–5, 10–16, 21, 23, 29–
37]); a vast number of contributions that propose heuristic
techniques, motivated by the complexity of the resulting
problem [18, 19, 22, 26, 32, 38–47]; and simulation-based
approaches to tackle the problem [48–51].

Another important feature is related to the objectives
that are optimized. Several contributions consider a single-
objective optimization approach [2, 22, 29–33, 39, 41–46, 49,
52, 53]. However, more recent contributions are capturing
more realistic features of planning decisions by the incorpo-
ration of multiple objectives to be simultaneously optimized
[40, 51, 54]. The typical objectives considered are profit
maximization, costs minimization, and service level offered
to customers. For instance, in [54], the minimization of total
costs and the minimization of total tardiness of products
transported to the distribution centers are considered as
objectives. In [55] the focus of the proposed model is on
customer’s service level, measured as the mean delivery time
and total transportation cost. On the other hand, in [56],
minimizing total operation cost of the vehicles to deliver
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the products and the waiting time of the customers is
considered as an objective; hence they are more focused on
the distribution problem, although they also consider pro-
duction scheduling decisions.

None of previous contributions have incorporated work-
load balance as an objective to optimize.Workload balancing
has been considered in decision planning problems related
to vehicle routing problems [57–60] and machine scheduling
problems [61]. Balancing the workload content of the supply
chain is an important element when considering a vertical
integrated company.This is meaningful as the company aims
to have a good utilization of its assets. Also, having a plant
with overutilization generates congestionwhile othersmay be
underutilized. To the best of the knowledge of the authors,
this is the first paper in the literature that incorporates work-
load balance as an objective of the integrated production-
distribution planning problem.

Another contribution of this work is related to the
specific features of the solution approach. Only few papers
have adapted GRASP to solve biobjective problems. Fur-
thermore, we propose a clear integration of both objective
functions when constructing solutions.Moreover, in the con-
struction method, we hybridize mathematical programming
techniques with heuristic ones. The local search method
explores typical neighborhoods for routing problems but also
mathematical programming techniques are used to complete
a movement.

This article is organized as follows: Section 2 presents
the proposed mathematical model. Section 3 describes the
heuristic algorithm and Section 4 presents the numerical
results showing the suitability of the proposed algorithm
to approximate the Pareto front. Finally, Section 5 presents
the final remarks and recommendations for further research
areas.

2. Biobjective Optimization Model

The problem considered in this manuscript is related to
production and distribution planning decisions of a single
product faced by a manufacturing company. For the pro-
duction part, the company is responsible for manufacturing
products in plants, respecting the capacity of the plants. Also,
the company must satisfy the demand of all customers that
are served by a depot in which products are consolidated,
similar as in a standard transportation problem. On the other
hand, for the distribution part, the company has to determine
the routes to serve the demand of customers that are assigned
to each depot. For this, the classical assumptions considered
in vehicle routing problems are considered. For instance, the
routes should begin and finish in the depot; there is a max-
imum duration time established by each route, a customer
is visited once by a single vehicle and a single vehicle is
associated with a route, and the demand of all customers
is satisfied. Furthermore, a homogeneous fleet of vehicles is
considered in terms of capacity. In terms of network design, it
has been established that depots are not connected to other
depots and that a depot can have multiple vehicles assigned,

each serving a single route. It is also assumed that depots are
uncapacitated, while plants have capacity constraints.

The planning decision of the company aims to optimize
simultaneously two objectives while respecting previously
described constraints. The first objective is to minimize total
costs (production and distribution), and the second objective
is to balance total workload of plants and depots. Balancing
the workload content at each facility contributes to achieve
better resource utilization over the network; and, accordingly,
it is expected to achieve less congestion at the facilities such
as plants and depots. Under this context, a straightforward
solution would be to equally split the production among
plants and customer’s demand among depots. However, this
solution would not necessarily minimize production and dis-
tribution costs. Hence, the company is facing a production-
distribution problem that considers typical constraints of a
transportation problem merged with a multidepot vehicle
routing problem (MDVRP).

Prior to describing the mathematical model of the pro-
posed problem, the sets, parameters, and decision variables
are defined. Here consider 𝑃 as the set of plants, 𝐷 the set
of depots, 𝐶 the set of customers, and 𝑉 the set of vehicles.
Let 𝐸 be the set of the arcs connecting depots and customers.
The customers served by depot 𝑖 ∈ 𝐷 are included in 𝐶𝑖 and
customers included in vehicle V ∈ 𝑉 are included in 𝐶V. Also,
let 𝑉𝑖 be the set of vehicles used in depot 𝑖 ∈ 𝐷.

