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1. INTRODUCTION

Common-sense reasoning about space is, first and foremost, reasoning
about things located in space. The fly is inside the glass; hence the glass is
not inside the fly. The book is on the table; hence the table is under the
book. Sometimes we may be talking about things going on in certain places:
the concert took place in the garden; then dinner was served in the solarium.
Even when we talk about “naked” (empty) regions of space—regions that
are not occupied by any macroscopic object and where nothing noticeable
seems to be going on—we tipically do so because we are planning to move
things around, or because we are thinking that certain actions or events did
or should take place in certain sites as opposed to others. The sofa should go
right here; the aircraft crashed right there. Spatial reasoning, whether actual
or hypothetical, is typically reasoning about spatial entities of some sort.

One might—and some people do—take this as a fundamental claim,
meaning that spatial entities such as objects or events are fundamentally
(cognitively, or perhaps even metaphysically) prior to space: there is no way
to identify a region of space except by reference to what is or could be lo-
cated or take place at that region. (This was, for instance, the gist of Leib-
niz’ contention against the Newtonian view that space is an individual entity
in its own right, independently of whatever entities may inhabit it.) It is,
however, even more interesting to see how far we can go in our understand-
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ing of spatial reasoning without taking issue on such matters. Let us ac-
knowledge the fact that space has little use per se in the ordinary representa-
tion of our environment (that is, the representation implicit in our everyday
interaction with the spatial environment). What is the meaning of that for the
theory of spatial reasoning? How does that affect our construction of a gen-
eral model of our spatial competence?

These questions have both methodological and substantial sides. On
the substantial side, they call for a clarification of the relevant ontological
presuppositions. A good theory of spatial reasoning must be combined with
(if not grounded on) an account of the sort of entities that may enter into the
scope of the theory, an account of the sort of entities that can be located or
take place in space—in short, an account of what may be collected under the
rubric of spatial entities (as opposed to purely spatial items such as points,
lines, regions). What are they? What exactly is their relation to space, and
how are they related to one another? In short, what special features make
them spatial entities?

On the methodological side, the issue is the definition of the basic tools
required by a good theory of spatial representation and reasoning, under-
stood as a theory of the representation of and reasoning about these entities.
In fact there may be some ambiguity here, as there is some ambiguity as to
how “reasoning” and “representation” should really be understood in this
regard. We may think of (i) a theory of the way  a cognitive system repre-
sents its spatial environment (this representation serving the twofold pur-
pose of organizing perceptual inputs and synthesizing behavioral outputs);
or (ii) a theory of the spatial layout of the environment (this layout being
presupposed, if not explicitly referred to, by such typical inferences as those
mentioned above). The two notions are clearly distinct; and although a com-
prehensive theory of space should eventually provide a framework for
dealing with their mutual interconnections, one can presumably go a long
way in the development of a theory of type (i) without developing a theory
of type (ii), and vice versa. On the other hand, both notions share a common
concern; both theories require an account of the geometric representation of
our spatial competence before we can even start looking at the mechanisms
underlying our actual performances. (This is obvious for option (ii). For
option (i) this is particularly true if we work within a symbolic paradigm,
i.e., if we favor some sort of mental logic over mental models of reasoning.
For then the specificity of a spatial theory of type (i) is fundamentally con-
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strained—if not determined—by the structure of the domain.) It is this com-
mon concern that we have in mind here. What are the basic tools required by
a theory of this competence? How, for instance, should we deal with the in-
terplay between truly spatial concepts—such as “contained in”, or “located
between”—and purely mereological (part-whole) notions? What are the un-
derlying principles? And how do they relate to other important tools of spa-
tial representation, such as topology, morphology, kynematics, or dynam-
ics? Moreover, do the answers to these questions hold for all sorts of spatial
entities? Or is there a difference between, say, material objects and events?
Why for instance do spatial boundaries seem to play a crucial role for the
former but not for the latter? Are there spatial entities whose spatial location
is more than a contingent fact?

These and many other questions arise forcefully as soon as we ac-
knowledge the legitimacy of the more substantial issues mentioned above.
Our contention is that the shape of the theory of space depends dramatically
on the answers one gives. Over the last few years there has been consider-
able progress in the direction of sophisticated theories both of type (i) and of
type (ii), particularly under the impact of AI projects involved in the con-
struction of machines capable of autonomous interaction with the environ-
ment. We think at this point there is some need for a philosophical pause, so
to speak. Our purpose in what follows is to offer some thoughts which may
help to fulfil (albeit very partially and asystematically) this need.

PARTS AND WHOLES

Much recent work on spatial representation has focused on mereological and
topological concepts, and the question of the interaction between these two
domains will be our main concern here.  

There is, in fact, no question that a considerable portion of our reason-
ing about space involves mereological thinking, that is, reasoning in terms
of the part relation. How is this relation to be characterized? How are the
spatial parts of an object spatially related to one another? Traditionally
mereology has been associated with a nominalistic stand, and has been pre-
sented as a parsimonious alternative to set theory, dispensing with all ab-
stract entities or, better, treating all entities as individuals. However there is
no necessary internal link between mereology and the philosophical position
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of nominalism. We may simply think of the former as a theory concerned
with the analysis of parthood relations among whatever entities are allowed
into the domain of discourse (including sets, if one will, as in Lewis
[1991]). This certainly fits in well with the spirit of type-(ii) theories, in the
terminology of the previous section, but type-(i) theories may also be seen
this way. So mereology is ontologically neutral. The question is, rather,
how far we can go with it—how much of the universe can be grasped and
described by means of purely mereological notions.

