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The aim of this paper is to analyze time-asymmetric quantum mechanics with respect to
the problems of irreversibility and of time’s arrow. We begin with arguing that both prob-
lems are conceptually different. Then, we show that, contrary to a common opinion, the
theory’s ability to describe irreversible quantum processes is not a consequence of the
semigroup evolution laws expressing the non-time-reversal invariance of the theory.
Finally, we argue that time-asymmetric quantum mechanics, either in Prigogine’s version
or in Bohm’s version, does not solve the problem of the arrow of time because it does not
supply a substantial and theoretically founded criterion for distinguishing between the two
directions of time.

1. Introduction

The problems of irreversibility and of time’s arrow were born with the discussions of

the founding fathers of statistical mechanics about the mechanical meaning of the

second law of thermodynamics. Since those days, much ink has been spilled on these

subjects. Nevertheless, the debates have continued up to the present without leading to

an overall agreement. In the second half of the century, chiefly since the 1960s, the

works on quantum irreversibility have contributed to these discussions with the

proposal of the so-called ‘time-asymmetric quantum mechanics’ (TAQM).

We shall subsume under the label ‘time-asymmetric quantum mechanics school’

(TAQM school) the members and the works of two groups led by Arno Bohm at Austin

and Ilya Prigogine at Brussels. Since the very beginning of his scientific life, Prigogine

was interested in time’s arrow. For him, intrinsic irreversibility would establish an

objective difference between past and future; then, he directed his efforts to introduce
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irreversibility in fundamental physics. Bohm, in turn, focused his interest on quantum

scattering, where decaying processes are in need of an adequate description. For this

reason, his main aim was to obtain a formalism capable of modelling those irreversible

phenomena. The scientific contact between the two groups extended their concerns

and formal resources: Bohm’s group incorporated the interest in the quantum arrow

of time, and Prigogine’s group adopted the rigged Hilbert space formalism previously

used in scattering processes. As a result of the intellectual evolution of both groups, at

present it can be said that their main technical efforts have been directed to the

formulation of a quantum mechanics capable of accounting for irreversible quantum

phenomena. Besides this general aim, the two groups agree in the use of rigged Hilbert

spaces for addressing the issue of irreversibility in quantum mechanics; according to

their view, this formalism turns standard quantum mechanics into a ‘time-asymmetric’

theory where irreversible quantum descriptions can be obtained. Both groups also

claim, although on a different basis, to have supplied a conceptually adequate theoret-

ical account of the arrow of time in quantum mechanics.

The aim of this paper is to analyze the main claims of the TAQM school about the

problems of irreversibility and of time’s arrow. We shall begin with a precise elucidation

of the central concepts on which those claims are based, in particular, time-reversal

invariance, reversibility and time’s arrow. This task will allow us to argue for the differ-

ence between both problems. On this conceptual basis, we shall show that, contrary to

a common opinion, the ability of TAQM to describe irreversible quantum processes is

not a consequence of the semigroup evolution laws of the theory. With respect to time’s

arrow in quantum mechanics, we shall argue that the proposal of the TAQM school,

either in Prigogine’s version or in Bohm’s version, does not offer a conceptually

adequate answer to the problem: it does not supply a substantial and theoretically

grounded criterion for distinguishing between the two formal structures, one the

temporal mirror image of the other, arising from the original time-reversal invariant

quantum theory.

2. Disentangling Concepts

When the problems of irreversibility and of time’s arrow are addressed, the main

obstacle to be faced is conceptual confusion: the two problems are usually identified, as

if irreversibility were the clue for understanding the origin and the nature of the arrow

of time.

The identification or, at least, the close link between irreversibility and time’s arrow

is continuously present in the works of the TAQM school. For instance, Antoniou and

Prigogine (1993, 443) conceive irreversibility as the fundamental difference between the

two directions of time, and even ‘as the emergence of a privileged direction of time’.

