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ABSTRACT: This paper is concerned with Cavaillès’ account of “intuition” in mathematics. Cavaillès starts from 

Kant’s theory of constructions in intuition and then relies on various remarks by Hilbert to apply it to 
modern mathematics. In this context, “intuition” includes the drawing of geometrical figures, the use of al-
gebraic or logical signs and the generation of numbers as, for example, described by Brouwer. Cavaillès ar-
gues that mathematical practice can indeed be described as “constructions in intuition” but that these con-
structions are not imbedded in the space and in the time of our Sensibility, as Kant believed: They take 
place in other structures which are engendered in the history of mathematics. This leads Cavaillès to a criti-
cal discussion of both Hilbert’s and Brouwer’s foundational programs. 
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This paper is concerned with Cavaillès’ account of “intuition” in mathematics. The 
term “intuition”, as used by Cavaillès in this context, is misleading. In particular, what 
Cavaillès calls intuition includes the mental act of counting, the use of signs (algebraic 
or logical signs) and the drawing of geometrical figures. In geometry, that places on 
the same level the drawing of a figure and the proof of a theorem in so far as it uses 
signs, or symbols (I will take the two words as equivalent). The expression, the writing 
of a proof is as much part of intuition as the geometrical figure. This apparent 
polysemy of the term “intuition” comes from the fact that Cavaillès first relies on 
Kant’s theory of “construction in intuition”, which brings together arithmetical, geo-
metrical and algebraic constructions. Cavaillès then uses Hilbert’s analysis to apply 
Kant’s theory to modern mathematics. 
 My aim, first, is to explain Cavaillès’ position, which, I believe, is itself of interest. I 
will not, however, follow step by step the various texts in Cavaillès’ work that are con-
cerned with this question of intuition.2 I will rather concentrate on a few points and 
try to reconstruct precisely how Cavaillès arrives at his conclusions. I will not attempt 
to defend Cavaillès’ thesis. I simply want to make it clear and, perhaps, useful for a 

                                                      
1 This paper has been revised on several points after the useful report of an anymous referee. 
2 I have done this elsewhere (Cassou-Noguès, 2001). I will mainly refer to five texts: on Kant, Cavaillès 

(1938), in Cavaillès (1994), p. 34-40; on Hilbert, idem, p. 99-103; on Cavaillès’ own conception of in-
tuition, idem, p. 179-191; on Kant, “Transfini et continu”, in Cavaillès (1994), p. 469-472; on mathe-
matical symbols, Cavaillès (1947), in Cavaillès (1994), p. 520-521. 
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contemporary philosopher of mathematics. Anyone who has read some of Cavaillès’ 
texts will recognize that this is in itself a demanding piece of work.  
 With this case study, I also want to illustrate the general orientation of Cavaillès’ 
writings and of a good part of epistemology “à la française”. By this unfortunate ex-
pression, I understand a philosophical tradition going from Brunschvicg to Bachelard 
Cavaillès, Gonseth, Lautman, more recently, to Desanti and, to some extent, Althusser 
and Foucault.3 Brunschvicg once said that history (and he meant history of science, 
mathematics and physics) is the philosopher’s laboratory. History of science then be-
comes a field where one can test, discuss and rectify the concepts and the problems of 
traditional philosophy. Brunschvicg’s sally sums up the perspective of the authors 
mentioned above. They carefully study various periods of the history of sciences while 
never taking their eye off of other matters. What they seek to understand, by studying 
the history of mathematics, or physics, is “Reason”, or “Rationality”, how the human 
mind works, what knowledge is and what relationship the mind has to its objects and 
to the external world. The analysis of mathematical theories is just a step towards 
more general questions. In that sense, history of science is not so much the object of 
study as a medium for philosophy, its laboratory precisely.  
 Born in 1903, Jean Cavaillès died at the beginning of 1944. His work bears on the 
history and philosophy of mathematics from the early nineteenth century to 1938. The 
last result Cavaillès discusses is Gödel’s proof of relative consistency for the contin-
uum hypothesis and the axiom of choice. His books include Remarques sur la formation 
de la théorie abstraite des ensembles (1938), Méthode axiomatique et formalisme (1938) and Sur la 
logique et la théorie de la science, a manuscript written in 1943 and published posthumously 
in 1947, investigating the philosophy of logic, from Kant to Carnap and Husserl. At 
the time of their publication, his books gained a wide audience, as shown by reviews 
signed by E. Beth, H. Cartan, A. Church, A. Fraenkel. However, in part because of the 
difficulty of his language, in part because of the widening gap between analytical and 
continental philosophy, his work, outside France, gradually fell into oblivion. Contrary 
to those of Bachelard, his books have not been translated into English.4
 Cavaillès’ concern with intuition in mathematics starts with his first books (in 
1938) but it is still there in later papers such as ‘Transfini et continu’ (from 1941). 
Cavaillès’ account stems from a comparison between Kant and Hilbert. I will follow 
this path. I start by presenting Kant’s position (in 1.) to make clear the background of 
Cavaillès’ analysis. I then recall some of Hilbert’s remarks on mathematical practice (in 
2.), which Cavaillès uses to apply Kant’s theory of intuition to modern mathematics. I 
discuss three points in particular: in 3. Cavaillès’ interpretation of the status of logic in 
contemporary mathematics; in 4. and 5., the notion of “Combinatorial space” and the 
critical examination by Cavaillès of Hilbert’s account of the role of symbols in 

                                                      
3 On the relation of Althusser and Desanti to the epistemology “à la française”, see Cassou-Noguès, 

forthcoming. On Foucault and Cavaillès, see D. Hyder (2003). 
4 There is very little secondary literature in English. In French, two books really concentrate on Cavaillès’ 

philosophy: Sinaceur (1994) and Cassou-Noguès (2001). 
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mathematics; in 7. the relation of intuition to time, with Cavaillès’ argument against 
Brouwer.  

