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A Clifford-algebraic interpretation is proposed of the charge, mass, spin relationship found recently by

Cooperstock and Faraoini which was based on the Kerr-Newman metric solutions of the Einstein-Maxwell

equations. The components of the polymomentum associated with a Clifford polyparticle in four dimensions

provide for such a charge, mass, spin relationship without the problems encountered in Kaluza-Klein com-

pactifications which furnish an unphysically large value for the electron charge. A physical reasoning behind

such charge, mass, spin relationship is provided, followed by a discussion on the geometrical derivation of

the fine structure constant by Wyler, Smith, Gonzalez-Martin and Smilga. To finalize, the renormalization

of electric charge is discussed and some remarks are made pertaining the modifications of the charge-scale

relationship, when the spin of the polyparticle changes with scale, that may cast some light into the alleged

Astrophysical variations of the fine structure constant.
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1. INTRODUCTION

1.1 CLIFFORD ALGEBRAS IN PHYSICS

Clifford algebras display a rich mathematical structure which is very useful for a unified description

of geometry and physics [1,2,3,4,5,6,9]. For example, a geometric approach to the physics of the Standard

Model in terms of Clifford algebras was advanced by [3] . Important applications have also been found in

string theory, extended objects, gravity, QFT.... Using Clifford-algebraic methods, and related ideas, the

bosonic p-brane propagator, in the quenched-reduced minisuperspace approximation, was constructed in [10];

the logarithmic corrections to the black hole entropy based on the geometry of Clifford space were obtained

in [12]; a higher derivative gravity action with torsion from a geometric action was derived starting from the

scalar curvature in Clifford-spaces [11]. Many recent important aspects of Clifford algebra are described in

the monographs [5].
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In [7,8,9] it was proposed that every physical quantity could in fact be assigned to a polyvector, or

multivector, that is a Clifford number or a Clifford aggregate. Since spinors are the members of left or

right minimal ideals of Clifford algebra they may provide the framework for a deeper understanding of

sypersymmetries, i.e., the transformations relating bosons and fermions. The Fock-Stueckelberg theory of

relativistic particle can be embedded in the Clifford algebra of spacetime [ 9 ] . In this new physical theory

the arena for physics is no longer the ordinary spacetime, but a more general Clifford manifold of Clifford

algebra valued objects, polyvectors. Such a manifold has been called a pan-dimensional continuum [8] or

C-space [7]. The latter describes on a unified basis the objects of various dimensionality: not only points,

but also closed lines, surfaces, volumes,.., called 0-loops (points), 1-loops (closed strings) 2-loops (closed

membranes), 3-loops, etc.. It is a sort of a dimension category, where the role of functorial maps is played

by C-space transformations which reshuffles a p-brane history for a p′-brane history or a mixture of all of

them, for example.

Technically those transformations in C-space that reshuffle objects of different dimensions are gener-

alizations of the ordinary Lorentz transformations, that mix space with time, to C-space. Since Clifford

algebras contain the appropriate algebro-geometric features to implement this principle of polydimensional

transformations and are deeply ingrained in the algebraic properties of quaternions and octonions [17], it is

very plausible that this may lead to the proper formulation of string and M theory [11] within the framework

of Projective Geometry [24] . Clifford algebras implement naturally the idea of electric magnetic duality and

incorporate Dirac monopoles in a straightforwad fashion [26]. Other recent approaches to the generalization

of Maxwell Electrodynamics has been based in the study of gerbes or higher-gauge theories [27]. For a detail

discussion of the role of Clifford algebras in Electrodynamics see [4,28].

The outline of this work goes as follows. In section 1 we briefly review the basic concepts of C-space

Relativity and the use of polyvectors, or Clifford-valued objects, and describe how to generalize Maxwell’s

theory of Electrodynamics asociated with ordinary point-charges to a Generalized Maxwell theory in Clifford

spaces involving extended charges and p-forms of arbitrary rank [25]. In section 2 we show that an interpre-

tation of the charge, mass, spin relationship found recently by [13], based on a Kerr-Newman metric solution,

can be given in terms of the components of the polymomentum of a Clifford polyparticle in four-dimensions

without the problems encountered in Kaluza-Klein compactifications which furnish an unphysically large

value for the electron charge. A short discussion of the the Dirac electron as a Kerr-Newman solution follows

[14]. In section 3 we add some important comments related to the geometrical derivation of the observed

numerical values of the fine structure constant within the context of Clifford algebras. In the final section,

the Renormalization of electric charge with distance is discussed and some final remarks are made pertaining
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the modifications of the charge-scale relationship when the spin of the polyparticle changes with scale. This

will cast some light in the alleged astrophysical variations of the fine structure constant [ 30 ] .

1.2 THE EXTENDED RELATIVITY IN C-SPACE

In order to generalize Maxwell theory of Electrodynamics we review briefly the extended relativity

theory in C-spaces [7,9,11] by starting with a natural generalization of the notion of a space-time interval in

Minkowski space ds2 to C-space. This is given by the scalar part of the Clifford geometric product of two

polyvectors :

||dX||2 =< dX†dX >scalar= dΩ2 + dxµdxµ + dxµνdxµν + ... (1)

where the operation X† is the analog of the matrix transpose ( hermitian ) conjugation operation and

represents the reversed Clifford polyvector obtained by reversing the ordering position of all the basis

vectors γµ present in the expansion of X.