We are going to argue that one cannot go very far. In our view (and
this is a view we share with others, though we may disagree on how to im-
plement it), a purely mereological outlook is too restrictive unless one inte-
grates it at least with concepts and principles of a topological nature. There
are several reason for this, in fact, and some of them will keep us occupied
for quite a while in the second part of this paper. However one basic moti-
vation seems easily available. Without going into much detail (see Varzi
[1994]), the point is simply that mereological reasoning by itself cannot do
justice to the notion of a whole—a self-connected whole, such as a stone or
a rope, as opposed to a scattered entity made up of several disconnected
parts, such as a broken glass or an archipelago. Parthood is a relational con-
cept, wholeness a global property. And in spite of a widespread tendency to
present mereology as a theory of parts and wholes, the latter notion (in its
ordinary understanding) cannot be explained in terms of the former. For ev-
ery whole there is a set of (possibly potential) parts; for every set of parts
(i.e., arbitrary objects) there is in principle a complete whole, viz. its mereo-
logical sum, or fusion. But there is no way, mereologically, to draw a dis-
tinction between “good” and “bad” wholes; there is no way one can rule out
wholes consisting of widely scattered or ill assorted entities (the sum con-
sisting of our four eyes and Caesar’s left foot) by reasoning exclusively in
terms of parthood. If we allow for the possibility of scattered entities, then
we lose the possibility of discriminating them from integral, connected
wholes. On the other hand, we cannot just keep the latter without some
means of discriminating them from the former.

Whitehead’s early attempts to characterize his ontology of events pro-
vides a good exemplification of this difficulty. His mereological systems
[1919, 1920] do not admit of arbitrary wholes, but only of wholes made up
of parts that are “joined” to each other. This relation is defined thus:

(1) J(x,  y) =df ∃z(O (z,  x) ∧ O (z,  y) ∧ ∀w(P(w ,  z) → O (w ,  x) ∨ O (w ,  y)))
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where ‘P’ indicates parthood and ‘O ’ overlapping. This should rule out
scattered wholes. But it is easily verified that this definition falls short of its
task unless it is already assumed that the piece z overlaying two “joined”
events x and y be itself connected. In other words, the account works if the
general assumption is made that only self-connected entities can inhabit the
domain of discourse. But this is no account, for it just is not possible to
make the assumption explicit.

x yz

Figure 1. Whitehead’s problem: x and y are not connected unless the overlaying
piece z is itself assumed to be (self-)connected.

THE TOPOLOGICAL OPTION

Mereology can hardly serve the purpose of spatial representation even if we
confine ourselves to very basic patterns. Not only is it impossible to capture
the notion of one-piece wholeness; mereologically one cannot even account
for such basic notions as, say, the relationship between an object and its
surface, or the relation of something being inside, abutting, or surrounding
something else. These and similar notions are arguably fundamental for
spatial reasoning (for type (i) theories as well as for type (ii) theories). Yet
they run afoul of plain part-whole relations, and their systematic account
seems to require an explicit topological machinery of some sort.

Now, in recent philosophical and AI literature, this intuition has been
taken to suggest that topology is truly a more basic and more general
framework subsuming mereology in its entirety. In other words, if topology
eludes the bounds of mereology, then—so goes the argument—one should
better turn things around: start from topology right away and define mereo-
logical notions in terms of topological primitives. For just as mereology can
be seen as a generalisation of the even more fundamental theory of identity
(parthood, overlapping, and even fusion subsuming singular identity as a
definable special case), likewise topology can be seen as a generalisation of
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mereology, where the relation of connection takes over overlapping and
parthood as special cases. (This view was actually considered by Whitehead
himself [1929], but it was only with Clarke [1981, 1985] that it was fully
worked out. Recently it has been widely employed in AI, as reported in
Cohn’s contribution to this volume.)

The subsumption of mereology to topology proposed on this approach
is straightforward: given a relation of topological connection (‘C’), one
thing is part of another if everything connected to the first thing is also con-
nected to the second:

(2) P(x,  y)  =df ∀z(C(z,  x) → C(z,  y)).

Obviously, the reduction depends on the intended interpretation of ‘C’
(which is generally axiomatized as a reflexive and symmetric relation). If we
give ‘C’ the same intuitive meaning as ‘O ’, then (2) converts to a standard
mereological equivalence: whatever overlaps a part overlaps the whole. But
things may change radically on different readings.

Typically, the suggestion is to interpret the relation ‘C(x,y)’ as mean-
ing that the regions x and y have at least one point in common. This means
two things. First, the domain of quantification is viewed as consisting of
spatial (or spatio-temporal) regions, and not of ordinary “things”. Second,
since points are not regions, sharing a point does not imply overlapping,
which therefore does not coincide with (though it is included in) connection.
In other words, things may be “externally” connected. There are of course
some immediate complications with this account, for the absence of bound-
ary elements in the domain means that things can be topologically “open” or
“closed” without there being any corresponding mereological difference. In
fact various refinings are available that avoid this unpalatable feature, so we
need not go into these details (see Varzi [1996a]). Suffice it to say that with
the help of ‘C’ it becomes easy, on some reasonable interpretation, to cap-
ture various topological notions and to account for various patterns of topo-
logical reasoning. For instance, self-connectedness is immediately defined:

(3) SC(x) =df ∀y∀z(∀w(O (w ,  x) ↔  O (w ,  y) ∨ O (w ,  z)) → C(y,  z)).