1. The Critique of pure reason begins with the problem of synthetic a priori judgements, 
of which mathematical propositions are the paradigm (Kant 1781-1787, introduction, 
IV). Kant, in the context of Aristotelian logic, considers all propositions to be of the 
form subject-predicate. A judgement is said to be analytic when the predicate is con-
tained in the concept of the subject: « a tall man is tall ». A judgement is said to be syn-
thetic when the predicate is not contained in the concept of the subject. This is the 
case of mathematical judgements: « 5 + 7 = 12 », « the sum of the angles of a triangle 
is equal to a flat angle ». A triangle is a closed figure, with three angles and three sides. 
If we analyse the concept of a triangle, the concept of the angles of a triangle, can we 
deduce, purely from these concepts, that the sum of the angles is π? Kant holds we 
cannot. The judgement is therefore synthetic. Mathematical judgements are synthetic 
though they are independent of empirical experience and, in this sense, a priori. The 
task is to explain how such judgements, synthetic and a priori, are possible.  
 Since the predicate is not contained in the concept of the subject, there must exist 
some external basis for the predication. This basis cannot be logic. Logic will only 
produce analytic judgements. « Men are mortal; Socrates is a man; therefore Socrates 
is mortal ». The predicate, mortal, is contained in the concept of the subject, Socrates, 
if, indeed, Socrates is a man. According to Kant, logic (that is Aristotelian logic) is 
only a means to produce analytic judgements. Synthetic judgements do not rest on this 
basis. Synthetic judgements rest on a construction in intuition. We draw a triangle, we 
draw a straight line passing through one summit and parallel to the opposite side, then 
we show that the sum of the three angles coincides with a flat angle. In the Euclidean 
tradition, all geometrical propositions are based on such drawings. The concepts they 
involve must be illustrated by figures or « constructed » in space, and it is on the basis 
of this construction that one can link the predicate to the concept. We cannot under-
stand, merely by analysing the concepts involved, why the sum of the angles of a tri-
angle is equal to a flat angle. We can only see it by means of a drawing. Obviously, a 
difficulty here is that the figure we draw is singular, whereas the proposition we state 
is universal and should apply to all figures. Kant is aware of this point (Kant 1781-
1787, Discipline of pure reason, I). 
 Arithmetic also relies on constructions in intuition but those are independent of 
space. To calculate the sum « 5 + 7 », we place five things or, say, five apples, beside 
seven other apples, and then we count and find there are twelve apples. The particular 
nature of the things that we count does not matter in this process. Indeed, we do not 
even need to consider things existing in space. We could count concepts. The process 
only requires that the objects be distinguishable from each other and counted, one by 
one, in a succession. What does matter is that the act of counting takes place in time. 
Arithmetic depends only on our inner temporality, on the temporality of our mental 
life. In this sense, arithmetic is based on a construction in time.  
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 Eventually, mathematics, as far as it rests on constructions in intuition, calls upon 
three faculties of the mind. First, our Sensibility gives us a multiplicity in space and in 
time. Second, we must form a representation of this multiplicity. We must go through 
the elements and consider the construction as a whole. This is what Kant call the syn-
thesis of intuition. It is the work of Imagination. Third, we apply concepts to these 
representations and establish judgments. At this point, we recognize the figures as a 
triangle, a straight line, and we state the equality of the sum of the angles with a flat 
angle. Here, we use our Understanding.  
 According to Kant, mathematical propositions suppose a kind of experiment, a 
« construction », in space and in time. Space is the form of our intuition of the exter-
nal world. All external objects are apprehended in space. Time is the form of our in-
tuition of our mental life. All internal events are organized inside time. Thus, space 
and time precede experience. They constitute the setting, internal and external, in 
which concrete experience takes place. This is why mathematical propositions are 
valid a priori, independently of concrete experience.  
 Kant also mentions an “algebraic construction”, which is carried out in space, just 
as geometrical constructions, but uses symbols instead of figures (idem). However, this 
passage, in the Critique of pure reason, is rather allusive. Cavaillès will develop this idea 
using Hilbert’s insights on mathematical practice.  

2. Cavaillès will rely on various remarks from Hilbert’s papers to rectify the Kantian 
conception and apply it to modern mathematics. The underlying idea is that the chains 
of formulas by which formalization represents mathematical proofs, really are con-
structions in intuition and, therefore, can be compared with geometrical figures in 
Kant’s theory. That may seem far-fetched. However, Hilbert does make explicit refer-
ences to Kant: 

“[…] we find ourselves in agreement with the philosophers, especially with Kant. Kant already 
taught —and indeed it is part and parcel of his doctrine— that mathematics has at its disposal a 
content secured independently of all logic and hence can never be provided with a foundation by 
means of logic alone; that is why the efforts of Frege and Dedekind were bound to fail. Rather as 
a condition for the use of logical inferences and the performance of logical operations, something 
must be given to our faculty of representation, certain extra logical concrete objects that are intui-
tively present as immediate experience prior to all thought.” (Hilbert 1925, p. 376)5