After introducing the quantum mechanical arrow of time, Bohm claims that ‘irrevers-

ibility … is the asymmetry of the time evolution based on this arrow’ (Bohm and Harsh

man 1998, 185); therefore, ‘the exponential decay of resonances is just one manifestation

of a quantum mechanical arrow of time’ (Bohm et al. 1995, 2595). The close relationship

between the two concepts is also emphasized by the authors who analyze the TAQM
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school’s work: in one of his several papers devoted to study such a work, Bishop points

out that ‘intrinsic irreversibility is of prime interest to Bohm and his collaborators, as

well as to Prigogine’s Brussels–Austin group, because these types of irreversible processes

are related to arrows of time’ (Bishop 2004a, 1678).

In several previous papers. (Castagnino, Lara and Lombardi 2003a, 2003b Castag-

nino, Lombardi and Lara 2003; Castagnino and Lombardi 2004, 2005a, 2005b) we have

addressed the problems of irreversibility and of time’s arrow from a philosophically

grounded point of view: on the basis of an elucidation of the main concepts involved

in the debates, we have argued that these two problems are conceptually different and

that their identification is the source of many confusions. In this section, we shall

summarize the position developed in those previous works; this review will provide us

with the conceptual basis for the analysis of the TAQM school’s claims on the subject.

2.1. Time-Reversal Invariance and Reversibility

The two central concepts involved in the discussions about the problem of irreversibil-

ity are time-reversal invariance and reversibility. 

Definition 1: A dynamical equation (law) is time-reversal invariant if it is invariant
under the application of the time-reversal operator T.

The operator T performs the transformation t → −t and reverses certain magnitudes

which depend on the particular theory considered. Nevertheless, the central idea is that

T must reverse all the dynamical variables whose definitions in function of t are non-

invariant under the transformation t → −t. For instance, in classical particle mechanics,

the action of T reverses the momenta but not the positions of the particles: Tp = −−−−p and

Tq = q. In electromagnetism, T leaves the electric fields unchanged and reverses the

velocities of the charges and the magnetic fields, since such fields change their direction

in accordance with the velocities of the charges: Tv = −−−−v, TB = −−−−B and TE = E (for

details, cf. Earman 2002).

On the other hand, the concept of irreversibility has received many definitions in the

philosophical literature. In general, it is said that a process is reversible if the temporal

succession of the states e1, e2, …, en can occur in the opposite order, and irreversible

otherwise. Of course, in this characterization much depends on how the ‘can occur’ is

interpreted. When the opposite succession is precluded by the fact that certain initial

conditions never occur, irreversibility is considered as a de facto property. In turn, irre-

versibility is nomological when the opposite succession is excluded by the dynamical

law that rules the process.

With this broad characterization, there are many ways in which irreversibility is mani-

fested in nature. However, in TAQM, the interest is directed towards the dynamical

description of intrinsic irreversibility, that is, towards the irreversible behavior generated

by the dynamics of a closed quantum system. On the other hand, the irreversible

processes studied by this theory are decaying processes, such as the decay of excited states

of molecules and nuclei, the weak decay of elementary particles or certain resonances

such as those of the neutral Kaon system. In these cases, the time evolution tends to a
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final equilibrium state from which the system cannot escape: the irreversibility of the

process is due precisely to the fact that the evolution leaving the equilibrium state is not

possible. Since the aim of the TAQM is to find the adequate dynamical equations to

describe this kind of irreversible behavior, in this context the concept of irreversibility

can be elucidated in terms of the notion of attractor with no loss of generality.

An attractor is the subset of the phase space towards which a set of evolutions tends

for t → ±∞. We can extend this definition by considering a generalized concept of

attractor as a subset of the set of the possible states of a system towards which a set of

evolutions tends for t → ±∞; this concept can be applied not only to phase spaces but

also to any kind of sets of states. Examples of generalized attractors are the attractors of

classical dynamical systems (fixed point, limit cycle, fractal, etc) and any classical or

quantum equilibrium state. With this characterization, the concept of reversibility can

be defined as: 

Definition 2: A solution (evolution) e(t) of a dynamical equation is reversible if it has
no generalized attractors, for any representation of e(t)

When the time-dependent state e(t) can be represented as an n-uple of dynamical

variables in phase space, e(t) = (ν1(t), …, νn(t)), reversibility requires that, for any

dynamical variable νi(t), the limit limt→±∞ νi(t) does not exist. In this case, it can be

said that the evolution e(t) is reversible if it has no attractors in phase space.