So if spatio-temporal regions are the only entities of our domain, then
(2) yields important conceptual achievements: the basic limits of mereology
are overcome. However, there is a second side of the coin. For if we really
are to take an open-faced attitude towards real world things and events, as
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we urged in the Introduction (without identifying sych entities with their re-
spective spatio-temporal co-ordinates), then the reduction offered by (2)
seems hardly tenable, as different entities can be perfectly co-localized. A
shadow does not share any parts with the wall onto which it is cast. And a
stone can be wholly located inside a hole without actually being part of it.
The region that it occupies is part of the region occupied by the hole—but
that’s all: holes are immaterial, and can therefore share their location with
other entities. For another example (from Davidson [1969]), the rotation and
the getting warm of a metal ball that is simultaneously rotating and getting
warm are two distinct event. Yet they occupy exactly the same spatio-
temporal region; because events, unlike material objects, do not occupy the
space at which they are located. From here, intuitions diverge rapidly. And
the notions of connection and parthood that we get by reasoning exclusively
in terms of regions, no matter which specific interpretation we choose, just
seem inadequate for dealing with the general case. (This means, among
other things, that the possibility of extending the theory to neighboring do-
mains might suffer. For instance, a theory of events which reduces mereol-
ogy to topology by mapping every event onto the interval or instant of time
of its occurrence (as do most AI theories of temporal reasoning developed
under the impact of Allen [1981]) will not have room for co-temporal dis-
tinct events, let alone events occurring in the same spatio-temporal regions.
Compare Casati [1995] and Pianesi & Varzi [1994, 1996a, 1996b].)

yxz

Figure 2. Clarke’s problem: x is inside object y; but what is the relationship be-
tween object x and hole z? (and what the relationship between z and y?)

THE HOLE TROUBLE

These concerns may not be definitive. In particular, our examples of the
shadow and of the stone in the hole presuppose a friendly attidude towards
the ontological status of shadows and holes, which is far from unproblem-
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atic. A non-realist would simply say that such “things” do not exist (for
shadows and holes are—after all—paradigm examples of nothings)—hence
the above question would not even arise. However this would require some
radical eliminative strategy. It would, for instance, require some systematic
way of paraphrasing every shadow- or hole-committing sentence by means
of sentences that do not refer to or quantify over shadows or holes (the
cheese is holed, but there is no hole in it; the wall is darkened, but there is
no shadow). On the other hand, if we want to take common sense seriously,
we should resist these ways out in favor of a realist, common-sense attitude.
Holes and shadows are enigmatic. Yet, if there is an ontology inherent in our
everyday reasoning about the world, then this ontology comprises shadows
and holes (and cognate entities such as waves, knots, cuts, grooves, cracks,
fissures, smiles, grims) along with stones and chunks of cheese.

We have defended this view at large in previous work (especially in
Holes [1994]), and we refer to it for further discussion of the underlying
philosophical issues. In fact, we take this to be a good example of the sort
of general ontological concern that we mentioned at the beginning: a general
theory of spatial representation calls for a clarification of the relevant onto-
logical presuppositions. It must be combined with (if not grounded on) an
explicit account of the sort of entities that may enter into the scope of the
theory. Be it as it may, it is apparent that the simplification introduced by (2)
has critical consequences if our concern is with the foundations of general-
purpose representation systems, even if we take a non-realist attitude toward
holes and shadows. For the basic issue of the relationship between an entity
and “its” space (the space where it is located) is then trivialized: every entity
is reduced to its space. Moreover, it yields a flat world in which every mor-
phological feature is ignored, and the question of whether holes should be
treated as bona fide entities next to ordinary objects, far from being left in
the background, cannot even be raised. This, we mantain, is not only a
source of conceptual poverty; it may also be misleading.

Let us focus on holes. Some recent work by Nick Gotts [1994a,
1994b] is indicative of the difficulties we have in mind. Clarke’s system and
its derivatives include among their models an infinity of topological spaces.
But the notion of a topological space seems to be much less specific than is
required by our spatial intuitions. So Gotts asks: What additional axioms
should ‘C’ satisfy (besides reflexivity and symmetry) in order to capture
such intuitions? Gotts shows that using ‘C’ as a primitive we can go as far
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as to describe toroidal structures (doughnuts). Hence we can in principle
describe perforated objects without directly resorting to holes. (Just focus
on the doughnut, and ignore the hole, as it were.) This is indeed re-
markable, but closer inspection show that the results are necessarily partial.

There are two troubles. The first is that the notion of a torus is only ca-
pable of capturing one type of hole, viz. perforations (“tunnels”, as we call
them). It remains thoroughly blind in front of superficial hollows, grooves,
and other discontinuities of irreducible morphological nature. Of course this
is not a real problem if we treat superficial holes as uninteresting. If we con-
fine ourselves to topology, we must do so, regardless of whether our primi-
tive is ‘C’ or something else. This is not an objection to Gotts; rather, it
merely points out that topology is only one step ahead of mereology, and
need be integrated by other notions and principles if we want to go beyond a
world of spheres and doughnuts (and little else) without reflecting on the
ontology. The second trouble is more specific. For as it turns out, an
account in terms of ‘C’ is intrinsecally incapable of capturing the notion of a
knotted hole. That is, it captures the intrinsic topology of a holed object, not
the extrinsic topology. Now, of course knotted holes are just as important as
straight ones, as it were. (And surely, you can hardly tell if the hole you are
walking through is knotted or not.) But if a theory can’t tell the difference,
its classificatory power is deficient in an important sense, at least from our
present perspective.

Figure 3. We can’t ‘C’ well enough to tell a straight hole from a knotted one.

THE COMPOSITIONAL APPROACH

We take the foregoing to imply a threefold moral. Firstly, it appears that one
needs both mereology and topology as independent (though mutually re-
lated) frameworks. Mereology alone is too weak; topology alone is too
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strong (in a sense) but at the same time very limited (in another sense). Sec-
ond, the limitations of topology are significant even at a fairly elementary
level (a long way before functional features become important for classify-
ing shapes or providing an analysis of such relations as containment; as
urged e.g. by Vandeloise [1994] and Aurnague & Vieu [1993]). Third, and
perhaps more importantly, one had better abandon an approach to spatial
representation and spatial reasoning in terms of spatial regions, and consider
from the very beginning an ontology consisting of the sort of entities that
may inhabit those regions. As we said at the beginning, this is of course tied
in with the difficult metaphysical issue of whether we can dispense with
spatial items altogether. This is the controversy between spatial abso-
lutism—the Newtonian view that space is an individual existing by itself,
independently of whatever entities may inhabit it, and is in fact a container
for the latter—and spatial relativism—the Leibnizian view according to
which space is parasitic upon, and can be construed from, objects and rela-
tions thereof. But we believe one can remain neutral with respect to this is-
sue at least at the beginning.