 The lines that follow this paragraph from “On the Infinite” make it clear that the 
“concrete objects”, to which Hilbert alludes, are mathematical signs. In fact, Hilbert 
seems to refer indiscriminately to the objects, such as the “dash”, of finitary mathe-
matics, and to the symbols used in transfinite mathematics, which also make the ob-
jects of metamathematics.  
 The question is to understand the reference to Kant in this context. Kant intro-
duces the notion of construction in intuition in order to explain why mathematics 
goes beyond logic, which, at this time, is Aristotelian logic. Hilbert argues that one 
cannot give a proper foundation to mathematics by reducing it to logic, as Frege, Rus-
                                                      
5 See also Hilbert 1927, p. 464-465; 1931, p. 1150. 



Signs, figures and time: Cavaillès on “intuition” in mathematics 93 

sell or, in a way, Dedekind tried to do. Mathematics is irreducible to logic and that, 
says Hilbert, is because, as Kant has seen, mathematical inferences depend on an intui-
tion: concrete objects are being given to us, on which mathematical inferences rely. It 
is true that “logic” is no longer Aristotelian logic. The analogy, which Hilbert hopes to 
establish between his problem and Kant’s, could be far fetched. Nevertheless, Hilbert 
seems to consider that signs, seen as “concrete objects”, have the same role as the 
geometrical “figures” of Kant’s constructions. Let us, following Cavaillès, take Hilbert 
up to his words and try to see in what sense the symbolic manipulations, which repre-
sent mathematical proofs in formal systems, can be considered as constructions in in-
tuition. 
 First, there is an ambiguity in the relation of formalization to mathematical prac-
tice. It sometimes seems as though formal systems were artificial objects, created for 
the purpose of foundation, and without relation to the mathematician’s practice. Hil-
bert himself speaks of “replacing” contentual inferences by manipulations of 
signs, “converting” the propositions that constitute mathematics into formulas, so as 
to obtain “in place of” the contentual mathematics an inventory of formulas (Hilbert 
1925, p. 381; 1927, p. 465; 1925, p. 381). Here, this inventory of formulas seems to 
remain foreign to genuine mathematics, and there is no reason to compare mathe-
matical practice with a manipulation of signs. However, the case is more complicated.  
 The task of formalization is to make explicit the rules and the axioms that govern 
mathematical practice but are left implicit in mathematical practice. By doing so, for-
malization operates a rectification of mathematical practice. It makes visible the dif-
ferent steps of a proof, which would be overlooked in practice, and their conformity 
to the rules of deduction. Indeed,  

“this formula game enables us to express the entire thought content of the science of mathemat-
ics […], in such a way that, at the same time, the interconnections between the individual propo-
sitions and facts become clear.” (Hilbert 1927, p. 475)  

The correct expression of mathematical thoughts is to be found in the “proof figures” 
of formal systems. These “figures” reflect the genuine thoughts that constitute 
mathematics. Formulas are the “images” [Abbilder] of thoughts (Hilbert 1923, p. 1138; 
1927, p. 465). Thus, to formalize a theory is to make explicit the different thoughts 
that constitute a proof, their relationships and the rules they obey. Formalization can 
be considered as an inquiry into the functioning of the mathematical mind: 

“The fundamental idea of my proof theory is none other than to describe the activity of our un-
derstanding, to make a protocol of the rules according to which our thinking actually proceeds. 
Thinking, it so happens, parallels speaking and writing: we form statements and place them one 
behind the other.” (Hilbert 1927, p. 475)6

 I will come back to this “parallelism” between thoughts and formulas. Now the 
point is that, if mathematical practice is merely rectified by formalization, it must al-
ready include a formula game (to use Hilbert’s words), a manipulation of signs, which 

                                                      
6 See also Hilbert 1931, p. 1156, and Hilbert 1922, p. 1120: “To proceed axiomatically means in this sense 

nothing else than to think with consciousness”.  
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formalisation systematises. Indeed, as early as 1900, Hilbert insists on the role of signs 
in mathematical work. In his famous lecture on mathematical problems, he stresses 
the importance of signs in various branches of mathematics, algebra, analysis, and ge-
ometry. For example, given an equation to solve, the mathematician will “experiment” 
on the formulas, transform the initial formula and find new expressions that will indi-
cate a solution. It is through this game with formulas that the mathematician can go 
forward. The formula game, in arithmetic or in algebra, has the same function as the 
drawing of figures in geometry: it makes progress possible. 

“[…] we apply, especially in first attacking a problem, a rapid, unconscious, not absolutely sure 
combination, trusting to a certain arithmetical feeling for the behaviour of the arithmetical sym-
bols, which we could dispense with as little in arithmetic as with the geometrical imagination in 
geometry” (Hilbert 1900, p. 1101) 

There is then an analogy between arithmetical formulas and geometrical figures: 
« Die arithmetischen Zeichen sind geschriebene Figuren, und die geometrischen Figuren sind gezeichnete Formeln » 

“The arithmetical signs are written figures, and the geometrical figures are designed formulas”7

 We have two texts from Hilbert, “On the infinite” (1926) and “Mathematical 
Problems” (1900), widely separated in time but going in the same direction. The first 
text refers to Kant’s notion of construction in intuition. The second compares the 
manipulations of signs, in various branches of mathematics, to the drawing of figures 
in geometry. They may seem to entitle Cavaillès to consider the formula game, this 
manipulation of signs that underlies mathematical practice, as a construction in intui-
tion in Kant’s sense. However this comparison leads to several problems.  