Note that there are distinct costs involved in the model.
The operating cost associated with manufacturing a product
in plant 𝑝 ∈ 𝑃 and ship it to depot 𝑖 ∈ 𝐷 is denoted by
oc𝑝𝑖. The distribution cost associated with the shipment of
a product from depot or customer 𝑖 ∈ 𝐷 ∪ 𝐶 to depot or
customer 𝑗 ∈ 𝐷 ∪ 𝐶, where (𝑖, 𝑗) ∈ 𝐸 is denoted by dc𝑖𝑗.
Each customer 𝑐 ∈ 𝐶 has a demand 𝑏𝑐, and themanufacturing
capacity at each plant 𝑝 ∈ 𝑃 is 𝜋max

𝑝 . Furthermore, the time
required for travelling through an arc(𝑖, 𝑗) ∈ 𝐸 is denoted by
𝑡𝑖𝑗, the required time to unload customers demand 𝑏𝑐, from
any vehicle is given by 𝜏𝑐, the capacity of vehicle V ∈ 𝑉 is
𝑞max
V , and the maximum duration time of vehicle V ∈ 𝑉 in a
route is 𝑟max

V .
In this problem, 𝑥V

𝑖𝑗 are binary decision variables and 𝑦𝑝𝑖
are continuous ones. The fact that 𝑥V

𝑖𝑗 = 1 implies that vehicle
V ∈ 𝑉 uses arc(𝑖, 𝑗) ∈ 𝐸. Also, 𝑦𝑝𝑖 represents the amount of
products manufactured in plant 𝑝 ∈ 𝑃 that are shipped to
depot 𝑖 ∈ 𝐷.

To balance workload in plants and depots, the deviations
with respect to the ideal case are computed.The latter refers to
the case in which the workload is equally distributed in
plants and depots, respectively. For the plants, the ideal case
is when all of them are at the same capacity level; that is,
the production at each plant is proportional to their capacity
such that total production satisfies the total demand of cus-
tomers. For instance, plants with greater capacity may man-
ufacture more products than plants with lower capacity. For
the depots, the ideal case is when the customers demand is
equally distributed among all the depots. Notice that, in
this case, the balancing of the workload at the plants and
depots is modeled based on a deviation value of the products
manufactured at each plant and consolidated at each depot,
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respectively. This resembles the objective of the company to
have a target value of workload at each facility.

Based on these ideas, we compute the maximum devia-
tion for the plants as follows:

BP (𝑦) = max
𝑝∈𝑃

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜋max
𝑝

∑𝑞∈𝑃 𝜋max
𝑞

∑
𝑗∈𝐶

𝑏𝑗 − ∑
𝑖∈𝐷

𝑦𝑝𝑖
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (1)

Themaximum deviation associated with a depot is computed
as follows:

BD (𝑥) = max
𝑖∈𝐷

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∑𝑗∈𝐶 𝑏𝑗
|𝐷|

− ∑
V∈𝑉𝑖

∑
𝑘∈𝐶V

∑
𝑗∈𝐶V

𝑏𝑘𝑥
V
𝑘𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
. (2)

Note that the quantity of products manufactured in plants is
greater than the amount of products consolidated in depots.
Thus, the value given in (1) may be greater than the value
given in (2). In this case, we are balancing the workload
content only at the plants nor in the depots. To overcome this
issue, an 𝛾 value is included to standardize the units in the
sum.

The resulting mixed integer biobjective programming
problem is defined as follows:

min ∑
𝑝∈𝑃

∑
𝑖∈𝐷

oc𝑝𝑖𝑦𝑝𝑖 + ∑
V∈𝑉

∑
(𝑖,𝑗)∈𝐸

dc𝑖𝑗𝑥
V
𝑖𝑗 (3)

min BP (𝑦) + 𝛾BD (𝑥) (4)

s.t. ∑
𝑖∈𝐷

𝑦𝑝𝑖 ≤ 𝜋max
𝑝 𝑝 ∈ 𝑃 (5)

∑
𝑝∈𝑃

𝑦𝑝𝑖 ≥ ∑
V∈𝑉𝑖

∑
𝑖∈𝐶V

𝑏𝑖 𝑖 ∈ 𝐷 (6)