The Clifford valued polyvector:

X = XMEM = Ω1 + xµγµ + xµνγµ ∧ γν + ... (2)

denotes the position of a polyparticle in a manifold, called Clifford space or C-space.

The coordinates xµ1µ2 , xµ1µ2µ3 , .... are the holographic areas, volumes, ...projections of the nested family

of p-loops ( closed p-branes ) onto the embedding D-dim spacetime coordinate planes/hyperplanes and where

the values of p range from : p = 0, 1, 2, 3, .....pmax. The maximal value pmax is D − 2 since the pmax + 1-

dimensional world-tube (the higher-dim version of a world-line) swept by the evolution of the closed pmax-

brane is being embedded into a pmax + 2 = D dimensional region. The interior of the world-tube is D-dim

and its boundary is D − 1 = pmax + 1 dimensional.

For example, in D = 10, one has that the maximal value pmax associated with the nested hierarchy of

closed p-branes ( p-loops ) is given by p(max) = D−2 = 10−2 = 8. Therefore, we have a nested-hierarchy of

closed p-branes ( p-loops ) living in D = 10 whose values of p range from p = 0, 1, 2, 3, ........7, 8 corresponding

to points, closed strings, closed membranes ...closed 8-branes living in D = 10 spacetime dimensions. In our

case when D = 4 we will have then point-particles, closed-strings and closed-membranes.

Therefore, the quantity Ω (a Lorentz scalar) is associated with the proper pmax+1-dim region associated

with the lateral hypersurface of the pmax + 1-dim world-tube( ”cylinder”) swept by the motion of a closed

pmax-brane in the embedding target spacetime background. In order to match units in the expansion of the

polyvector X it is required to introduce a length scale. Such scale was chosen to be the minimal Planck scale

[7,16] and can be set to unity.
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For example, if we take differential dX of X and compute the scalar part of < dX†dX > we obtain the

C-space analog of the particle proper time interval :

dΣ2 = (dΩ)2 + Λ2D−2
P dxµdxµ + Λ2D−4

P dxµνdxµν + .. (3)

where in (3) one has introduced explicitly the Planck scale ΛP in order to fuse together objects of different

dimensionality : 0-loops ( points ) , 1-loops ( closed strings ) ,..., p-loops ( closed p-branes ). Einstein

introduced the speed of light as a universal absolute invariant in order to “unite” space with time (to match

units) in the Minkwoski space interval:

ds2 = c2dt2 − dxidxi. (4)

A similar unification is needed here to “unite” objects of different dimensions, such as xµ, xµ1µ2 , etc... The

minimal Planck scale then emerges as another universal invariant in constructing an extended scale relativity

theory in C-spaces [7,16]. To show that the Planck scale is a minimal distance requires the introduction of

Quantum Mechanics [31].

To continue along the same path of special Relativity in Minkowski space, one considers the analog of

Lorentz transformations in C-spaces which transform a polyvector X into another polyvector X ′ given by

X ′ = RXR−1 with

R = eθAEA = exp [(θI + θµγµ + θµ1µ2γµ1 ∧ γµ2 .....)]. (5)

and

R−1 = e−θAEA = exp [−(θI + θνγν + θν1ν2γν1 ∧ γν2 .....)]. RR−1 = 1. (6)

where the theta parameters:

θ; θµ; θµν ; θµνρ.... (7)

are the C-space version of the Lorentz rotations/boosts parameters. The ordinary Lorentz algebra generator

Lµν can be written in terms of the commutator [γµ, γν ].

Under these transformations the norm-squared of a polyvector X given by the scalar part of the product

< X†X >scalar remains invariant. Since a Clifford algebra admits a matrix representation, one can represent

the norm of polyvectors < X†X >scalar in terms of the trace operation as: ||X||2 = Trace X2 Hence under

C-space Lorentz transformation the norms of polyvectors behave like follows:

Trace (X ′)2 = Trace [RX2R−1] = Trace [RR−1X2] = Trace X2. (8)
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These norms are invariant under C-space Lorentz transformations due to the cyclic property of the trace

operation and RR−1 = 1. This completes the very brief review of relativity in C-spaces [ 7, 9, 11 ].

A C-space extension of Maxwell’s Electrodynamics has been studied in [25] by starting with the differ-

ential operator in C-spaces which is the generalized Dirac operator:

d = EM∂M = 1∂Ω + γµ∂xµ
+ γµ ∧ γν∂xµν

+ ... (9)

the indices M,N.... run over all the polyvector basis elements and range from 1, 2.....2D since a Clifford

algebra in D-dim has 2D basis elements. At this point we will not be concerned with the representations of

Clifford algebras in (r, s) dimensions. Where r, s denotes the temporal and spatial dimensions respectively [

2 ] .

The generalized Maxwell field strength in C-space is :

F = dA = EM∂M (ENAN ) = EMEN∂MAN =
1
2
{EM , EN}∂MAN+

1
2
[EM , EN ]∂MAN =

1
4
F(MN){EM , EN}+

1
4
F[MN ][EM , EN ]. (10)

where one has decomposed the Field strength components into a symmetric plus antisymmetric piece by

simply writing the Clifford geometric product of two polyvectors EMEN as the sum of an anticommutator

plus a commutator piece respectively .