3. In his lecture of 1900, Hilbert argues that arithmetic, or algebra, depends on a 
work on formulas just as geometry depends on the drawing of figures. If we are look-
ing for the proof of a theorem or investigating some abstract structures, we will write 
short notes, try to imagine new expressions, to modify the formulas we already have. 
Although they might be at the margins of our attention, we will be working with, and 
on, signs. However, it seems there is a difference between the role of signs, in mathe-
matics generally, and the role of figures in geometry. A sign denotes an object, « 5 » 
denotes the number 5, and it is this object, or its domain, that the mathematician in-
vestigates. On the other hand, in geometry, the figure seems to be, or is considered by 
Kant as, the object of geometry. It is because we see a triangle on our drawing and 
make the sum of its angles coincide with a flat angle that we can prove our theorem. 
The construction in intuition, as described by Kant, concerns the objects of geometry, 
whereas the formula game, as it is discussed by Hilbert, concerns the expressions of 
mathematics, not its objects. How can the two be compared? This point will require a 
lengthy explanation. So I will start with another difficulty: the status of logic.  
 Kant, referring to Aristotelian logic, distinguishes between the analytic judgements 
of logic and the synthetic judgements of mathematics. Mathematical judgments rest 
on a construction in intuition. On the other hand, logical judgements rely solely on 
                                                      
7 Hilbert (1900), German text p. 295 and English translation modified p. 1100. 
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our faculty of thinking. Thus, conversely, logic becomes a means to isolate a faculty of 
thinking, an Understanding, independent of intuition. Moreover, Kant takes the dif-
ferent forms of syllogism to denote the different categories, that is the functions, of 
our Understanding. Now, as Kant, Hilbert refuses to reduce mathematics to logic. 
But, contrary to Kant, he does not separate mathematics and logic. Mathematics and 
logic are bound together in formal systems, which comprise logical and mathematical 
axioms, logical and mathematical rules of inference. Hilbert makes this point explicit 
in his 1904 paper, which gives the first outline of the formalist program (Hilbert 1904, 
p. 100-101). Obviously, Hilbert argues, mathematics presupposes logic, since it needs 
logical rules for inference, but, as Poincaré has shown, logic also presupposes mathe-
matics, for logical rules cannot be stated without appealing to mathematical notions, 
such as that of number. Therefore, mathematics and logic are to be redefined and re-
built together through formalization. Logical inferences will then depend on a ma-
nipulation of signs, on a construction in intuition, in the same manner as mathematical 
inferences.8 In a word, logic rests on intuition. Now, if one compares Kant’s position 
to Hilbert’s or, so to speak, translates Hilbert’s position into the Kantian system, it 
appears that Hilbert loses the means to isolate an Understanding, a faculty of thinking 
independent of sensibility. Can we maintain such a faculty of the mind when we have 
no way to isolate its products? Can we assume that thought is distinct from intuition if 
we cannot distinguish the work of thought? 
 That is the first point of Cavaillès’ critical reading of Kant and Hilbert.9 Since Hil-
bert makes logic depend on a construction in intuition, he loses what was for Kant an 
“Ariadne’s thread” towards our Understanding. The position of an Understanding in-
dependent of Sensibility, the position of thoughts distinct from formulas cannot be 
maintained. It is to be noted that Cavaillès does not refer to a reflexive experience. Do 
we “feel” that we can think without using formulas? This is not the question. The 
question is: can we isolate the pure product of a faculty of thinking? According to 
Cavaillès, Hilbert’s answer to this question is negative. Logic rests on a manipulation 
of signs and, in that sense, depends on sensibility. It can no longer be seen as the 
product of our Understanding. And, therefore, we have no reason to maintain the po-
sition of an Understanding distinct of Sensibility. As we saw earlier, Hilbert himself al-
ludes to a parallelism between formulas, on the paper, and thoughts, in the mind. He 
seems therefore to admit that there can be no thought without a corresponding for-
mula, no thought that is not expressed in a formula. But this is not enough. We have 
no reason to maintain that there are thoughts in the mind since, by themselves, they 
produce nothing. Since we cannot distinguish the pure work of our thinking, we have 
no reason to assume that there are pure thoughts, distinct from their expression in 

                                                      
8 That is also apparent in the text quoted above from “On the infinite” where Hilbert seems to relate 

“logical inferences” to a construction in intuition.  
9 Cavaillès (1938a), in Cavaillès (1994), p. 100-101. 
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formulas. As Cavaillès put it in a short paper given at the “Congrès Descartes” in 
Paris, in 1937, thought is “immanent” to the formula.10  
 Of course, it will be a problem for Cavaillès to describe precisely the relation be-
tween thoughts and their expression in symbols. In fact, this new problem replaces 
what was in the Kantian system the problem of the relation between Understanding 
and Sensibility (a problem which was solved by the theory of “Imagination” and 
“Schematism”): “The difference with Kant is that there are no purely logical thoughts. 
Logic is only an aspect of all thinking really fecund, an aspect that cannot be isolated 
for itself. In this context, the problem of the junction between abstract thoughts and 
intuition is no longer posed, at least no longer at the same place.”11

 In fact, one could argue that it is that problem (to describe the relation between 
formulas and thoughts, intuition and concepts) that, in his last paper, from 1941, 
Cavaillès sees as the “fundamental problem of mathematical philosophy.”12 The diffi-
culty is that, although thinking is not an act in our mind that could be set apart from 
its expression, one cannot simply identify thoughts and their expression. Thoughts are 
not formulas, but thoughts are not something else, existing in the mind independently 
of their expression or that we could separate from their expression. Thinking is not 
writing but thinking is not an act distinct from writing. Cavaillès leaves thinking and 
writing, thoughts and formulas, Understanding and Sensibility in this ambiguous rela-
tionship: not the same thing but not something separable.13 The problem then remains 
open and Cavaillès does not seem to have a solution. One must remember that his 
work was stopped by his premature death (at the age of 41). Nevertheless, by opening 
this problem, Cavaillès anticipates on analyses that one finds later on in Merleau-
Ponty or in the early Derrida. 