A potential candidate in the direction dictated by the last desideratum is
Biederman’s [1987] “Recognition By Components” (RBC) theory. This
theory—Biederman’s concern is with shape recognition—is based on the
primitive notion of a normailzed cylinder, or “geon”, and offers a simple
“spatial syntax” whereby every object can be viewed as composed out of
cylinder-like components. (The basic idea has been used by several other
authors and is usually traced back to the work of Thomas Binford; Bieder-
man should nevertheless be given credit for formulating it in purely qualita-
tive terms, without resorting to sophisticated abstract hyerarchies). The re-
lated cognitive thesis is that the human shape recognition system is based on
the capacity to decompose an object into cylinders. Thus, for instance, a
coffee cup would consist of a main semi-concave cylinder (the containing
part) with a small bended cylinder (the handle) attached to the first at both
ends. (In a more recent formulation [1990], both geons and relations among
them are defined in terms of more primitive parameters, such as variation in
the section size, relative size of a geon’s axes with respect to its section,
relative size of two geons, vertical position of a geon at the point of junction
with another. The outcome is that with three geons one can theoretically de-
scribe over 1.4 billions distinct objects).
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Also in this case, however, some problems arise immediately. For one
thing, the theory is based on a general assumption pertaining to the cognitive
dimension of part-whole reasoning which seems false. RBC is meant to do
justice to the intuition that the mereological module is crucial to object
recognition. However, recent data by Cave and Kosslyn [1993] show very
clearly that a module for decomposition into parts does not act prior to, and
is not a necessary condition of, object recognition. Their results indicate first
of all that the recognition of an object depends crucially on the proper spatial
relations among the parts: when the parts are scrambled or otherwise
scattered, naming times and error rates increase. Secondly, Cave and
Kosslyn’s results show that the mereological parsing of an object affects the
object’s identificatiton “only under the most impoverished viewing condi-
tions”. This is not a disproof of the existence of a merelogical module per se
(for instance, the way objects are partitioned tends to be rather robust across
individuals). However, Cave and Kosslyn contend that the module need not
be activated for the purpose of object recognition, and their results leave lit-
tle room for a rebuttal. (We tend to rely on data of this sort, because they
dispose of the issue of object recognition in our discussion. In particular,
the structure of the as yet putative mereological module should be consid-
ered independent of the pressures of object recognition.)

A second problem is more technical and, in a sense, farther reaching.
Take a flat object, say a disc. In spite of the “generative” power of the no-
tion of a normalized cylinder, it would seem that in cases like this its repre-
sentational adequacy is at the limit: it seems unfair to represent a disc as a
wide, short cylinder—a flat geon. It might be replied that this is an objection
only if our concern is with type-(i) theories, with the way a cognitive system
represents its spatial environment. (Surely the fact that a certain object can
be represented as a normalized cylinder does not imply that it actualy is
represented that way by a cognitive system.) But if we are looking for a
purely geometric theory of type (ii), one could argue that this sort of artifi-
ciality is inessential. After all, for the purpose of spatial reasoning, it does
not matter what we take a disc to be: the important thing is to keep the num-
ber of primitives to a minimum. If so, however, consider then a disc with a
hole, or a doughnut for that matter. How is such an object to be repre-
sented? Here the problem is twofold. On the one hand, we would again say
that it is awkward to regard a disc or doughnut (an O-shaped object) as con-
sisting of two joined handles (C -shaped cylinders), or perhaps of a single
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elongated handle whose extremities are in touch. This is the type (i) misgiv-
ing. But there is also a type (ii) misgiving. For how do we choose between
the possible decompositions? More generally, how do we go about decom-
posing an object with holes in terms of its non-holed parts—is there any
principled way of doing that? There isn’t. And of course we wouldn’t want
to expand our primitives by adding doughnuts. Otherwise bitoruses, i.e.,
doughnuts with two holes (8 -shaped objects), should also be assumed as
primitives. That would be necessary insofar as there seems to be no princi-
pled way within the putative RBC+torus theory to decompose a bitorus: as
torus plus handle (C -shaped geon), or as handle plus torus? Since the same
puzzle arises also for a tritorus, and more generally for arbitrary n-toruses, it
therefore seems that by this pattern one would have to introduce an infinite
amount of primitives—and that is unacceptable also from the perspective of
a type-(ii) theory.

+= =

+

+

Figure 4. How do we decompose a doughnut into normalized cylinders? How do
we decompose a double doughnut?

NEGATIVE PARTS

Once again, the problem is that the theory under consideration aims to ac-
count for one desideratum, but neglects the others. We welcome the sug-
gestion of investigating a spatial compositional structure which is not simply
a mereology of space, but of spatial entities. This is as it should be. But we
already saw that a pure mereological module is not going to do all the work;
a fortiori, one can’t go very far by reasoning exclusively in terms of such
well-behaved parts as geons.

However, here one might be tempted to reconsider our earlier conclu-
sion: perhaps that is precisely the problem; perhaps the problem is precisely
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that the relevant notion of part (or component) is not broad enough to do all
the work. With a broader notion—not only broader than geons, but at this
point even broader than the notion of part underlying standard parthood
theories—mereology might be enough after all.

One way of implementing this intuition could come from Hoffman and
Richards’s original theory of parts [1985]. Analyze a doughnut as consist-
ing of two parts—not just two ordinary parts, but two “complementary”
parts (as it were): a positive part (in the shape of a disc) and a negative part
(the hole). This would be a solution to the above problem inasmuch as both
the disc and the negative part can be treated as RBC-normalized cylinders.
And the notion of negative part can be defined in relation to the normaliza-
tion of the solid (positive) body hosting it: the closest solid for a doughnut is
a cylinder; the negative part is the “missing” cylinder in the middle. (The
solution is obviously generalizable to arbitrary n-toruses.)