Independently of the details of these definitions (for further discussions, cf. Albert

2000, Arntzenius 2004), it is quite clear that the concepts of time-reversal invariance

and irreversibility are different to the extent that they apply to different mathematical

(physical) entities:1 whereas time-reversal invariance is a property of dynamical

equations and, a fortiori, of the sets of its solutions, reversibility is a property of a single

solution of a dynamical equation. Furthermore, both properties are not even correlated;

in fact, they can be combined with each other in the four possible cases (for examples

of the four cases, cf. Castagnino, Lara and Lombardi 2003a).

When the concepts of time-reversal invariance and reversibility have been carefully

distinguished, the problem of irreversibility can be clearly stated: how to explain irrevers-
ible evolutions in terms of time-reversal invariant laws. Let us note that this characteriza-

tion of the problem includes the usual definition in terms of thermodynamic concepts,

since entropy increase is a feature of irreversible thermodynamic evolutions that

should be explained in terms of the time-reversal invariant laws of mechanics.

However, our approach is more general than the usual one since it also includes other

interesting cases of irreversibility, like those studied in TAQM.

This characterization of the problem of irreversibility shows that, in principle, there

is no conceptual obstacle to its solution: nothing prevents a time-reversal invariant

equation from having irreversible solutions. Of course, although the conceptual

answer is simple, a great deal of theoretical work is needed to obtain irreversible evolu-

tions from an underlying time-reversal invariant dynamics. But the point to stress here

is that the question about the arrow of time does not need to be invoked for addressing

the problem of irreversibility. In fact, when we talk about entropy-increasing

processes, we are presupposing an entropy increase towards the future; or when we
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consider a process going from non-equilibrium to equilibrium, we implicitly locate

equilibrium in the future. In general, any evolution that tends to an attractor is

conceived as approaching it towards the future: the distinction between past and

future is usually presupposed in the traditional treatments of the problem of irrevers-

ibility. This is not a shortcoming of those treatments, since their aim is to explain irre-

versibility and not to seek a physical distinction between the two directions of time.

However, such a distinction becomes the central point when the arrow of time is the

question at issue.

2.2. The problem of the Arrow of Time

The problem of the arrow of time owes its origin to the intuitive asymmetry between

past and future. We experience the time order of the world as ‘directed’: if two events

are not simultaneous, one of them is earlier than the other. Moreover, we view our

access to past and future quite differently: we remember the past and predict the future.

The ultimate metaphysical nature of time has been one of the traditional interests of

philosophy since its birth. There seems to be something essentially evasive in our expe-

rience of time and its ‘flow’ from past to future through the present. Here, we shall not

discuss the questions related with the time-asymmetry of our experience of time. As in

the case of irreversibility, we shall address The Problem of the Arrow of Time within

the limits of physics. In this context, the problem arises when we seek a physical corre-
late of the intuitive asymmetry between past and future: do physical theories pick out

a preferred direction of time?

The main difficulty to be encountered in answering this question depends on our

anthropocentric perspective: the difference between past and future is so deeply

rooted in our language and our thoughts that it is very difficult to shake off these

temporally asymmetric assumptions. In fact, traditional discussions around the prob-

lem of the arrow of time are usually subsumed under the label ‘the problem of the

direction of time’, as if we could find an exclusively physical criterion for singling out

the privileged direction of time, identified with what we call ‘the future’. However,

there is nothing in physical evolution laws that distinguishes, in a non-arbitrary way,

between past and future as we conceive them in our ordinary language. It might be

objected that theoretical physics implicitly assumes this distinction with the use of

temporally asymmetric expressions, like ‘future light cone’, ‘initial conditions’,

‘increasing time’, and so on. However, this is not the case, and the reason relies on the

distinction between conventional and substantial. 