F(MN) =
1
2
(∂MAN + ∂NAM ). (11)

F[MN ] =
1
2
(∂MAN − ∂NAM ). (12)

A measure of integration in C-space can be written as:

[DX] = (dΩ)(dx0dx1...dxD)(dx01dx02..)(dx012...).......(dx0123...D). (13)

The standard C-space Maxwell action is up to a numerical factor given by :

S(A) =
∫

[DX] F[MN ]F
[MN ]. (14a)

and is automatically gauge invariant under the transformations δAM = ∂MΛ since δF[MN ] = 0 due to the

antisymmetry condition [∂M , ∂N ]Λ = 0 .

The action [25, 31]
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∫
[DX] < F †F >scalar=

∫
[DX] (F(MN)F

(MN) + F[MN ]F
[MN ]). (14b)

is invariant ( up to total derivatives) under infinitesimal gauge transformations provided the symmetric

part of F is divergence-free ∂MF (MN) = 0 [25].

It was later noticed in [31] that this divergence-free condition has the same effects as if one were fixing

a gauge leaving a residual symmetry of restricted gauge transformations such that the gauge symmetry

parameter obeys the Laplace-like equation ∂M∂MΛ = 0. Such residual ( restricted ) symmetries are precisely

those that leave invariant the divergence-free condition on the symmetric part of F . Residual, restricted

symmetries occur, for example, in the light-cone gauge of p-brane actions leaving a residual symmetry of

volume-preserving diffs and in string theory, in the conformal gauge, leaving a residual symmetry under

conformal reparametrizations; i.e. the Virasoro algebras whose symmetry transformations are given by

holomorphic and anti-holomorphic reparametrizations of the string world-sheet.

This Laplace-like condition on the gauge parameter is also the one required such that the action (14b) is

invariant under finite (restricted) gauge transformations [31] since under such (restricted) finite transforma-

tions the Lagrangian (14b) changes by second-order terms of the form (∂M∂NΛ)2, which are total derivatives

if, and only if, the gauge parameter is restricted to obey the analog of Laplace equation ∂M∂MΛ = 0 [31].

Concluding, the effects of adding the symmetric pieces of F to the action leads to a restricted gauge symmetry

which has the same effects as if one were fixing a gauge ∂MF (MN) = 0 [31].

The matter-field minimal coupling is :

∫
AMdXM =

∫
[DX]AMJM . (15)

where one has reabsorbed the coupling constant, the C-space analog of the electric charge, within the expres-

sion for the A field itself and the current J polyvector is proportional to the polymomentum, like in ordinary

EM the current four-vector Jµ is proportional to the four-velocity with a delta function proportionality

factor:

δ(x0 − x0(τ)) δ(x1 − x1(τ)) δ(x2 − x2(τ)) δ(x3 − x3(τ)). (16)

which implies that the current has support along the worldline of the particle xµ = xµ(τ).

This matter-field coupling term (15) has the same form as the coupling of p-branes (whose world volume

is p + 1-dimensional) to antisymmetric tensor fields of rank p + 1. The gauge-invariant equations of motion

for the antisymmetric part of F are the usual ones ∂MF [MN ] = JN . For further details about equations of
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motion, the construction of Noether currents, continuity equation, etc... see [25, 32]. This completes the

brief review of C-space Relativity and generalized Maxwell’s Electrodynamics in C-spaces.

2.1 THE COMPONENTS OF THE POLYMOMENTUM

With this preamble on Clifford spaces and polyvectors, we may continue with the physical interpretation

of the polymomentum components of a polyparticle which will allow us to provide a Clifford-algebraic

interpretation of the charge, mass and spin relationship based on the Kerr-Newman solutions to the Einstein-

Maxwell equations [13].

Based on our basic postulate that a hierarchy of extended objects, a nested collection of p-loops, is a

physical example of a Clifford polyparticle [ 7,11,32], we shall derive the relationship among charge, mass and

spin from the geometry of C-spaces by using Clifford algebras. We will follow the nomenclature of chaper two

in Pavsic’s book [ 9 ] to describe the polymomentum components of a polyparticle in a D = 4-dimensional

spacetime. In the special case when one imposes the standard mass-shell condition of ordinary point-particle

relativistic dynamics :

pµpµ −m2 = 0. (17)

it follows then that the invariant norm-squared of the polymomentum P , a Clifford-valued object P =

PMEM , associated with the polyvector-valued C-space coordinate X = XMEM studied earlier, becomes in

this 4-dim case [9]:

P 2 = PMPM = κ2 + πµπµ + pµpµ −m2 − 1
2
m2

P SµνSµν = M2 ⇒

P 2 = PMPM = κ2 + πµπµ − 1
2
m2

P SµνSµν = M2. (18)

where we have used the decomposition of a polymomentum as indicated by [ 9 ] :

P = κ1 + pµγµ + Sµνγµ ∧ γν + πµγ5γµ + mγ5. (19)

The components of the polymomentum are all dynamical variables which are functions of the C-space

analog of the proper time, Σ, like the four-momentum of an ordinary massive point particle given by pµ =

mdxµ/dτ is a function of the proper time parameter τ . This means that in C-space, m is a truly dynamical

variable and the constraint P 2 = M2 is the C-space version of the ordinary mass-shell constraint pµpµ = m2

resulting from reparametrization invariance.
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It has been shown in [9] that the constrained dynamics in C-space, encoded in the constraint P 2 = M2,

leads to an unconstrained particle dynamics in ordinary spacetime such that a C-space polyparticle action

leads naturally to the unconstrained Stueckelberg action in spacetime. Therefore, the quantity M must not

be confused with the dynamical variable m which is another one of the components of the polymomentum.