+=

Figure 5. Holes as negative parts.

This proposal has some independent attractive features, which should
not be overlooked. One is that it deals neatly with complementary or dual
structures, such as those constituted by grooves (or notches, dents, indenta-
tions) and ridges. A groove is a negative, intruding part just like a ridge is
an ordinary, protruding part. There is a rather obvious reason for the desire
to treat such dual structures on a par. A natural way to produce an indent in
a body is to act on it with another body’s protrusion; conversely, a natural
way to produce a protrusion is to fuse some material in anothers body’s in-
dent. We can immediately predict, by observing the processes of fusion and
of indentation, that the shapes of the notch and of the protrusion will fit per-
fectly. (Are they actually one single shape? This is an interesting question,
pertaining to the more general issue of the status of complementary shapes.)
Another advantage of negative parts is that when it comes to holes the no-
tions of completion of an object, or of a hole’s being a lack in the object (a
missing something), are immediately and rather nicely implemented. For
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holes are exactly there where some part of the object could conceivably have
been; and as they always are where some part of the object could have been,
it does not make a big difference if we have them coincide with some actual
negative part of the object.

Let us stress indeed that these negative parts would exactly correspond
to what we would treat as a hole. Wherever we have a hole, this theory
would have a negative part, and viceversa. But the negative-part theory and
our theory in Holes (the “hole-theory”, hereafter) are false friends—they are
not just notational variants. On the hole-theory, a hole is not a part of its
host. If you join the tips of your thumb and your index so as to form an
‘O’, you do not thereby create a new part of yourself, however negatively
you look at it. On the negative-part theory, by contrast, a hole is precisely
that: it is just a part, albeit of a somewhat special and hiterto neglected sort.

Now, this may well be a disadvantage of the hole-theory. It requires a
special primitive ‘H’ (‘…  is a hole in …’) logically distinct from the part-
hood primitive ‘P’. The two primitives are not only distinct; they stand for
two relations that are totally disjoint: as we said, holes are never parts of
their hosts. They don’t even overlap, as reflected in the axiom:

(4) H(x, y) → ¬P(x, y)

By contrast, if holes are treated as parts (albeit parts of a special kind) the
possibility is left open that the ‘P’ primitive (perhaps combined with a suit-
able inversion functor) be sufficient for most purposes. The difference is
important, of course. Conceptual economy may be very advantageous, es-
pecially from the perspective of a type-(ii) theory. (Ironically, this is not the
perspective of Hoffman and Richards. But think of an expert system whose
task is, say, to classify shapes. One may imagine using, in addition to sev-
eral shape primitives, the ‘P’ primitive and an inversion functor which maps
(suitable) positive parts of an object’s complement onto corresponding
negative parts of the object itself, and viceversa—an idea that can be traced
as far back as to the theory of Franz Reuleaux [1875].)

At the same time, the price of this conceptual economy may be too
high. On the hole-theory a doughnut is just a doughnut—an object with a
hole. On the negative-part theory a doughnut is really the sum of two things:
a disc plus a negative part. Is that what a doughnut is? More importantly,
what does it mean to represent a doughnut that way? What kind of mereol-
ogy is required? And when are we allowed to speak of negative parts any-
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way? Are holes (and grooves, notches, etc.) the only sort of negative part?
Take a sphere and cut it in half. According to one intuition, the closest ap-
proximation for each piece is the sphere itself; each piece has a missing part.
Yet surely it would be absurd to treat a semi-sphere as a whole sphere plus a
negative part (the missing half). How can the negative-part theory rule that
out? Perhaps in this specific case the difficulty might be dealt with simply by
stipulating that objects must be approximated to their convex hull. But that
has the force of an ad hoc solution. A champagne glass would by that
pattern involve two large negative parts, one surrounding the stem, and one
in the wine cup. It is hard to find satisfaction in that picture.

Figure 5. Problems with negative parts: is a semi-sphere composed of a whole
sphere plus a negative half? What negative parts does a champagne glass consist of?

HYBRID SUMS

Let us look at these questions more closely. If we are right, the answer will
eventually be that no mereological module could function reasonably if it
had to operate on negative parts. And this will be relevant to both a type-(i)
and a type-(ii) perspective on spatial reasoning and representation.

Consider how the mereological module can operate on holes if these
are construed not as negative parts but as immaterial individuals which are
not part of their material hosts. According to the hole-theory, anytime there
is a hole in an object there is some mereological composition around. Not
only because the theory implies that atoms are holeless. (A hole is always in
some proper parts of an object, therefore, if an object has a hole, it must
have parts). There is also the trivial fact that a hole is a part of the mereolog-
ical sum of the host and of the hole itself.

Now define a (cognitively) natural object as an object which is taken by
the cognitive system as unitary (typically, a cognitively natural object is a
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unit for counting). As we said, not all mereological sums are natural objects.
Think again of the sum consisting of our four eyes and Caesar’s left foot.
But even so, a large number of mereological sums are unitary—they have
that cosy, peculiar naturalness and wholeness. Our question now is whether
the mereological sum of an object and its hole(s) is a cognitively natural
object, and, if it is, how it is related to a normal and holeless natural object.
For topological connection plays a hand in the game, but exactly which hand
it is unclear.