Definition 3: Two objects are formally identical when there is a permutation that
interchanges those two objects and nothing else in the system to which they belong,
and preserves all the system’s structural properties and relations.

Examples of formally identical objects are the two semicones of a light cone and the

two spin senses. 

Definition 4: We shall say that we establish a conventional difference between two
objects when we call two formally identical objects with two different names.
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This is the case when we assign different signs to the two spin senses, or different

names to the two light semicones. 

Definition 5: We shall say that the difference between two objects is substantial when
we assign different names to objects that are not formally identical (Penrose 1979,
Sachs 1987). In this case, although the particular names are conventional, the differ-
ence is substantial.

In the case of fundamental physics, the labels ‘past’ and ‘future’ are used in a

conventional way. Therefore, the problem of the arrow of time cannot be posed in

terms of singling out the future direction of time: it becomes the problem of finding a

substantial difference between the two temporal directions. Therefore, we cannot project

our independent intuitions about past and future or our technological abilities for

solving the problem without begging the question. When we want to address the prob-

lem of the arrow of time from a perspective purged of our temporal intuitions, we

must avoid the conclusions derived from subtly presupposing time-asymmetric

notions. As Huw Price (1996) claims, it is necessary to stand at a point outside of time

and to adopt the ‘view from nowhen’: this atemporal standpoint prevents us from using

temporally asymmetric expressions in a non-conventional way.2

But then, what does ‘the arrow of time’ mean when we accept this constraint? Of

course, the traditional expression coined by Eddington has only a metaphorical sense.

We recognize the difference between the head and the tail of an arrow on the basis of

its geometrical properties; therefore, we can substantially distinguish between both

directions, head-to-tail and tail-to-head, independently of our particular perspective.

Analogously, the problem of the arrow of time should be conceived in terms of the possi-
bility of establishing a substantial distinction between the two directions of time exclusively
by means of arguments based on theoretical physics.

2.3. Time-Symmetric Twins

When the difference between the problems of irreversibility and of time’s arrow has

been accepted, a new question arises: why is time-reversal invariance an obstacle to

solve the problem of the arrow of time?

Already in 1912, Ehrenfest and Ehrenfest (1959) noted that when entropy is defined

in statistical terms, if the entropy of a closed system increases towards the future, such

an increase is matched by a similar increase in the past of the system. This old discussion

can be generalized to any kind of evolution arising from time-reversal invariant laws:

if et is a solution of a time-reversal invariant law L, then Tet is also a solution of L. We

have called these two solutions ‘time-symmetric twins’ (cf. Castagnino, Lara and

Lombardi 2003a; Castagnino and Lombardi 2004): they are twins because, without

presupposing a privileged direction of time, they are only conventionally different; they

are time-symmetric because one is the temporal mirror image of the other. The tradi-

tional example of time-symmetric twins is given by electromagnetism, where dynamical

equations always have advanced and retarded solutions, respectively related with

incoming and outgoing states in scattering as described by Lax-Phillips’s (1979) theory.

With this terminology, we can say that a time-reversal invariant theory always produce
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time-symmetric twins: the obstacle to solve the problem of the arrow of time relies on

the fact that, in the context of the theory, the twins are only conventionally different.

The traditional arguments for discarding one of the twins and retaining the other in

general invoke time-asymmetric notions which are not justified in the context of the

theory. For instance, the retarded nature of radiation is usually explained by means of

de facto arguments referred to initial conditions: advanced solutions correspond to

converging waves that require a miraculous cooperative emitting behavior of distant

regions of space at the temporal origin of the process. A different but related argument

is put forward by those who appeal to the impossibility (or high difficulty) of preparing

time-reversed states in laboratory experiments such as experiments of scattering. It

seems quite clear that this kind of argument, not based on theoretical considerations,

is not legitimate in the discussions about time’s arrow:3 they presuppose the arrow by

introducing the difference between the two directions of time from the very beginning.