∑
V∈𝑉

∑
𝑗∈𝐷∪𝐶

𝑥V
𝑖𝑗 = 1 𝑖 ∈ 𝐶 (7)

∑
V∈𝑉

∑
𝑖∈𝐷∪𝐶

𝑥V
𝑖𝑗 = 1 𝑗 ∈ 𝐶 (8)

∑
𝑗∈𝐶𝑖

𝑥V
𝑘𝑗 ≤ 1 V ∈ 𝑉𝑖, 𝑖, 𝑘 ∈ 𝐷 (9)

∑
𝑘∈𝐶𝑖

𝑥V
𝑘𝑗 ≤ 1 V ∈ 𝑉𝑖, 𝑖, 𝑗 ∈ 𝐷 (10)

∑
𝑗∈𝐷

𝑥V
𝑘𝑗 = 0 V ∈ 𝑉𝑖, 𝑖, 𝑘 ∈ 𝐷 (11)

∑
𝑘∈𝐷

𝑥V
𝑘𝑗 = 0 V ∈ 𝑉𝑖, 𝑖, 𝑗 ∈ 𝐷 (12)

∑
𝑖∈𝑊

∑
𝑗∈𝑊

𝑥V
𝑖𝑗 ≤ |𝑊| − 1

𝑊 ⊆ 𝐶, 2 ≤ |𝑊| ≤ |𝐶| , V ∈ 𝑉
(13)

∑
𝑖∈𝐶V

𝑏𝑖∑
𝑗∈𝐶V

𝑥V
𝑖𝑗 ≤ 𝑞max

V V ∈ 𝑉 (14)

∑
𝑖∈𝐶V

∑
𝑗∈𝐶V

(𝑡𝑖𝑗 + 𝜏𝑖) 𝑥
V
𝑖𝑗 ≤ 𝑟max

V V ∈ 𝑉 (15)

𝑥V
𝑖𝑗 ∈ {0, 1} (𝑖, 𝑗) ∈ 𝐸, V ∈ 𝑉 (16)

𝑦𝑝𝑖 ≥ 0 𝑝 ∈ 𝑃, 𝑖 ∈ 𝐷. (17)

Equation (3) represents the first objective function, which
aims to minimize the sum of the operating cost (manufac-
turing and shipping) and the cost from shipping products
from depots to customers. The second objective function
is expressed by (4), which aims to balance the workload
in depots and plants. It expresses the corrected sum of the
maximum deviation from the ideal case split. The second
objective function aims to find a solution with small devi-
ations, that is, with a balanced workload content in plants
and depots. Production constraints are expressed in (5) and
(6). Constraints (5) ensure that the amount produced in each
plant does not exceed its maximum manufacturing capacity.
Constraints (6) guarantee that the demand of customers
assigned to each depot is satisfied. Distribution constraints
are expressed in (7)–(15). Visiting customers once by a single
vehicle is forced in constraints (7) and (8). Constraints (9)
and (10) determine the assignment of customers to depots.
Despite the fact that, in order to balance workload all depots
must be used, tominimize costs it could be desired to use only
a subset of depots. Constraints (11) and (12) prevent the inter-
depot flow. This is included as shipments between depots are
not allowed. Subtours are prohibited in constraints (13);
constraints (14) determine the vehicle’s capacity constraints,
and the maximum duration of a route performed by a vehicle
is defined by constraints (15). Equation (16) expresses the
binary nature of the routing variables, and (17) establishes the
nonnegativity of the manufacturing variables.

3. Description of the Proposed
Biobjective GRASP

GRASP is a metaheuristic that has been proven to be efficient
when solving complex combinatorial optimization problems
[62]. It consists of two main methods. The first method
is devoted to construct an initial solution and the second
method concerns to the local search, which aims to improve
the current solution. As GRASP is a multistart metaheuristic
due to the randomized procedure that is implemented in
the construction method, it is possible to construct multiple
solutions that are further improved during the local search
method.Hence, the twomethods are iteratively repeated until
a stopping criterion is reached. The best solution in terms
of objective function value is returned as the output of the
algorithm.