In D = 4, the maximal value of p associated with the nested hierarchy of p-loops ( closed p-branes ) is

pmax = D − 2 = 4 − 2 = 2. It corresponds to a closed-membrane such that κ is the conjugate-momentum

variable to the proper 2 + 1-dimensional region Ω associated with the (lateral) hypersurface of the world-

tube swept by the evolution of a closed-membrane in a target 4-dim spacetime background [7]. The latter

2+1-dim proper hypersurface Ω is a Lorentz scalar which is proportional to the Dirac-Nambu-Goto 2-brane

(closed-membrane) action. The constant of proportionality is provided by the 2-brane tension.

As we said earlier, a closed string spans a two-dim tube (cylinder). A closed membrane spans a three-

dim world-tube, etc.... Spatial p-loops have a topology of the p-sphere Sp, and for p = pmax they enclose

an interior pmax + 1-dim region. Including the time-coordinate, a clock, this brings the overall dimension of

the embedding target spacetime to D = pmax + 2 = 2 + 2 = 4; i.e. the 2 + 1-dim world-tubes are embedded

in a spacetime of D = 2 + 2 dimensions. The interior region of the world-tube is 4 dimensional. We shall

not be concerned in this work with p-loop-instantons embedded in p+1-dimensions and other exotic p-loops

[31].

Thus, the units of κ associated with a closed-membrane (pmax = 2) spanning a 3-dim world-tube

embedded in a 4-dim target spacetime background are those of (mass)3. However, in the following, for

convenience purposes, we shall fix the units of κ to be those of an ordinary momentum, by an appropriate

rescaling of all the variables by suitable powers of the Planck mass, mP . Hence the units of κ will be chosen

to be those of mass, however we should keep in mind that the units of κ are related to an energy per unit

area; i.e. the same units as those of a membrane-tension : (mass)3.

The quantity πµ, after rescaled by powers of (mP )2, is proportional to the axial-vector momentum

component of the polymomentum [9] and which can also be written in D = 4 as the dual of the 3-vector :

(mP )2πµ =
1
3!

εµνρσpνρσ. (20a)

.

The physical interpretation of the quantities pνρσ in ( 20a), which have units of (mass)3, is that they

correspond to the ”volume-momentum” conjugate variables of the three-dim ( spatial and timelike ) regions

enclosed by the holographic projections of a 2-loop onto the embedding target spacetime hyperplanes. A

2-loop encloses a 3-dim interior region such that its ( spacelike and timelike ) holographic projections onto the
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hyperplanes of the embedding spacetime background are the xνρσ components of the polyvector X. Thus,

the conjugate momentum variables to the latter components of X are the volume-momentum pνρσ variables,

with units of (mass)3, while its dual momentum is proportional the axial-vector momentum components

(mP )2πµ. This clarifies the physical meaning of the axial-vector πµ component of the polymomentum that

we chose to have units of [mass] after rescaling all the components by suitable powers of mP .

pµ is timelike vector but the axial-vector πµ is spacelike as shown by Pavsic [9] .

πµπµ < 0. pµpµ > 0. (20b)

Since πµ is spacelike we may set:

πµπµ = −π2 < 0. (21)

where one should not confuse the norm π with the number π. Below we will see that the spacelike norm-

squared of the axial-vector πµ given by −π2 is the quantity that is related to the electric charge in the

Kerr-Newman solutions.

SµνSµν are the holographic area-momentum variables contribution to the norm-squared P 2. It has been

shown by Pezzaglia [8] in his derivation of the Papapetrou’s equations, and discussed further by Pavsic [9],

that the conjugate-momentum to the holographic area-variables xµν are given by Sµν and describe precisely

the spin degrees of freedom of a polyparticle. In order to have the proper matching of mass-units for all the

components, we have introduced a factor of the Planck mass mP in the SµνSµν terms, likewise we introduced

powers of the minimal Planck scale in the definition of the analog of the proper-time interval of a polyparticle

in C-space. This concludes the physical interpretation of the components of the polymomentum associated

with a polyparticle.

In the particular case when the mass parameter is set to be M = mP and when the standard on-shell

condition is imposed pµpµ −m2 = 0, eq-(18) becomes:

P 2 = κ2 + πµπµ −m2
P

1
2
SµνSµν = m2

P . (22)

where the Planck mass scale is mP =
√

h̄c/G. The definition of the spacelike condition of the axial-vector

πµπµ ≡ −π2 in eq-(22) leads to:

κ2 − π2 = m2
P (1 + S2). (23)

after having defined S2 = 1
2SµνSµν .
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The recently found relationship by [13] among charge, mass and spin, based upon a generalized definition

of a Planck mass scale associated with the Kerr-Newman metric solutions of the Einstein-Maxwell equations,

after equating the Compton scale with the horizon radius, is given by :

mKN =
mP√

2

√
2(1 + S2)
2− n2e2

. (24)

where the quantized charge q = ne is written in units of the electric charge . The fine structure constant in

natural units h̄ = c = 1 is given by α = e2.