Mind the fact that such a sum—call it s—is not a mereological sum of
the most obvious kind. It is a sum of two objects, one of which (the hole)
depends existentially upon the other (you cannot remove the hole from the
doughnut), which in turn depends geometrically or conceptually upon the
former (you cannot have a doughnut without a hole). And these depen-
dences are more than mereological: they involve a form of topological de-
pendence too. The sum s is not decomposable into hole h and host o in the
same sense in which the sum of two solid objects, a plus b,  is decompos-
able into a and b. For the hole exists only insofar as it is topologically con-
nected with its host. And if you eliminate the hole (e.g., by elastically de-
forming the host or, if the host is a doughnut, by cutting it open), the host is
no longer holed. Thus, even if the sum s of a hole h together with its host o
is indeeed a sum of a hole and a holed object, metaphysically it has rather
peculiar features. For instance, it does not behave as the ordinary sum of a
holed object and of its perfect filler (imagining the hole to be filled).

Observe now that the hole-theory allows us to express these facts by
making a distinction between a hole’s being in something and a hole’s being
part of something. The hole, h, is part of the hybrid sum s (hole + host) but
it is not a hole in s. For h overlaps s, and by axiom (4) no hole overlaps its
host. Moreover, the following principle of left-monotonicity hold:

(5) H(x, y) ∧ P(y, z) → O (x, z) ∨ H(x, z)

That is, any object that includes the host of a hole is a host of that hole, un-
less its parts also include parts of that very hole. You can produce a holed
object by taking just another holed object and by attaching a part thereto (in
an appropriate way).

Connectedness (between a hole and its host) is thus mandatory for
binding the salient parts of s. But one must add that the bind between a hole
and its host is much stronger—topologically, not only ontologically—than
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the bind between two ordinary solid objects in touch with each other. (The
bind resembles the one between the various non-salient, only-potential parts
of an homogeneous, self-connected chunk of an ideal stuff. Any part of the
chunk cannot but ideally be detached from the object—real detachment
produces two new objects.) We do not see, in any case, how these facts
should be related to the property of being a natural whole. We do not see
any reason why the sum of an object and its holes should be a natural
object. On the other hand, it seems that the negative-part theory requires that
such a sum be a natural object, for this is where the cognitive system should
start from when it comes to holed objects. The sum is assumed to be
cognitively prior to the analysis into object + holes. But this is far from
obvious. We are prepared to accept that in some cases a holed object is
considered a sort of incomplete object (a statue with a perforation, say), but
this is not the rule. And the proof is, quite simply, that in so many cases we
would not be able to tell what parts are missing from what object.

NEGATIVE PARTS OF WHAT?

We thus come to what seems to be the major problem of an ontology of
negative parts. We have a number of characters here. To begin with, there is
an ordinary holed object; call it the solid object, o. Add to this its hole (or
holes), h. The hole is not part of the solid object (which is impenetrable, and
thus cannot have penetrable parts). It is nevertheless part of the sum of the
solid object with the hole itself; call this sum the holed sum ,  s. Thus, s =
h + o and o = s – h where ‘+’ and ‘–’ can be defined in the usual way:

(6) x+y =df ιz∀w(O (w ,z) ↔ (O (w ,x) ∨ O (w ,y)))
(7) x–y =df ιz∀w(P(w ,z) ↔ (P(w ,x) ∨ ¬O (w ,y)))

Then there are two relevant mereological complements: the complement of
the solid object, ∼o, and the complement of the holed sum, ∼s, where in
general we define

(8) ∼x =df ιz∀w(O (w ,z) ↔ ¬O (w ,x)).

The hole is part of the complement of the solid object (which for the sake of
simmetry may be called the complement sum), but it is not part of the com-
plement of the holed sum. For the complement sum and the holed sum
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mereologically overlap: they share a negative part, viz. the hole. In short,
 ∼s = (∼o) – h and ∼o = (∼s) + h,

s = o + h

~s = (~o) – h

o

h

~o = (~s) + h

Figure 6. Doughnut, hole, sums, and complements.

It is enough to formulate these distinctions to see a problem emerge. A
pure mereological module founders because a negative part is at the same
time part of the holed sum and of the complement sum. Now the theory of
negative parts does not founder because of that. On that theory, the hole is
not a negative part of the holed sum: it is a positive part thereof, and a
negative part of something else. But of what, exactly?

More characters must be added to the picture. First, in the negative-part
theory we have this entity (partly solid and partly immaterial) which has h as
a negative part. Call that entity o'. This is not to be confused with the holed
sum, s, because h is a standard part of s, not a negative part. Nor is o' to be
confused with o, because h is not a part of o, whether positive or negative.
Rather, o' is a third object, distinct both from s and from o. It is what, on
the negative-part theory, the doughnut really is. Furthermore, the result of
subtracting h from o' gives you an other object still, distinct from all of s, o,
and o': it give you a disc, the disc we would have in case our doughnut
were holeless. Call this last character s'; we then have the followig equa-
tions:

(9) s = o + h     o = s – h     s' = o' – h     o' = s' + h.

The first two of these (on the left) are standard mereological equations, cor-
responding to (6) and (7). The last two (on the right) are not. The way h is
added to o to yield s is not the same way h is added to s' to obtain o'; for the
former operation yields a bigger object (in an intuitive, compositional, non-
metric sense) than the one we start with, whereas the latter—a form of
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negative sum—yields a smaller object. And the way h is subtracted from s
to yield o is not the same way h is subtracted from o' to obtain s'; for the
former operation yields a smaller object than the one we start with, whereas
the latter—a form of negative difference—yields a bigger object. But is there
any way to characterize the latter operations in terms of the former? Is there
any way to characterize +  and – in terms of + and –? It seems not, unless
negative parthood is assumed as a primitive next to parthood simpliciter. But
if we do so, then we have two mereologies, not one; that is, we have two
mereological primitives. And one seeming advantage of the negative-part
theory over the hole-theory (conceptual simplicity) is lost.

Nor is this the whole story. Consider the complement operation, as
defined in (8). How does it behave with respect to negative parts? We are
not asking for the negative counterpart of the complement operation, which
could presumably be defined as in (8) but using the negative counterpart of
‘O ’. We are asking how ‘∼’ behaves when its arguments are among the
additional characters envisioned by the negative-part theory. For instance,
how is the following table to be completed?