In addition to the successful use ofGRASP to solve single-
objective problems, it has also been successfully applied to
approximate the efficient Pareto front of different multiob-
jective optimization problems [63–68]. The previous cited
references adapted specific components of GRASP to the cor-
responding problems under study. However, a taxonomy to
standardize the adaptation of GRASP tomultiobjective prob-
lems is provided by [69]. Thus, we follow previously referred



Complexity 5

taxonomy during the description of the proposed algorithm.
The main elements of GRASP for biobjective problems are
the following: (1) a greedy function is considered when con-
structing a solution, but, in case of havingmultiple objectives,
a criterion must be selected to identify the guiding function,
(2) the local search method considers the multiple objectives
to evaluate if the current solution has been improved or not,
and (3) a set of efficient solutions is provided when the algo-
rithm reaches some stopping criterion instead of returning
the incumbent solution.

In the proposed biobjective GRASP a pure-random con-
struction is done; that is, one of the two objective functions
is randomly selected and all the solution’s construction is
guided by the greedy function associated with that objective
function. Furthermore, a pure strategy is considered in the
local search with respect to one objective function randomly
selected (note that itmay be different to the objective function
considered in the construction). In this case, an improved
solutionmay have better objective function value for the con-
sidered objective function but itmay beworsened in the other
objective function value. One important feature of our pro-
posed algorithm is that the objective function considered in
the local search may be different than the objective function
used when constructing the solution. Usually, in pure strate-
gies, the objective function considered during the construc-
tion and local search is the same.

3.1. Construction Method. The first step of the construction
method is to randomly select one objective function. Here,
both objective functions are equally likely to be selected; that
is, if rand < 0.5, then the objective function that concerns
to total costs is selected (see (3)), and in case when rand ≥
0.5, the objective function related to the workload balance
is considered (see (4)), where rand is a random number
between 0 and 1. For any of the two objective functions, the
construction method can be divided to three phase: cluster-
ing, routing, and manufacturing.

3.1.1. Clustering Phase. In the clustering phase, the alloca-
tion of customers to depots is made by following random-
greedy strategies, in which an allocation problem is solved
depending on the objective function under consideration. If
(3) is being considered, then the auxiliary problem defined by
(18)–(20) is optimally solved byCPLEX, where−0.5 ≤ 𝜀 ≤ 0.5
is a random number.

min
𝑥

∑
𝑖∈𝐶

∑
𝑗∈𝐷

(1 + 𝜀) dc𝑖𝑗𝑥𝑖𝑗 (18)

s.t. ∑
𝑗∈𝐷

𝑥𝑖𝑗 = 1 𝑖 ∈ 𝐶 (19)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖 ∈ 𝐶, 𝑗 ∈ 𝐷. (20)

Since, we are concerned in constructing a good solution in
terms of the total cost, the minimization of the distribution
costs from customers to depots is pursued in (18), considering
that customers must be allocated only to a single depot. A
perturbation in the distribution costs is considered to allow
certain degree of randomness in the clustering phase.

In the other case, when (4) has been selected, the
allocation of customers to depots such as a balancedworkload
is obtained. In this case, the problem defined by (21)–(25) is
optimally solved by CPLEX, where 𝑘 is a predefined constant
value and 0.1 ≤ 𝜏 ≤ 0.3 is a random number.

min
𝑥

𝑘 (21)

s.t. ∑
𝑖∈𝐶

𝑏𝑖𝑥𝑖𝑗 ≥ (1 − 𝜏)
∑𝑖∈𝐶 𝑏𝑖
|𝐷|

𝑗 ∈ 𝐷 (22)

∑
𝑖∈𝐶

𝑏𝑖𝑥𝑖𝑗 ≤ (1 + 𝜏)
∑𝑖∈𝐶 𝑏𝑖
|𝐷|

𝑗 ∈ 𝐷 (23)

∑
𝑗∈𝐷

𝑥𝑖𝑗 = 1 𝑖 ∈ 𝐶 (24)

𝑥𝑖𝑗 ∈ {0, 1} 𝑖 ∈ 𝐶, 𝑗 ∈ 𝐷. (25)

Bearing in mind that we are seeking to construct solutions
with balanced workload, constraints (22) and (23) will act as
balancing constraints but considering a tolerance value 𝜏. A
small value of 𝜏 implies that more balanced clusters are given.
Analogously, greater values of 𝜏 allow the depots to have less
consolidated customers demand associated with them. Note
that if 𝜏 = 0, the ideal case occurs (i.e., when all depots have
the same workload), but this casemay be infeasible due to the
unique allocation of customers to depots imposed by (24).