For the sake of completeness, the detailed steps of [13] that leads to the charge, mass, spin relationship

of the Kerr-Newman metric solution given by eq-(24) are reviewed in the appendix. It follows from eq-( 24):

2m2
KN (1− n2e2

2
) = m2

P (1 + S2). (25)

Now we can finally match the functional form of eq-( 25 ) with that of eq-( 23 ) and conclude that:

κ2 − π2 = m2
P (1 + S2) = 2m2

KN (1− n2e2

2
). ⇒

κ2 − π2 = κ2(1− π2

κ2
) = 2m2

KN (1− n2e2

2
). (26)

We have the feedom in eq-( 26 ) to relate the extended Planck mass mKN to the κ component of

the polymomentum by setting κ2 = 2m2
KN . Upon doing so one can infer from eq-(26) that the spacelike

axial-momentum component of the polymomentum πµ obeys the relation:

π2

κ2
=

π2

2m2
KN

=
n2e2

2
⇒ π2 = −πµπµ =

κ2

2
(n2e2) = m2

KNn2e2. (27)

eqs-(26, 27) are the sought-after relations among charge, mass and spin.

2.2 PHYSICAL INTERPRETATION OF THE CHARGE-MASS-SPIN RELATION

We turn now to a physical interpretation of the relations behind eqs-(26,27) and the differences between

the conventional Kaluza-Klein compactification of D = 5 (on a circle) down to D = 4 dimensions . In the

latter Kaluza-Klein compactifications the momentum component in the internal fifth dimension defines a

new conserved quantity, due to the periodic motion in the internal circle of radius R , and which is quantized

in discrete units like ” charges ”. In this case the quantized charges qn in integer units n = 1, 2, 3... of a

fundamental charge qKK are related to the Kaluza-Klein momentum components p5 = n/R, in terms of R,

the compactification radius of the internal circle. The charge internal-momentum relation goes as follows :
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G(p5)2 =
(p5)2

m2
Planck

=
n2

m2
PlanckR2

= q2
n = n2q2

KK . (28)

where G is the gravitational constant in four-dim given by G = L2
Planck = (mPlanck)−2 in natural units of

h̄ = c = 1. The quantity qKK is the fundamental unit of charge in the Kaluza-Klein compactification.

For small radius compactifications R of the order of the Planck scale, the value of qKK (in the corre-

sponding units) is much greater than the electron charge e. Its value turns out to be extremely large since

the magnitude of p5 is of the order of the Planck mass. For a discussion of this Kaluza-Klein charge problem

and how the use of Clifford polyvectors in D = 5 dimensions may provide a plausible resolution, which is

different from ours, we refer to Pavsic [9].

We don’t have any longer the old problem which arises in Kaluza-Klein compactifications because the

relevant point of our construction that relates charge, mass and spin given by eqs-(26, 27 ) is that we have

not performed a Kaluza-Klein compactification in order to account for the origins of the electric charge since

we are studying Clifford polyvectors based on Clifford algebras in D = 4, and not in D = 5.

Our relation obtained from eqs-(26, 27 ) yields also the charges q2 = n2e2 in terms of the ratios of the

norms of two of the components of the polymomentum:

2π2

κ2
=
−2πµπµ

κ2
= n2e2. (29)

but now the charges are different:

(p5)2

m2
Planck

6= −2πµπµ

κ2
⇒

n2q2
KK 6= n2e2 ⇒ q2

KK 6= e2. (30)

What we have found is that the norm-squared of the internal p5 component of the momentum, in units

of the Planck momentum mP c, which yields the values of the charges in Kaluza-Kein compactifications, is

not the same as the spacelike norm-squared of πµ in units of κ . The advantage, now , is that the ratio of the

norms of the components πµ;κ of the polymomentum associated with the Clifford algebra in four dimensions

capture the same charge effects of the Kaluza-Klein compactifications without having an unphysically large

value for the electron charge.

This idea of capturing the effects of higher dimensions has been applied recently by studying how Clifford

algebras in four-dimensions encode the conformal algebra SO(4, 2) ( as a subalgebra) without the need to

recur to six dimensions whatsoever [19]. From the Scale Relativistic point of view [22] the electric charge
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has been shown to be the eigenvalue of the scale-dilations operator associated with the spacetime resolution

variables and which must not be confused with the ordinary dilations associated with the conformal group.

The physical meaning of the axial-momentum πµ ( times (mP )2 ) as the dual of the ”volume-momentum”

pνρσ conjugate variable to xνρσ, was explained at the beginning of this section. The ”volume-momentum” has

units of a membrane tension (mass)3, or energy per unit area. It must be emphasized that upon restoring

back the original units to all the components of the polymomentum, one can see that both (mP )2κ and pνρσ

have the same units since both of them are conjugate variables to 3-dim regions; i.e. the orginal units are

those of energy per unit area, (mass)3, the same units of a membrane tension.

In the same fashion that one obtains the classical electron radius re by equating the electrostatic energy

e2/re to the electron’s rest mass me giving the relation mere = e2, we have expressed in (29) the quantized

charges n2e2 in terms of the ratios of the quantities π2 and κ2, which is just another statement of the

condition that the energy per unit area of the membrane is a measure of the charge content enclosed by the

three-dim region inside the membrane.

The (spinning) membrane-component of the polyparticle can be seen as a Kerr-Newman black-hole

horizon whose tension (energy per unit area) encodes the charge content associated with the electromagnetic

energy stored in the interior region. The connection between membranes and black-hole horizons is well

known among the experts and has been coined ” the membrane paradigm”. Long ago, Dirac envisioned

a classical electron as a membrane. In the next section we will discuss a very different view of the Dirac

electron as a true naked singularity of the Kerr-Newman solution which is devoid of horizons, by definition.