(10) ∼s = (∼o) – h     ∼o = (∼s) + h     ∼s' =  ?      ∼o' = ?

Is h part of ∼s'? It would seem so, for surely h, a hole, does not overlap s',
a solid disc; so it must be part of the complement. But then, what is the dif-
ference between s' and o? It can only be s' – o, i.e., the small solid disc in
the middle of s' which is conceiled, so to speak, by the negative part of o'.
However, that means that the list of entities at stake is still growing, giving
rise to further questions. Call this new “invisible” part d. Is d also part of
the complement of o? Of s? Of what entities? And what sort of entity is d +
h? Finally, what sort of entity is d + h—the entity obtained from d by
“adding” a perfectly congruent negative part? How does it differ from
nothing at all?

s' + h = o' s'h d d + h = ? 
Figure 8. Spatial entities in negative-part mereology.
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THE NEED FOR EXPLICIT THEORIES

The upshot of all this seems clear. If we don’t take holes seriously, we end
up with a theory which is formally just as rich, due to the need of two dis-
tinct mereological primitives, and ontologically much more dubious, due to
the presence of such mysterious entities as s', d, d +  h, and so on. Seen
from another perspective, it is the notion of complement that founders con-
ceptually. If the doughnut is really somewhat bigger than its edible part, if it
also consists of a negative part, then its complement does not comprise the
negative part. But if the mysterious negative parts are not parts of the com-
plement—that is, if the negative parts of the doughnut are not parts of the
doughnut’s complement—then why are they negative? This intuition is not
negotiable. And if the negativity does not lie in the complement, then why
not allow for “negative” entities to begin with—why not allow for holes?

We have thus reached again a general conclusion concerning the inter-
play between ontology, mereology, and topology. And the conclusion is
that we need all of them. We need mereology because topology is mereolog-
ically unsophisticated. We need topology because mereology is topologi-
cally blind. And we need ontology because both topology and mereology—
even if we try to relax or supplement the relevant primitives—are intrinsi-
cally incapable of making sense of important ontological distinctions.

It now goes beyond the aims of the present work to give specific indi-
cations of how these three domains can actually be combined into a sys-
tematic theory. Some developments can be found in Holes as well as in
Casati [1995a, 1996], Casati and Varzi [1996], Pianesi & Varzi [1994], and
Varzi [1993, 1994, 1996a, 1996b]. By way of illustration, however, con-
sider briefly how a mereotopological theory developed in this spirit can
provide the foundations for some basic patterns of spatial reasoning of the
sort mentioned at the beginning. The fly is inside the glass; hence the glass
is not inside the fly. But under what conditions does a fly qualify as being in
a glass? (Annette Herskovits gives a thorough analysis of this issue in her
contribution to this volume, examining all the intricacies allowed by the use
of prepositions in natural language. Here we only interested in the geometry
of the problem, as it were—a much more modest task.)

Some authors have suggested that the answer could be given in terms
of mereological inclusion in the convex hull of the containing object (Figure
9, left). But as already Herskovits [1986] pointed out, such an account-
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would fail to appreciate the crucial role of containing parts as opposed to
other non-convex parts (a fly near the stem of a glass is not in the glass,
though it may well fall within its convex hull: see Figure 9, middle). Nor
can the problem be overcome by focusing exclusively on the convex hull of
the object’s containing parts, as initially suggested by Vandeloise [1986]
(Vandeloise [1994] defends a thoroughly functional approach): apart from
the apparent circularity, it is not difficult to find counterexamples insofar as
the outer boundaries of containing parts may themselves involve concavities
(figure 9, right; example from Vieu [1991: 207]).

Figure 9. The fly problem: reference to the convex hull (dashed line) is of little use
for the purpose of telling the flies inside the glass from those outside.

Now, this problem is halfway between what we called the hole prob-
lem (a problem for a purely topological theory, which we discussed earlier
in connection with Gotts’s work) and Hoffman and Richards’ problem (one
of the problems for a purely mereological theory). It is similar to the former
inasmuch as the relevant role of what really counts as a container (a
“fillable” morphological discontinuity) cannot be explained in topological
terms even if we extend the range of application of connection to the convex
hull. And the problem is similar to the latter (and more generally to the cru-
cial dilemma of the negative-part theory) insofar as it requires thinking about
the complement of the object. By contrast, if we reason directly in terms of
holes we get a radically different picture. Only the region corresponding to
the hole—the one on the top, not the “groove” surrounding the stem or the
top part of the glass in the right diagram—can reasonably be treated as the
container. And to be contained in the glass is to occupy (perhaps partially)
that region, i.e., to fill (maybe partly) the hole. Mereology and topology
give us the structure of the entities at issue (the glass, the hole, the fly, the
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corresponding regions); and containment is explained in terms of simple in-
clusion relations between the region of the fly and the region of the hole. We
need the fly and the hole to begin with. Then we look at their regions. (See
Casati & Varzi [1996] for a closer examination of the structure of spatial
location.)  

Here the point is of course that the containing part of a glass determines
a true hole—a hollow, in effect. No doubt there are other senses in which a
glass can be said to be holed. However, what exactly counts as a hole or a
containing part is not at issue: the account will be effective precisely insofar
as the existence of independent criteria for holehood is presupposed—e.g.,
insofar as the space around the stem of a glass is not taken to be a hole. So
if we have holes in the ontology (along with corresponding identity and
individuation criteria), the problem dissolves; whereas the lack of holes
gives rise to the difficulties illustrated in Figure 9.