In other words, they violate the ‘nowhen’ requirement of adopting an atemporal

perspective purged of temporal intuitions like those related with the asymmetry

between past and future or between initial and final conditions. Therefore, from an

atemporal standpoint, the challenge consists in supplying a non-conventional

theoretical criterion for choosing one of the time-symmetric twins as the physically

meaningful one: such a criterion will establish a substantial difference between the two

members of the pair and, a fortiori, between the two directions of time.

3. Rigged Hilbert Space Formalism in Time-Asymmetric Quantum Mechanics

Since the proposal of the TAQM school is based in the use of rigged Hilbert spaces

(RHSs), in this section we shall review the features of this formalism that will be

relevant to our further discussions.

A RHS (Gel’fand and Vilenkin 1964) is a triplet of spaces: 

where: (i) [hamilt]  is an infinite-dimensional separable Hilbert space, (ii) Φ is a topological

vector space, dense in [hamilt] ,4 and (iii) Φ× is the antidual space of Φ, and its elements are

continuous and antilinear functionals F : Φ → �, whose action on φ ∈ Φ is usually

expressed as 〈φ|F〉 (Dirac’s notation). Under general assumptions, any operator A on

[hamilt]  can be extended into the antidual Φ× as A× by the duality formula: 

where A† is the adjoint of A, and A× is a linear and continuous operator on Φ×.5

Different realizations of RHSs have been used in physics for distinct purposes. For

instance, the Schwartz space S has been adopted to give a rigorous mathematical foun-

dation to Dirac’s formalism. In TAQM, Bohm and Gadella (1989) introduced the

following structure: 

〈 〉 = 〈 〉 ∀ ∈ ∀ ∈× ×A F A F F† | |       ,  , ( )φ φ φ Φ Φ 2
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where    is the space of the Hardy functions on the upper (lower) half-plane,

S is the Schwartz space, and  indicates the restriction of the functions of  to
+. The vector states φ± ∈ Φ± correspond to wave functions whose energy representa-

tion, φ±(ω) = 〈ω|φ±〉, belong to the space  
As a consequence of the use of Hardy functions in this realization, the original group

of evolution operators of standard quantum mechanics, Ut (t ∈ ), is split into two

semigroups  and  where the semigroup generators H± are the

restrictions of the self-adjoint operator H to the subspaces Φ±. Then, the time evolu-

tions in the antiduals spaces  are given by the duality formula (2): 

where  and  are operators defined on  and  respec-

tively, and  are the extensions of the self-adjoint operator H to the subspaces 

(Bohm and Gadella 1989, Bohm and Scurek 2000, Bohm, Loewe and van de Ven 2003).

In addition to the states φ± ∈ Φ± with smooth wave functions φ±(ω), this realization

of the RHS formalism introduces new generalized vectors, that is, functionals on the

spaces Φ±. Loosely speaking, in a RHS, the smaller the space Φ is, the bigger the space

Φ× is. In this particular realization, the spaces Φ± are restricted enough to allow their

antiduals  to contain not only Dirac kets, but also more general kets. In fact, besides

eigenkets with real eigenvalues, the spaces  may also contain eigenvectors of the

Hamiltonian having complex eigenvalues. For instance, there may exist a ‘decaying
Gamow vector’  and a ‘growing Gamow vector’  such that they are

eigenvectors of  and  with complex eigenvalues  and 

 respectively, with Γ > 0 (Bohm and Gadella 1989, Bohm, Loewe and van de Ven

2003):

The Gamow vectors are related with resonances, which are usually described by means

of the scattering operator S in the energy representation, S(ω):6 the analytical continu-

ation of S(ω) in the upper and the lower half-planes of the complex energy plane

possesses at least a pair of complex conjugate poles zR, and  which turn out to be

the complex eigenvalues of the Hamiltonian (Gadella 1997).7 The imaginary part of

these eigenvalues is precisely what leads to exponentially growing and decaying evolu-

tions. In fact, since the Gamow vectors belong to the antidual spaces , their time

evolution has to be computed by means of the duality formula (2): 

�+

�

�

U et
iH t+ −= + U et

iH t− −= − ,

Φ±
×

〈 〉 = 〈 〉 ∀ ∈ ∀ ∈ ∀ ≥−
+ + + + +× + +

+
+

+
×U F U F F tt tφ φ φ|   | , , ( )Φ Φ 0 4
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Therefore, for ∀t ≥ 0: 

This expression represents an exponentially decaying process with lifetime  This

means that ΨD describes an irreversible evolution that tends to 0 for t → ∞
Analogously, ΨG describes an irreversible evolution that tends to 0 for t → −∞ (for a

recent review, cf. Civitarese and Gadella 2004).