This concluds our discussion of the physical interpretation of the charge-mass-spin relations based on the

four-dim Clifford algebra of a polyparticle.

Having described the mass, charge and spin in terms of a four-dim Clifford algebra, one could study

higher-dim Clifford algebras with the hope to reproduce the other charges of the Standard Model like hyper-

charge, isospin, ...and all the other internal quantum numbers of elementary particles. This Clifford-algebraic

(spinorial) approach to the Standard Model has recently been studied by Budinich [32] to understand how

the known internal symmetry groups might derive from the three complex division algebras and to explain

the origins of charges and other couplings from a Clifford algebra perspective, not unlike the earlier results

obtained by Smith [17] .

After discussing the difference between the Kaluza-Klein compactification and the Clifford approach

that avoids the problem of the large value for the electron charge, one can deduce immediately that due to

the condition:
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κ2 − π2 = κ2(1− π2

κ2
) = m2

P (1 + S2) > 0. (31)

the following ratios are constrained to obey :

0 ≤ π2

κ2
=

n2e2

2
≤ 1 ⇒ 0 ≤ n2e2 ≤ 2. (32)

which is precisely the same inequality constraint for the values of n found by [13] in their analysis of the

Kerr-Newman solutions.

Concluding, for a Planck-mass Clifford polyparticle obeyingM2 = m2
p, the geometric calculus of Clifford

algebras in four-dim based on polyvector physical quantities, when one uses the mass-shell condition of the

standard relativistic dynamics pµpµ −m2 = 0, and after implementing the spacelike condition on the axial-

momentum vector component of the polymomentum πµπµ = −π2 , leads to the same functional relation

among the charge, mass and spin as that based on the Kerr-Newman metric for a rotating-charged black

hole, after equating its gravitational horizon radius to the Compton wavelength h̄/mKNc.

This identification simply required to set the extended Planck mass scale mKN to be equal to κ/
√

2,

where κ is the first component of the polymomentum of the polyparticle, and after fixing M2 = m2
P in the

C-space mass-shell condition P 2 = M2. After simply rearranging the terms in the latter condition it leads

to the sought-after charge-mass-spin relationship derived from eqs-(24,25,26,27).

To sum up, the charge-mass-spin relationship; i.e the relationship between the Clifford-valued quantities

of the polymomentum and the Kerr-Newman black hole parameters are:

κ2 = 2m2
KN . − πµπµ = π2 =

κ2n2e2

2
. q2 = n2e2 = n2α. (33)

κ2 − π2 = κ2(1− π2

κ2
) = m2

P (1 + S2) = 2m2
KN (1− n2e2

2
). (34)

S2 = s2 =
1
2
SµνSµν . (35)

.

For finite values of the spin, there is a singularity for the values of mKN , κ, π in the expression

2m2
KN = κ2 = (mP )2[

1 + S2

1− (n2e2/2)
] = ∞. (36)

that occurs when the charge quantization condition saturates its upper bound
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n2e2

2
= 1 ⇒ n2e2 = n2α = 2. (37)

Therefore, the charge quantization condition must obey in general the following inequality constraints :

0 ≤ π2

κ2
=

n2α

2
≤ 1. (38)

This inequality (38) yields an upper bound in the values of n = 16 when α = 1/128 and corresponds to the

simultaneous singular values of π, κ, mKN .

One could understand the reason why there is an upper bound in eq-(38) for the values of n = 16 when

α = 1/137.036 < 1/128 by noticing that in D = 4 the degree of the Clifford algebra is 24 = 16, meaning that

the number of Clifford-bits is 16. Hence, the Clifford-polyparticle will carry at most a reasonable value of

the charge which is at most 16 times higher than the elecron’s charge when the mass parameter M is equal

to the Planck mass mP .

To conclude, in essence, the physical meaning of the mass-shell conditon in C-space P 2 = M2, relating

the values of the κ, πµ, Sµν ,m, ... components of the polymomentum is that the true physical mass M in

C-space has a gravitational, electromagnetic, rotational ( spin ), translational ...aspects to it, as one would

expect. A different interpretation of the connection among charge, mass and scale-dilations within the

context of Scale Relativity has been given by Nottale [22].

2.3. THE DIRAC ELECTRON AS A KERR-NEWMAN SOLUTION

This discussion above works well when the masses are of the order of the Planck mass M = mP .

However, to describe an ordinary electron requires a different picture because the electron mass is much

smaller than the Planck mass. In this case one is going to have in the Kerr-Newman solutions :

m2
KN −

q2

G
− c2a2

G2
< 0. (39)

which corresponds to a naked singularity (absence of horizons) as a result that the (repulsive) centrifugal

and electric forces strip away the horizon.

These naked singularity Kerr-Newman solutions have been interpreted by Arcos and Pereira as Dirac

particles [14] . The Kerr-Newman solution when eq-(39) is obeyed reduces to a naked singularity of circular

shape beyond which the metric components fail to be smooth. Hawking-Ellis developed an extended space-

time interpretation by joining one branch of spacetime to another branch via the singular disk, giving rise

to a topological nontrivial space. Due to this nontrivial topological structure, the extended Kerr-Newman

spacetime admits states with spin 1/2. This extended Kerr-Newman solution was proposed by [14] to be a
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model for the electron-positron systems in which the concepts of mass, charge and spin are all connected

with the spacetime geometry. A charge distribution, according to Wheeler, is indistinguishable by an asymp-

totic observer from a trapped electric flux tube. Mass, therefore, has then a gravitational, rotational and

electromagnetic components as argued previously in the definition of the components of the polymomentum

of a polyparticle.