This is not to suggest that mereology + topology + explicit hole
commitment will give us a complete account of the notion of spatial con-
tainment, or even a full solution of the fly-in-the glass problem. In fact it is
not difficult to find instances where ordinary intuitions are not adequately
captured by the above suggestion. For example, the two patterns in Figure
10 provide apparent counterexamples whose solution seems to call for a
decisive step into other territories than purely geometrical reasoning. Most
likely these include at least some pragmatics (as suggested, e.g., by Aur-
nague & Vieu [1993] and Vandeloise [1994, 1996]), or causal factors at
large. Even so, several useful refinements can be introduced already at the
geometrical level, including some applications to naive-physical reasoning
about containment. (See Varzi [1993] for details.)

a b

Figure 10. Further difficulties with the relation of containment: in both cases the
fly is in a hole hosted by the glass, but not in the glass itself.
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Moreover, the basic theory can be improved in various ways, by fully
investigating the class of entities compatible with it. For instance, from a
classificatory perspective the gist of the theory fragment presented in Holes
is that holes come in three kinds: superficial hollows, perforating tunnels,
and internal cavities (plus some significant mixed cases). The basic patterns
are illustrated in Figure 11. There are in fact important distinctions among
these three kinds of hole, i.e., more precisely, among the entities affected by
such holes. And there is, correspondingly, a simple decision tree. This is
illustrated in Figure 12 (left). But this basic taxonomy can then be extended.
For example, Figure 12 (right) shows the result of including grooves. The
idea is that grooves are a kind of hole, though geometrically rather bizarre.
(We could say that a groove is a sort of “external” tunnel.)

cb da

Figure 11. Holes come in superficial hollows (a), perforating tunnels (b), internal
cavities (c), and some mixed cases, e.g. internal tunnel-cavities (d).

host’s connected surfaces > 1 ?

YES
cavity

NO
guest’s free faces > 1 ?

YES
tunnel

NO
hollow

contact boundaries and free faces > 0 ? 

NO
cavity

YES
contact boundaries > 1 ?

NO
hollow

YES
free faces > 1 ?

YES
tunnel

NO
groove

Figure 12. Basic and extended classification trees for holes. Here a free face is any
(maximally connected) part of the surface of the hole’s filler (the ideal object that
can be used to perfectly fill the hole) that is not connected with the host’s surface,
and a contact boundary is any (maximally connected) boundary of such a free face.
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In all of these cases, the same intuition is at work. To classify holes
and hole-like entities, we need look at more than just the topology of their
material host: we also need to look at their potential “guests”, so to speak.
For holes are fillable entities, and much of our reasoning about holes and
hole-like entities involves reasoning about how one can fill them. (In our
view this is the only way to avoid two serious classificatory deficiencies of
pure topology. One is the fact, already mentioned in connection with Gotts’s
work, that topology is blind against non-perforationg holes. The second is
that it is also too strong, for it treats as equivalent holed objects that are
clearly different from the standpoint of common sense, and which should be
kept distinct for most purposes: see Figure 13. By focusing on the patterns
of interaction between host and guests (fillers), the hole-theory aims at finer
distinctions, as illustrated in Figure 14: the morphological complexity of a
hole is reflected in the topological complexity of the host-guest contact
surface.)

Figure 13. Some configurations that elementary topology cannot distinguish.

ramified tunnel

sphere with n edges 

tunnel

sphere with 2  edges
(= annulus) 

hollow

sphere with 1 edge
(= disk)

cavity

sphere

Figure 14. The morphological complexity of a hole is reflected in the topologial
complexity of the contact surface of its perfect filler.
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In a similar fashion, we can also extend our taxonomy by adding suit-
able branching and knot theories to account for further morphological com-
plexities. We may, for instance, wish to distinguish between an X -shaped
and an H-shaped tunnel/groove by counting the relevant number of nodes,
or junction points. And we may want to distinguish between a straight I-
shaped tunnel and a knotted one, between a simple O-shaped tunnel-cavity
and a trefoil knotted one. (In all of these cases, the base theory is insensitive
to what goes on inside the hole, and only considers its relations with the
external surface of the object. Thus, for instance, the basic principles under-
lying the decision tree illustrated in figure 12 does not extend to the right-
most pattern of figure 11.) Indeed, the possibility of relying on an explicit
knot theory is an immediate and advantagious consequence of the main on-
tological choice of the hole-theory: it is because holes are full-fledged enti-
ties—that type of entities, viz. immaterial spatial bodies bodies rather than
negative parts—that one can investigate the ways they can be knotted to-
gether. And with the help of this extended machinery, more complex pat-
terns of spatial interaction between holed objects and their environment can
be fruitfully studied.

Figure 14. Taking ramifications and knots into account.

CONCLUDING REMARKS

We have focused so much on holes and the problems they pose because we
take them to be indicative of the issues involved in any spatial theory aiming
to combine some affinity with common sense and a suitable degree of
formal sophistication. This, we believe, is the main aim for a good theory of
spatial reasoning and representation that will overcome the apparent discrep-
ancy between “psychological”, type-(i) theories, and “formal”, type-(ii) the-
ories. As we proceed, we discover layers of problems that are recalcitrant to
simple solutions and that are a sign of the presence of unresolved conceptual
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issues. And holes show how radical the need can be for a revision—or at
least a re-examination—of the conceptual categories required for this task.

Holes are not an exception, though. Similar problems arise virtually for
every spatial entity: not only holes or regions of space, but even material
objects have been the subject of philosophical dispute. And the particular
strategy one is to adopt is often a symptom of wider philosophical concerns.
Thus, one might choose to concentrate exclusively on the spatial entities and
on their intrinsic properties (at the expense of the environment and of the
relational ties linking the objects to their environment) and thereby neglect
complementary reasoning or more generally holistic components in spatial
reasoning. Or one can attend to global properties of spatial situations, and
fail to isolate relevant features of individual objects. To some extent this
conflict (among others) can be seen as a sign of a deeper conflict between
spatial absolutism and spatial relationism. But even so, we suggest the
conflict may partly be resolved by integrating both perspectives: common-
sense reasoning about space is, by one and the same token, reasoning about
spatial entities.
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