3.1.2. Routing Phase. Once customers have been allocated to
the depots, it is necessary to design the routes to distribute
the products to the customers. For this, greedy-randomized
adaptive strategies are considered. To create the routes, we
consider that a single vehicle departs from a depot and the
route is created by incorporating the customers to be visited,
assigning one customer to each depot at a time, that is, in a
parallel manner. Regarding the available number of vehicles
in each depot and their capacities, the same assumptions of
[47] are considered.

Note that the routing is made for customers allocated in
the same depot. Hence, it is evident that the workload in
each depot holds. Based on that, we create routes with low
distribution cost as it is not necessary to take into account
the other objective function. Thus, for any of both objective
functions, the routes are created in the same manner.

To add a customer in a route, the associated cost in the
guiding function that summarizes its contribution is com-
puted. As guiding function, we consider the cost of adding
customer 𝑗 after customer 𝑖 in the current route, in which
the depot is denoted by 𝑑; that is, 𝑐(𝑥𝑗) = dc𝑖𝑗 + dc𝑗𝑑 − dc𝑑𝑖.
The latter is computed for all customers 𝑗 ∈ 𝐶𝑑 in a particular
depot 𝑑 ∈ 𝐷. Then, considering the same depot, a Restricted
Candidate List (RCL𝑑) is created. One criterion considered
to add a customer into the RCL is when 𝑐(𝑥𝑗) ≤ 𝑐min +
𝛼(𝑐max − 𝑐min), in which 𝑐min and 𝑐max denote the minimum
andmaximum cost of adding a customer. Also, 0 ≤ 𝛼 ≤ 1 is a
parameter that regulates the degree of greediness considered
in RCL𝑑. Note that when 𝛼 = 0, customers are selected in
a greedy manner, and if 𝛼 = 1 customers are randomly
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selected. Other two important criteria that customers must
meet to be included in RCL𝑑 are that vehicle’s capacity and
maximum duration of the route may not be exceeded. When
the RCL𝑑 are formed (for all 𝑑 ∈ 𝐷), a customer is randomly
selected to be added in the current route of depot 𝑑. As it
is mentioned above, one customer per depot is added at a
time, that is, a parallel routing. This strategy continues until
all customers are in a route. It is worth clarifying that if there
are no customers that satisfy all the criteria mentioned above,
then RCL𝑑 = 0. In this case, a new vehicle is used to begin a
route.

3.1.3. Manufacturing Phase. The last phase of the construc-
tion method corresponds to the manufacturing decisions in
plants. The decision taken in this phase is the amount of
products manufactured in each plant. This resulting problem
may be seen as a classical transportation problem, in which
different structures are considered depending on the current
target objective function. For example, if the first objective
function is being considered, it is aimed to manufacture the
products in plants with lower operating costs. On the other
hand, if the second objective function is under consideration,
it is aimed to balanceworkload of the plants according to their
production capacity without regarding the operating cost.

Therefore, if (3) is considered, the following auxiliary
transportation problem is optimally solved by CPLEX.

min
𝑦

∑
𝑖∈𝑃

∑
𝑗∈𝐷

oc𝑖𝑗𝑦𝑖𝑗 (26)

s.t. ∑
𝑗∈𝐷

𝑦𝑖𝑗 ≤ 𝜋max
𝑖 𝑖 ∈ 𝑃 (27)

∑
𝑖∈𝑃

𝑦𝑖𝑗 = ∑
𝑘∈𝐶𝑗

𝑏𝑘 𝑗 ∈ 𝐷 (28)

𝑦𝑖𝑗 ≥ 0 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐷. (29)

The problem defined by (26)–(29) attempts to minimize
operation costs in the plants, while respecting the production
capacity in the plants (see (27)) and satisfying the consoli-
dated demand in each depot (see (28)).

If (4) is selected as the objective function of interest, the
auxiliary problem must be adapted in such a way that the
workload is balanced. The resulting problem is presented
next, where 𝑘 is a predefined constant value.

min
𝑦

𝑘 (30)

s.t. ∑
𝑗∈𝐷

𝑦𝑖𝑗 =
𝜋max
𝑖

∑𝑝∈𝑃 𝜋max
𝑝

∑
𝑘∈𝐶

𝑏𝑘 𝑖 ∈ 𝑃 (31)

∑
𝑖∈𝑃

𝑦𝑖𝑗 = ∑
𝑘∈𝐶𝑗

𝑏𝑘 𝑗 ∈ 𝐷 (32)

𝑦𝑖𝑗 ≥ 0 𝑖 ∈ 𝑃, 𝑗 ∈ 𝐷. (33)

The problem defined by (30)–(33) is optimally solved by
CPLEX. Note that (31) equally distributes the production
among the plants.