Sidharth [21] has given a different interpretation to the the Dirac electron than Arcos and Pereira [14]

based also on the Kerr-Newman metric. There are some black hole solutions in string theory which can

be interpreted as very massive Planck-mass like elementary particles. This idea goes back to Salam. The

importance of the Clifford-polyparticle geomerical interpretation (relationship) among charge, mass and spin

is that it is new as far as we know.

3. FINE STRUCTURE CONSTANT AND CLIFFORD ALGEBRAS

We have seen how charges can be interpreted as the ratios of the norms of certain components of the

polymomentum. In this section we will discuss how the actual electron charge can indeed be written as the

ratios of volumes of suitable geometrical spaces obtained from kinematical constraints in momentum spaces

associated with two-particle systems [16].

For many years there have been many attempts to find a theoretical basis for the values of the coupling

constants of the four forces in Nature and the masses of the fundamental particles without having to invoke

the anthropic principle. Most recently Beck [18] has been able to derive the values of all the Standard Model

parameters from first principle, including neutrino masses, based on the Kaneko coupled-map lattices in two-

dimensions (the so-called Chaotic Strings which is the stringy version of the Higgs fields). To our knowledge

the first person who presented a formula for the electromagnetic coupling constant was the mathematician

Wyler [15]. Smith later on [17], has derived the values of all the couplings and masses of fundamental particles

with remarkable precision using hyperdiamond lattices based on discrete Clifford algebras. In particular he

reproduced Wyler heuristic formula for the fine structure constant given precisely by the ratios of volumes

of geometric spaces:

α =
8πV (D5)1/4

V (S4)V (Shilov5)
=

9
8π4

(
π5

245!
)1/4 =

1
137.03608245

(40)

and which agrees with the observed value of the fine structure constant in five-parts in ten-million.

We have used in (40) the following numerical values for the volumes of the respective spaces : The

volume of the 5-dim bounded homogeneous complex domain D5 was calculated by Hua to be π5/245! [20] .

The volume of the four-sphere S4 is 8π2/3 and the volume of the Shilov boundary (of the five-dim complex

domain) Shilov5 whose topology is RP 1 × S4 is 8π3/3.

15



The most impending question is what is the connection between all this with Clifford algebras ? Smith

[17] already has shown that the hyperdiamond lattices which reproduce the couplings of all fundamental

forces and masses are based on discrete Clifford algebras. Gonzalez-Martin has also derived many of the

fundamental ratios of particle masses and the Wyler formula for the fine structure constant based on rela-

tivistic symmetry groups [ 33 ] and most recently Smilga [16] has derived the Wyler formula based on the

Anti de Sitter group SO(3, 2) which is the conformal group in 3-dim. The conformal group is just a subgroup

of the Clifford group [19] and not surprisingly, the fine structure constant is encoded in the Clifford group

via the conformal group SO(3, 2) as its subgroup. This is compatible also with Nottale’s scale relativity

interpretation of the charge-mass relations [22].

Even more, Smilga based his result by noticing that the Inonu-Wigner contraction of a spin 1/2 repre-

sentation of SO(3, 2) yields a translation operator that consists of the usual momentum operator plus the

so-called momentum-spin which was comprised of the γµ Clifford algebra generator ! . This extra con-

tribution to the multi-particle dynamics due to the momentum-spin component γµ can be described by a

perturbation term that precisely has the same structure as the interaction term of Quantum Electrodynamics

eγµAµ ! . This was the reason why Smilga was able to obtain the value of the fine structure constant based

on this extra momentum-spin component. The volume of the parameter space associated with the group

SO(3, 2) and the multi-particle kinematics delivers a measure for the number of states that can contribute

to the interaction term. Hence, the EM coupling constant is given by a geometric probability based on the

ratios of volumes of parameter spaces associated with coset spaces ( gauge symmetry groups ). In Smith

interpretation [17] , the coupling constants are the amplitudes for particles to emit a gauge boson and the

masses are the amplitudes to change direction [17] .

Having seen the role of Clifford algebras in Smith derivation [17] of the coupling constants and masses

and of the momentum-spin γµ in Smilga derivation [16] of the fine structure constant, this reinforces our

arguments above that charges, like spin, are unified-components of the polymomentum of a polyparticle.

Let us probe deeper ino these ideas by looking now at the degree of a Clifford algebra in four spacetime

dimensions which has n = 2D = 24 components or Clifford bits, meaning that the charge ne is at the most

16 times that of the electron The basic inequality of the previous section is saturated when :

n2α = 22Dα = 2 ⇒ 1
α

= 22D−1. (41)

One can interpret eq-(41) as a charge-dimension relationship f(D) = 1
α and we can verify from (41)

that the value of D = 4 dimensions is indeed very close indeed to the value D = 4 + ε = 4.04921 which is

required to yield the numerical value 1
α = 137.036 of the inverse of the fine structure constant. Hence, the
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fractal spacetime dimensionality of D = 4+ ε seems to be deeply connected to the observed value of the EM

coupling constant [29].