4. Let us come back to the first difficulty mentioned above: the “experiments” on 
formulas, as seen by Hilbert, concern only symbols whereas the constructions in intui-
tion, according to Kant, concern the objects of geometry. Here, what is constructed in 
intuition is the objects referred to. So how can Hilbert maintain an analogy between 
the use of formulas and the construction of figures? Well, Hilbert denies that the fig-
ures we draw are the objects of geometry: according to him, they are symbols as any 
other mathematical symbol.  
 Signs, in mathematics, in algebra or in logic, are used according to rules. These 
rules indicate how to write a formula (rules of formation) and how to deduce formulas 
from one another (rules of transformation). In the propositional calculus, the rules of 
                                                      
10 “Réflexions sur le fondement des mathématiques” in Cavaillès (1994), p. 579. 
11 Cavaillès (1938) in (1994), p. 100: “La différence avec Kant est qu’il n’y a plus de pensée logique pure, 

la logique n’est qu’un constituant, non isolable de toute pensée fonctionnant véritablement. Dès lors, 
le problème de la jonction entre pensée abstraite et intuition ne se pose plus, du moins plus au même 
endroit.” 

12 “Transfini et continu” in Cavaillès (1994), p. 273. See also Cassou-Noguès (2001), p. 183 and p. 218. 
13 In that sense: “Symbols are not there for something else that they would simply represent”. See 

Cavaillès (1938) in Cavaillès (1994), p. 181 and p. 520. 
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formation tell us that we can start with a letter A, write next to it, on the same line, →, 
then another letter B, and so on. The rules of transformation tell us that if we have 
written two formulas of the form А and А → В, we can write В. In most branches of 
mathematics, say in algebra, the rules are left implicit. Actually, to make explicit the 
rules which govern the use of signs amounts to formalizing the theory. But, there is 
no need to make these rules explicit in order to apply them. Indeed, the use of formu-
las, which underlies mathematical practice, depends on the application of rules. When 
we work on a formula, develop an algebraic expression, we do not consider all possi-
bilities opened in the plane of the piece of paper we write on. We could then write 
anything, any sign in any direction. But we know somehow that signs should be writ-
ten in line (А → В, rather than А →В) and in a certain order (А → В, rather than 
AB →). These rules delineate a realm of possibilities, for writing or for transforming a 
formula, and it is in this realm of possibilities that our “construction” takes place. Our 
manipulations on signs are determined by rules of use.  
 On the other hand, the geometrical constructions, as described by Kant, are de-
termined by the structure of space. We draw various figures and investigate their rela-
tionships. But these, according to Kant, solely depend on the structure of the space of 
our intuition. That is precisely the point Hilbert denies. Geometrical figures are gov-
erned by rules just as algebraic symbols. And, if we could enunciate these rules, we 
would turn geometrical constructions into a proper theory, in which we could prove 
theorems, as in any other theory: 

“The geometrical figures are signs. […] The use of geometrical signs as a means of strict proof 
presupposes the exact knowledge and complete mastery of the axioms which underlie those fig-
ures. […] Just as in adding two numbers, one must place the digits under each other in the right 
order, so that only the rules of calculation, i. e., the axioms of arithmetic, determine the correct 
use of the digits, so the use of geometrical signs is determined by the axioms of geometrical con-
cepts and their combinations.” (Hilbert 1900, p. 1100-1101) 

 Hilbert does not investigate the practice of geometry. It is not clear, in Hilbert’s 
text, why geometrical figures require rules of use, as do formulas in algebra. But I 
think one could argue for this point along the following lines. After all, a geometrical 
figure is made of marks, which we consider as points, of long strokes, which we con-
sider as straight lines, of curves, which we consider as circles. A child could make 
many such lines go through two such points. But this drawing would not be a geomet-
rical figure proper, at least in Euclidean geometry. A child could make indefinite draw-
ings with marks, lines and curves. But these drawings only become geometrical figures 
when they respect certain rules: only one line can go through two different points, and 
so on. These rules, which govern the use of marks, lines and curves, in geometrical 
constructions, would correspond to the rules of formation in other branches of 
mathematics. To make these rules explicit would be to formalize geometrical con-
structions. One could then prove a theorem by constructing a figure. There would be 
no need to give another proof, using the axioms of geometry as they are expressed in 
logical formalisms. A formalized proof is only a figure that respects certain rules and 
so would be the geometrical construction. 
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 Logical, algebraic formulas and geometrical figures are governed by rules of use. In 
a logical calculus, when we have written А →, we must add another formula, on the 
same line А → В. A child could write А → ∀ . But the mathematician cannot. The 
rules of use exclude certain possibilities that a child could follow. Our “experiments” 
on formulas are determined by the rules of use and, in comparison to what a child 
could do, restricted. That means that these experiments on formulas are not carried 
out in the plane of the paper, or in the space of our sensibility, but in a specialized 
space, which Cavaillès calls a “combinatorial space.”14 What is space? According to 
Kant, space is the structure of phenomena given in external Sensibility. It represents 
all the relationships that external phenomena may have. Now, whereas on the paper 
on which a child draws, any two signs can coexist at any two places, in a logical calcu-
lus, symbols can only coexist on parallel lines and in a certain order. The signs, on the 
mathematician’s paper, cannot hold all the relationships they have on the child’s pa-
per. Therefore, strictly speaking, the space in which the child draws and the space in 
which the mathematician writes are different. Mathematical signs belong to an artifi-
cial structure, with restricted relationships.  
 In the “experiments” on formulas, what matters is not all the relationships that 
signs could have, as in the drawing of a child, but the restricted possibilities given by 
the rules of use. What that means is exactly that the experiments on formulas belong 
to a certain “combinatorial space”. The same goes for geometrical figures (which are 
also made of signs governed by rules of use). That is the second point of Cavaillès 
critical reading of Kant. Mathematical constructions, geometrical figures or logical 
formulas, take place in “combinatorial spaces”, “abstract spaces”, structures that are 
not given in our Sensibility but are constituted in the history of mathematics (Cavaillès 
1994, p. 101). More important than the reference to such ‘abstract’ structures is the 
idea of a historical genesis of the ‘spaces’, the contexts in which mathematicians use 
their symbols or draw their figures.15 A problem which Cavaillès will try to tackle in 
the last part of his thesis will be to describe how the combinatorial spaces of the his-
tory of mathematics are engendered from one another.  