After one solution has been constructed, the correspond-
ing values for both objective functions are computed.That is,
if the solution was constructed based on the minimization of
costs, the corresponding value associated with the workload
balance is evaluated, and vice versa.

3.2. Local Search Method. The implemented local search
method attempts to improve the constructed solution in
terms of one of both objective functions; that is, one objective
function is randomly selected. The local search is mainly
performed in the routing phase with neighborhoods named
remove/insert and interchange, 𝑁1(𝑥, 𝑦) and 𝑁2(𝑥, 𝑦),
respectively. Both neighborhoods can consider intradepot
and interdepots movements. During the exploration, the best
improvement criterion is assumed. The considered move-
ments are adapted from the ones described in [47], but they
are further explained for each objective function.

If the first objective function is being used as a guiding
function (see (3)), then 𝑁Eq(3)

1 (𝑥, 𝑦) and 𝑁Eq(3)
2 (𝑥, 𝑦) are

sequentially explored. First, 𝑁Eq(3)
1 (𝑥, 𝑦) is considered, in

which a predefined small number (𝑟) of customers with
higher costs are removed from each route.Then, one of those
customers is randomly selected to be inserted in the best
position of any route that do not violate any constraint
(capacity of the vehicle ormaximumduration of the route). A
particular customer can be inserted into a route of the same
depot or into a route of a different depot. In the case that
the insertion procedure is performed in a route belonging to
a different depot, the consolidated demand of the involved
depots changes.Thus, the manufacturing decision is updated
by solving the transportation problem that minimizes (26)
subject to constraints (27)–(29). That problem aims to min-
imize the operating costs associated with the manufacturing
process without being aware of the workload balance in the
plants. On the other case, if the consolidated demand in
the depots remains the same, there is no need to updating
the manufacturing decisions. The exploration of𝑁Eq(3)

1 (𝑥, 𝑦)
terminates when all the 𝑟 customers are inserted into a route.

After that, 𝑁Eq(3)
2 (𝑥, 𝑦) is explored. Here, two customers

from different routes are interchanged with each other. An
interchanged customer occupies exactly the same position of
the other interchanged customer, but in the corresponding
route. As before, an interchange may or may not modify
the consolidated demand in the involved depots. If the
consolidated demand is modified, then the problem defined
by (26)–(29) is optimally solved. In the other case the
manufacturing phase does not need to be updated.

Now, the case when the second objective function (see
(4)) is considered is described. The guiding function to
improve the current solution is (2). For 𝑁Eq(4)

1 (𝑥, 𝑦), the 𝑟
customers removed from each route are randomly selected.
Then, those customers will be inserted into a route (possibly
from a different depot) that improves the workload balance
of customers demand in the depots. Note that there is no
significant difference regarding the route of the same depot in
which a customer is inserted. Thus, routes associated with
the same depot are randomly selected. In this neighborhood,
the manufacturing decision must be updated after the best
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Table 1: Instances’ sizes.

Instance Customers Depots Plants
1 48 4 4
2 96 4 4
3 144 4 4
4 192 4 4
5 240 4 4
6 288 4 4
7 72 6 6
8 144 6 6
9 216 6 6
10 288 6 6

improvement has been conducted. The problem defined
by (30)–(33) is optimally solved to achieve the latter. The
exploration of𝑁Eq(4)

2 (𝑥, 𝑦) is adapted in an analogousmanner
compared to the one described for the other objective func-
tion. That is, customers are interchanged between routes but
focusing in the workload balance objective. By doing this, we
can evaluate the convenience of the movement performed.
After the best interchange has been conducted, the problem
definedby (30)–(33) associatedwith themanufacturing phase
is solved.

Without regarding the objective function considered
to conduct the exploration of 𝑁1(𝑥, 𝑦) and 𝑁2(𝑥, 𝑦), we
measure the improvement in the solution by checking if
it is included in a nondominated set (ND). An improved
solution is included in ND, if there is no solution in ND that
simultaneously outperforms both objective functions of the
current solution. The stopping criterion is a predefined
number of iterations without updating the ND set.

A diagram flow describing the steps of the algorithm is
shown in Figure 1.