4. C-SPACES AND RENORMALIZATION OF THE ELECTRIC CHARGE

Using one of the main results of the previous sections is:

κ2 + πµπµ = κ2 − π2 = m2
P (1 + S2) = constant (42)

which occurs when the values of S2 remain constant in the dynamical evolution of the polyparticle, as a

function of the C-space proper time Σ, we can immediately deduce that the values of |πµπµ| ( related to

the charge ) will increase when the values of κ2 increase, and vice versa. This is similar to what happens

in QED, although the functional relations between charge e and the mass-energy scale E are different. In

QED one has for the beta function at one loop, :

∂lne2

∂lnE
=

e2

6π2
⇒ e2(E) =

e2(E0)

1− e2(E0)
6π2 ln(E/E0)

. (43)

which reflects the screening of electric charge with distance as a result of electron-positron pair-creation (

vacuum polarization ) surrounding the bare charge. As the energy increases ( distance decreases ) the bare

charge increases, and consequently, the fine structure constant increases with energy. There is a Landau

charge-singularity e2 = ∞ when the (finite) energy scale is :

E = E0e
6π2/e2(E0). (44)

whereas previously one has a different situation, the quantity |πµπµ| is singular when the energy scale

blows up κ = mKN

√
2 = ∞. However this occurs at a finite saturation point of the quantized electric

charge :

2 = n2α = n2e2. (46)

As we argued before, in four-dimensions, the number of Clifford-bits n = 2D = 24 = 16 and the charge

is at the most 16 times that of the electron so that n2/2 = 22D/2 = 28/2 = 27, and the last equation

establishes a relationship among, dimensions, charge and energy-scale given by :

1
27

=
1

128
= e2(E) =

e2(E0)

1− e2(E0)
6π2 ln(E/E0)

. (47)
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Such numerical values (47) agrees fully with the Renormalization Group results that fix the Z-boson

energy scale governing the high-energy radiation in Z-boson production/decay and which has been measured

to be 1/127.934 and that is very close to 1/128 [13, 17] .

However, we must exercize caution with the last remarks because the electron mass is much smaller than

the Planck mass and this is incompatible with the Planck-mass polyparticle dynamics in C-spaces and the

fact that we encounter naked singularities for the Kerr-Newman metric in the electron’s case [14]. Because

there are no horizons for the electron the above formulae (47) do not longer apply to study the electron.

They are valid for a Planck-mass polyparticle whose charge is at most 16 times that of the electron.

In Nottale Scale Relativity, the effective dimensions of fractal-spacetime are resolution-dependent. When

the minimal Planck scale resolution is reached the dimensions and energy blow up but the value of the fine

structure constant at the Planck scale remains finite and is given by 1/4π2 [22] .

Finally, we should mention that if the values of S2 were to change in the motion of the polyparticle,

as one varies the values of the C-space proper-time parameter Σ, one will have a different mass-charge

evolution behaviour than that given by eq-(42) and the combination κ2 − |πµπµ| is no longer a contant

but a function of the C-space proper-time Σ. It is warranted to explore the physical consequences of this

very interesting case when the spin magnitude S2 is itself dynamical in the motion of the polyparticle as

a function of Σ, the C-space proper-time parameter, which has the units of a four-dimensional volume and

thus is related to scales.

APPENDIX

The outer and inner horizons radii of the Kerr-Newman metric were used recently by [13] to introduce

spin and charge into the definition of a new extended Planck mass scale.

The radii of the inner and outer horizons are given by:

r± =
G

c2
[mKN ±

√
m2

KN −
q2

G
− c2a2

G2
]. (A.1)

where q = ne is the quantized charge and a = s h̄
m is the angular momentum per unit mass. The ergosphere is

that region where nothing can escape the rotational drag of the rotating black-hole. The horizon is the region

where light cannot escape. If one equates the radius r+ of the outer horizon with the Compton wavelength

h̄/mKNc of the particle of mass mKN one gets :

r+ =
h̄

mKNc
=

G

c2
[mKN +

√
m2

KN −
q2

G
− c2a2

G2
]. (A.2)
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This yields an algebraic relation among mass, charge and spin after solving for mKN [13] :

mKN =
mP√

2

√
2(1 + s2)
2− αn2

. (A.3)

where mP =
√

h̄c/G ∼ 2.2× 10−5 grams is the Planck mass and α = e2/h̄c is the fine structure constant.

Another crucial set of inequalities derived from the choice of the plus sign in front of the square root

(A.2) are [13] :

n2e2 + s2 < 1. n2e2 < 2. (A.4)

Had one chosen the minus sign in front of the square roots in (A.1) one would have arrived at the

same mass-spin-charge relation as before ( A.3 ) but the first inequality condition in (A.4) would have been

reversed :

n2e2 + s2 > 1. n2e2 < 2. (A.5)

Notice that the second inequality condition of (A.5 ) remains the same as before.

In the extreme case scenario, when the r+ = r− one would have had an strict equality in the first

expression of (A.4, A.5) :

n2e2 + s2 = 1. n2e2 < 2. (A.6)

signaling a balance among the attractive gravitational, and the centrifugal and repulsive electric forces. In

this extreme case, the terms inside the square-root of (A.1) are zero and one has that the extended mass

scale becomes now the same as the Planck mass:

m2
KN = m2

P ⇒ mKN = mP . (A.7)
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