5.  However, Cavaillès is also led to a critical examination of Hilbert’s remarks. As we 
saw earlier, in the article “On the Infinite”, Hilbert himself considers mathematical 
signs as something immediately given: “concrete objects that are intuitively present as 
immediate experience prior to all thought”. Now Cavaillès argues that the space to 
which the symbols employed by the mathematician belong, is not the space of our 
sensibility but an abstract structure that is constituted in the history of mathematics. 
That might be enough to show that mathematical signs are not immediate data. But 
there is yet another way to get to this point. Cavaillès seems to refer to a remark by 
Hilbert in the lecture of 1900, “The Problems of Mathematics”. Hilbert notes that the 
mathematical symbols should be chosen so as to remind us of their use.  
                                                      
14 Cavaillès (1938a), in Cavaillès (1994), p. 101. 
15 There is also a discussion of Cavaillès’ notion of combinatorial space in Granger (1960), p. 51.  



Signs, figures and time: Cavaillès on “intuition” in mathematics 99 

“To new concepts correspond, necessarily, new signs. These we choose in such a way that they 
remind us of the phenomena which were the occasion for the formation of the new concepts. So 
the geometrical figures are signs or mnemonic symbols of space intuition and are used as such by 
all mathematicians.” (Hilbert 1900, p. 1100)16

 Mathematical symbols (of which geometrical figures are only an example) are re-
lated to their use, or their meaning. Their very shape, their design reflects their mean-
ing. For example, why do we count using a vertical dash? (like /// and not ---) Surely, 
because the vertical dash is more visible. It is distinct from its neighbours. It, so to 
speak, stops the hand that counts. Mathematical signs, Cavaillès believes, all include 
such a reference to their use.17 They are not arbitrary objects. They were chosen for a 
certain purpose and this purpose shows in their very shape, in the way they are de-
signed. Mathematical signs are historical artefacts. They can be seen as “mixtures of 
sense and intellect.”18 They are not purely intellectual objects but they cannot be con-
sidered as purely sense-objects. For it is a historical process that has designed them as 
they now are. To consider that mathematical signs are given “prior to all thought”, as 
Hilbert does, is to shortcut this historical process. Hilbert, according to Cavaillès, is 
wrong in his famous “At the beginning, there is the sign”. The sign, in mathematics, is 
not at the beginning but in the middle, a part and a product, of a historical develop-
ment: “All descriptions of mathematics as a manipulation of objects in space are con-
fronted to this fundamental character of the mathematical symbol: the numeral, the 
geometrical figure or simply the dash only intervene as part of an activity which is al-
ready mathematics. […] What [formalism] takes as an absolute beginning is only the 
surreptitious evocation of former acts and mathematical processes.”19  
 This point is important for the formalist program. Indeed, Hilbert thought that 
transfinite mathematics could be formalized and reduced to a “stock of formulas” ar-
ranged according to explicit rules. The task was then to prove, with finitary inferences, 
that these formal systems are free of contradiction. In other words, to prove that one 
will never find in the stock of formulas that represent classical mathematics a line such 
as 0 = 1. However, if mathematical signs are historical artefacts, this stock of formulas 
itself presupposes the history of mathematics. Even if it were possible to prove finitar-
ily the consistency of mathematics, it is not clear how adequate this foundation would 
be. For it would already presuppose that mathematics is an activity that somehow 
                                                      
16 It is to be noted that again Hilbert considers geometrical figures as mathematical signs, alike any other 

symbol and even exemplary of what mathematical symbols are.  
17 “Dans la configuration du signe, est inscrit le rappel à ses règles d’emploi”, Cavaillès (1938a) in 

Cavaillès (1994), p. 102. 
18 Cavaillès (1938a) in Cavaillès (1994), p. 102. 
19 “Toutes les comparaisons des mathématiques avec une manipulation spatiale se heurtent à ce caractère 

fondamental du symbole mathématique, chiffre, figure, même bâton, de n’être là qu’en tant que partie 
intégrante ou base d’application d’une activité déjà mathématique […]. Ce que [le formalisme] prend 
pour commencement absolu n’est qu’évocation subreptice d’actes et d’enchaînements antérieurs” 
(Cavaillès (1947), in Cavaillès (1994), p. 521). Also relevant is Cavaillès (1938) in Cavaillès (1994), p. 
102: Le signe est “le représentant d’autres opérations concrètes, celles-là simplement supposées, mais 
dont le résultat importe pour l’usage actuel.”  
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works, develops historically so as to produce this stock of formulas. The formalist 
foundation presupposes an underlying activity, a historical process, and it is not clear 
that, by proving the consistency of formal systems, the formalist program recaptures 
this historical process or makes its foundation of mathematics independent from this 
historical process. The problem is not simply to show that mathematical theories are 
free of contradiction but to explain how a certain activity could develop into a histori-
cal process.  