4. Computational Experimentation
and Results

Computational experimentation is performed tomeasure the
performance of the proposed biobjective GRASP algorithm.
A set of ten instances previously used in the literature to
solve a similar production-distribution planning problem
is considered. The instances used in [70] were adapted to
create instances for the problem herein studied. To adapt the
instances, acquisition costs are omitted and the value that
standardize the magnitude of workload in depots and plants
is included. As indicated in Section 3.1.1, the values for 𝜀 and
𝜏 were randomly defined in a range of −0.5 ≤ 𝜀 ≤ 0.5 and
0.1 ≤ 𝜏 ≤ 0.3. The information regarding the number of
customers, depots, and plants is shown in Table 1.

The proposed algorithm was implemented in Microsoft
Visual Studio 2012 coded in C++.The version of CPLEX used
to solve the auxiliary problems is 12.6.1. All the computational
experimentation was performed in a personal computer Intel
(R) Core processor with a speed of 2.60GHz and 4GB of
RAM. Since the biobjective GRASP has stochasticity in some
parts, each instancewas solved five times. Table 2 summarizes

Table 2: Computational results.

Instance Average of
|ND|

Minimum
|ND|

Maximum
|ND|

Average
time (sec)

1 10.6 9 11 0.09
2 11.6 9 15 0.14
3 15 12 21 0.17
4 14 12 16 0.19
5 18.2 16 22 0.23
6 21.4 17 28 0.25
7 15.6 14 18 0.16
8 12 11 16 0.10
9 17.4 15 21 0.24
10 17 15 20 0.33

the results obtained from all the runs. The first column
indicates the instance and the second column shows the
average of the number of nondominated solutions in the five
runs.The third and fourth columns display theminimumand
maximum number of nondominated solutions in ND from
all the runs. The last column shows the algorithm’s average
required time (in seconds) for solving each instance.

From the results shown in Table 2, it can be seen that a
relatively small number of nondominated solutions are found
by the proposed algorithm (from (9) to (28)). Particularly, for
Instance 1, a small number of nondominated solutions was
found in each run. On the contrary, the largest number of
nondominated solutions was obtained, for instance, 6. Also,
in five out of the ten instances, the minimum and maximum
number of nondominated solutions are very similar, which
indicates that the algorithm performs steady (see instances
1, 4, 7, 8, and 10). Despite the relative small number of
nondominated solutions obtained, the latter fact validates
that the proposed algorithm has a good performance. In
addition, note that this combinatorial problem tends to have
a relative small number of solutions in the Pareto front due to
the structure of the problem.

It is convenient to highlight that the computational times
are very short for a complex operational problem of this
nature. Hence, the stopping criterion may be changed to
exploremore solutions with the aim of increasing the number
of nondominated solutions.

To illustrate the approximated Pareto front of the tested
instances, the nondominated solutions are plotted in Figures
2–11. The run with more solutions in the nondominated set
is plotted for each instance. In these figures, the horizontal
axis represents the objective function associated with the
minimization of total costs (see (3)) and the vertical axis
corresponds to the workload balance (see (4)). Note that a
solution with low cost tends to be less balanced (has higher
deviation in the workload); on the contrary, a solution highly
balanced is associated with higher costs.

It can be seen from Figures 2–11 that the obtained approx-
imations of the Pareto front are not covering all the space as
expected. Some regions without nondominated solutions are
observed. As reported by [71], depending on the modeling



8 Complexity

Yes

Start

Constructive method
considering Eq. (3)

Clustering phase:

Routing phase:
Described in Section 3.1.2

Manufacturing phase:

Constructive method
considering the Eq. (4)

Manufacturing phase:

No

Yes

Remove/insert:

Interchange:

Local search method
considering Eq. (3)

Local search method
considering Eq. (4)

No

Remove/insert:

Interchange:

Evaluate Eq. (3) and (4)

End

Clustering phase:

Routing phase:
Described in Section 3.1.2

Is the stopping
criterion reached?