6. Up to this point, we have directed our attention to geometrical figures and logical 
formulas, which seemed to be constructed in space. But, earlier, we saw that Kant re-
fers arithmetical constructions to time. The question now is to understand whether 
Cavaillès’ argument on geometrical constructions can apply mutatis mutandis to arith-
metical constructions. If there are constructions in time as there are constructions in 
space, what is the “time” of these constructions? Is it constituted as the space struc-
ture, the “combinatorial space” of geometrical constructions? 
 Kant argues that arithmetical judgements are synthetic and must be based on a 
construction in intuition. We know that « 5 + 7 = 12 », because we count that five ap-
ples, (apples or dots or anything) beside seven apples make twelve apples. The result is 
independent of the nature of the things counted but rests on the succession of the 
acts of noticing something and adding one. In that sense, arithmetic is independent of 
our intuition of space and depends only on our inner temporality. 
 In an early paper, “Intuitionism and formalism” (Brouwer 1912), Brouwer refers to 
Kant’s theory of arithmetic. According to Brouwer, non Euclidean geometries refute 
the Kantian thesis that space, Euclidean Space, is the a priori form of external intui-
tion. We can prove, in the same way, propositions that refer to objects in the Euclid-
ean space and propositions that refer to objects in a non Euclidean Space. Therefore, 
if these proofs are based on a construction in intuition, the form of this intuition can-
not be the Euclidean space. The first thesis, that space is an a priori structure, must be 
abandoned. However, Brouwer takes up the second thesis, that time is the a priori 
form of internal intuition, i. e. the fixed structure of our mental life. Brouwer also 
agrees with Kant that arithmetic depends on the intuition of time. In his account of 
the origin of numbers, Brouwer relates arithmetic to a process taking place in the time 
of “Consciousness”. In his later papers, Brouwer develops a philosophy of his own 
and drops the reference to Kant. Nevertheless, he still maintains that time is an a pri-
ori form of mental life and that arithmetic relies on processes, “constructions” inside 
time.  
 The new rules that intuitionism sets for arithmetical reasoning then depend on two 
assumptions: first, that all propositions must be based on actual constructions; second, 
that these constructions are carried out in the time structure of our mental life. It is 
clear that this second assumption is an essential ingredient for the intuitionist rejection 
of classical mathematics (e.g. Cantorian set theory). The admissible constructions, for 
intuitionism, are determined by this criterion: they must be realizable in time.  
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 When discussing Hilbert’s program, Cavaillès argued that the space in which we 
make our geometrical or algebraic constructions is not an a priori of our sensibility but 
a structure constituted through the history of mathematics. Can one make a similar 
statement about time? In other words, can one maintain that the time in which arith-
metical constructions are carried out is not the time of our sensibility but another 
structure? That could imply that, in principle, intuitionism is wrong in its rejection of 
classical mathematics.  
 Cavaillès seems to make such a point in his last paper (from 1941). The point is di-
rected against Kant but it applies to Brouwer as well.  

“Rejection of infinite numbers: how could one construct in time what requires an infinity of 
steps? But that is precisely dissociating these steps from their sole function of elements and seeing 
them as events.” 

“The time of [mathematical] constructions … should evade all representation and, therefore, all 
conditions for the accomplishment of the [act]. But would it still be a time? and could one still 
talk of accomplishment?”20  

 To me, the conclusion of this paragraph seems to be that the structure in which 
mathematical constructions are carried out should not be identified with the time of 
our sensibility. This identification would be a misinterpretation of mathematical proc-
esses. Mathematical processes can be described as a succession of steps. But these 
steps are simply elements in a structure of some kind. To identify this structure with 
time as we know it is to make them natural events. And, inevitably, it leads to the re-
jection of “infinite numbers,”21 since these cannot be constructed inside time. 
Cavaillès seems then to indicate that mathematical processes may have their own 
“time” structure, if one can still (without ambiguity) consider this structure as a 
“time”. 
 It is difficult to see what one can make of Cavaillès’ argument. Cavaillès made the 
same point against Kant, and Hilbert, on the question of space. Mathematical con-
structions do not take place in the forms of our sensibility but in structures, which 
must then be generated by the development of mathematics itself.22 On the question 
of time, that implies that intuitionism is wrong in its rejection of classical mathematics. 
Intuitionism is wrong to exclude infinite constructions on the ground that they are not 
realizable in time.23 However, Cavaillès cannot mean that there are mathematical 

                                                      
20 “Transfini et continu”, in Cavaillès (1994), p. 470: “D’où l’exclusion du nombre infini: comment con-

struire dans le temps ce qui suppose une infinité d’étapes ? mais c’est justement dissocier ces étapes 
de leur unique fonction d’éléments pour en faire des événements” (Cavaillès’ emphasis). Also: “Le temps 
de la construction […] devrait échapper à toute représentation et par suite à toute condition dans 
l’accomplissement de sa synthèse. Mais serait-il encore un temps ? et pourrait-on encore parler 
d’accomplissement.” 

21 Of course, in reality, intuitionist mathematics incorporates a segment of the class II of ordinals. 
22 See also Cavaillès (1938a), in Cavaillès (1994), p. 35, and Cassou-Noguès (2001), p. 69 and sq.  
23 See also Cavaillès (1938a), in Cavaillès (1994), p. 189: “C’est un reste d’attachement à l’a priori logique 

qui oblige les intuitionistes à leurs interdiction”. Here, on the problème of time, the intuitionist rejec-
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“times” in which we can actually carry out arithmetical constructions with an infinite 
number of steps, such as the successive generating of the ordinal numbers of the sec-
ond class. Obviously, we cannot carry out such constructions and we do think in time. 
It is also to be noted that the “combinatorial space” in which take place the geometri-
cal constructions and the formula game, to use Hilbert’s words, was obtained from the 
space of Sensibility by a sort of restriction. We said that the symbols, in the hands of 
the mathematician, could not take all the relations that they would have in the drawing 
of the child. And, from that, we concluded that mathematical symbols belonged in 
fact to another structure. However, in the case of time, the structure, in which 
mathematical constructions must take place, should rather be an extension of the time 
of our sensibility, if it is to make possible the representation of infinite numbers.  
 The only way that I find to make sense of Cavaillès argument about time is to 
compare it to a remark of Gödel. As is well known, when discussing the axioms of set 
theory, Gödel introduces the following criteria: a set exists when the multiplicity of its 
element can be overviewed by an idealized mind. By this criterion, Gödel intends to 
justify the usual axioms of set theory plus some additional axioms of the infinite 
(about large cardinals). The criterion is not understood as restricting drastically the 
universe of sets. The “idealized mind”, to which it refers, is infinite. However, it is dif-
ficult to understand how this idealized mind could overview a multiplicity of elements 
and put them in order (as would be necessary to obtain an ordinal arithmetic) in a 
timeless process. But, on the other hand, this process cannot take place in the time 
that we know, for then it could not overview infinite multiplicities. In this context, 
one could use Cavaillès’ suggestion that, in principle, mathematical processes may use 
other structures, extending time as we know it.  
 Cavaillès and Gödel do not share the same philosophical background. Cavaillès is 
rather hostile to Platonism. Nevertheless, they seem to agree on the principle that 
mathematical possibilities should not be judged nor restricted with reference to a hu-
man mind allegedly given and analysable by itself. (Intuitionism does just that when it 
restricts mathematical constructions to those that can be realized in the time structure 
of a human sensibility). This principle, for Gödel, is a consequence of his Platonism. 
For Cavaillès, it comes from a certain conception of mathematics as a historical proc-
ess. Mathematics, for Cavaillès, is an autonomous process, which develops by itself, 
and which cannot be referred to the world nor to the mind: “Science [in fact, mathe-
matics] is not to be considered as an intermediary between the human mind and the 
being in itself, depending as much on one as on the other, but as a sui generis object, 
with an essence of its own and an autonomous development.”24  

                                                                                                                                       
tion of classical mathematics precisely steams from the fact that they maintain the Kantian thesis that 
time is the form a priori of arithmetical constructions.  

24 “Pour la première fois peut-être la science n’est plus considérée comme simple intermédiaire entre 
l’esprit humain et l’être en soi, dépendant autant de l’un que de l’autre et n’ayant pas de réalité propre, 
mais comme un objet sui generis, original dans son essence, autonome dans son mouve-
ment” (Cavaillès (1947) in Cavaillès (1994), p. 503. 
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7. My aim was to follow Cavaillès’ discussion of Kant and Hilbert in order to illus-
trate some aspect of his work. In conclusion, I put forward three points. 

(1) The first point concerns the relation of thought to its expression in symbols. 
Cavaillès argues that it is impossible to consider thought as an act in the mind, isolated 
from its expression, or, in any way, to set apart thoughts from their expression. This 
point is to me exemplary of an orientation of epistemology in France in the first half 
of the 20th century. Here Cavaillès discusses a philosophical problem (the relation of 
thought to its expression) using the example of mathematics. His discussion is itself of 
interest (at least, historically, for it anticipates some of Merleau-Ponty’s later develop-
ments) but has no specific import for the philosophy of mathematics. It does not help 
us understand how mathematics works. 

(2) Cavaillès argues that the manipulation of symbols, which Hilbert seems to consider 
fundamental to mathematical practice, can be considered as a construction in intuition 
in Kant’s sense. However, this play on symbols does not take place in the space of our 
sensibility but in specific structures (“combinatorial spaces”) that are engendered in 
the history of mathematics. From here, Cavaillès draws an argument against Hilbert 
who, just as Kant, considers mathematical symbols as immediate data (“prior to all 
thought”) whereas, in reality, they are artefacts of the history of mathematics. 

(3) Cavaillès then extends his argument to time considered as a medium for arithmeti-
cal constructions. The argument is then directed against Brouwer who requires of 
mathematical constructions that they be realizable in the time of our sensibility. That, 
according to Cavaillès, is a misinterpretation of the nature of mathematics. 

 I have tried to give the textual references that underlie Cavaillès’ conclusions. 
Cavaillès relies on a close reading of Kant, Hilbert and Brouwer but, certainly, does 
not argue for his conclusions as a contemporary philosopher of mathematics would 
do. This lack of argumentation may be common to Cavaillès, Bachelard, Brunschvicg 
and others from the same period. It seems that what was important, more important 
than giving arguments, was to show how one’s conclusions stem from mathematics 
(or, at least, from the reflections of mathematicians) and, in this way, belong to a 
“mathematical spirit”. Nevertheless, the conclusions are there and will hopefully prove 
useful.  
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