Yes No

N
％Ｋ(3)
1 (x, y)

N
％Ｋ(3)
2 (x, y)

N
％Ｋ(4)
1 (x, y)

N
％Ｋ(4)
2 (x, y)

Update x, y

Update ND set

x ← ；ＬＡＧＣＨ {problem (18)–(20)} x ← ；ＬＡＧＣＨ {problem (21)–(25)}

y ← ；ＬＡＧＣＨ {problem (26)–(29)} y ← ；ＬＡＧＣＨ {problem (30)–(33)}

Generate a random number, Ｌ；Ｈ＞ＩＧ1
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Generate a random number, Ｌ；Ｈ＞ＩＧ2

．＄ ← 

x ← 
y ← 

Figure 1: Diagram flow of the proposed algorithm.
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Figure 2: Approximation of the Pareto front of Instance 1.
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Figure 3: Approximation of the Pareto front of Instance 2.
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Figure 4: Approximation of the Pareto front of Instance 3.

approach for balancing workload, it is possible to find less
number of solutions for the approximated Pareto front. They
tested four different schemes to model the workload balance
objective function for a capacitated vehicle routing problem
and results show that the number of Pareto optimal solutions
varies substantially. A less number of Pareto solutions is
found when the balancing constraint is modeled as the total
difference of travel distances of a route with respect to a
desired target or average value. Note that this is the approach
that we are employing to model the deviations of the work-
load assigned to the plants and depots.
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Figure 5: Approximation of the Pareto front of Instance 4.
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Figure 6: Approximation of the Pareto front of Instance 5.
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Figure 7: Approximation of the Pareto front of Instance 6.

For example, for Instances 1, 5, 7, and 8, the nondomi-
nated solutions are very polarized. In other words, there are
many nondominated solutions regarding the first objective
and less solutions that favor the workload balance. But the
tradeoff between both objectives triggers a discontinuity in
the Pareto front. That is, for a small increment in the value of
the first objective function (axis𝑋), the value associated with
the second objective function (axis 𝑌) significantly decreases
close to zero. Thus, the Pareto front is discontinuous, which
is common in multiobjective combinatorial problems [72].
Also, for almost all the instances the approximation of the
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Figure 8: Approximation of the Pareto front of Instance 7.
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Figure 9: Approximation of the Pareto front of Instance 8.

Pareto front is nonconvex, which emphasizes the difficulty of
the problem herein studied.

5. Conclusions

In this paper, we introduce a biobjective production-dis-
tribution planning problem for a two echelons vertically
integrated supply chain. The model considers both the min-
imization of total costs and the workload balance among
plants and depots involved in the supply chain. The lat-
ter objective has been commonly used in vehicle routing
problems and manufacturing systems. Due to the vertical
integrated nature of the company, balancing the workload
among the facilities is an important performance indicator
to achieve. Thus, the introduced model contributes to the
literature by simultaneously considering these two objective
functions in a production-distribution planning problem.

Because of the complexity of the problem herein studied,
we propose a heuristic approach based on the well-known
metaheuristic GRASP to obtain an approximation of the
Pareto front. GRASP was adapted to consider both objective
functions during the construction and local search methods.
To evaluate the performance of the proposed algorithm, we
employ a set of instances from the literature used for a similar
problem. Nevertheless, the results reported in the literature
that correspond to the used instances cannot be compared
with our obtained results due to the structural differences
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Figure 10: Approximation of the Pareto front of Instance 9.
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Figure 11: Approximation of the Pareto front of Instance 10.

among the respective considered models. Results indicate
that the Pareto front is discontinuous for almost all the tested
instances. According to [72], this fact is common in combi-
natorial biobjective problems with constraints that cause dis-
continuous solution space. In the cases when the approxima-
tion of the Pareto front are discontinuous, the nondominated
solutions are polarized in the extreme of the regions; that is,
the solutions are very good for one objective function but very
bad for the other objective function (this can be seen from
Figures 2–11). In addition, the obtained approximation of the
Pareto front is nonconvex for almost all the tested instances
and, as remarked by [71], the number of nondominated solu-
tions obtained depends on themanner that the workload bal-
ance objective ismodeled. In this paper, wemodeled it aiming
to have a workload with less deviation from a target value
(the one associated with the equally balanced case). Hence,
the Pareto front does not cover all the solutions space and
is discontinuous and nonconvex due to the structure of the
considered model.

As future research, we propose to apply path relinking to
the obtained nondominated solutions to validate the dis-
continuity of the approximated Pareto fronts. If no signif-
icant increase in the number of nondominated solutions is
obtained, we may experimentally conclude the discontinuity.
Moreover, different modeling approaches to balance the
workload can be used (as in [71]). By doing the latter, we may
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theoretically evaluate their appropriateness and applicability
to the production-distribution problem considered in this
paper.
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