4. Irreversibility in Time-Asymmetric Quantum Mechanics

As is well known, in standard quantum mechanics the time evolution of a state vector

belonging to the Hilbert space [hamilt]  is given by a unitary evolution governed by the

Schrödinger equation. These evolutions are always reversible: they have no limit for t →
±∞ because the unitary operator Ut does not change the angle of separation (the inner

product) or the distance (the square modulus of the difference) between vectors

representing two different states. However, there are several quantum phenomena,

experimentally obtained in laboratory, that clearly manifest irreversible decaying

processes. Quantum mechanics in RHS is proposed as the formal framework for

describing this kind of quantum irreversibility.

In its many works, the TAQM school seems to suggest that the fact that evolutions

are described by means of semigroups rather than groups is what permits irreversibility

to be modeled in a natural way. For instance, according to Antoniou and Prigogine, semi-

groups are the formal elements that describe the intrinsic irreversibility of large Poincaré

systems where the number of degrees of freedom tends to infinity and ‘continuous sets

of resonances’ arise; in particular, the split of Ut into two semigroups,  and

 ‘is the essence of intrinsically irreversible representations of dynamics’ (Anto-

niou and Prigogine 1993, 459). For Bohm, the time-asymmetry of the new theory

consists in its ‘lack of symmetry with respect to time-reversal transformation’ (Bohm

et al. 1997, p 499) (‘non-time-reversal invariance’ in our terms) which, in turn, is the

consequence of the difference between the two semigroups of evolution operators

defined for t ≥ 0 and t ≤ 0. But he also considers that the time-reversal invariance of the

quantum theory in Hilbert space ‘is particularly detrimental for the description of decay

processes and resonance scattering, which are intrinsically irreversible processes’

(Bohm, Loewe and van de Ven  2003, 556); on the contrary, his theory leads to ‘the incor-

poration of time-asymmetry in the quantum mechanical time evolution, of which the

irreversibility of the (undisturbed and unobserved) decay of a resonance is a special case’

(Bohm, Gadella and Mithaiwala 2003, 117). Bohm is even more clear about this

〈 〉 = 〈 〉 ∀ ∈ ∀ ≥+ +
×+ + − +

+e e tiH t D iH t Dφ φ φ| | , ( )Ψ Ψ Φ 0 8

〈 〉 = 〈 〉 ∀ ∈ ∀ ≤− −
×− − − −

−e e tiH t G iH t Gφ φ φ| | , . ( )Ψ Ψ Φ 0 9

〈 〉 = 〈 〉 = 〈 〉+ − + − − + − −+
×

φ φ φ| | | . ( )
( )

e e e eiH t D D i w i t D iw t tR RΨ Ψ Ψ
Γ Γ
2 2 10

τ = 2
Γ .

U tt
+ ≥( )0

U tt
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relationship between semigroups and irreversibility when he asserts that, in the new

formulation of quantum mechanics, ‘the semigroup arrow is interpreted as microphys-

ical irreversibility’ (Bohm et al. 1995, 2593) and that ‘the semigroup, 

expresses intrinsic irreversibility on the microphysical level’ (Bohm and Harshman

1998, 233; for a similar claim, cf. 189). These claims show that the TAQM school seems

to establish a close link between the non time-reversal invariance of the theory, expressed

by semigroup evolution laws, and the irreversibility of the processes described by it, as

if the irreversible character of the particular evolutions were the consequence of the fact

that they are described by semigroups. In fact, the relevance of the use of RHSs has been

interpreted in this sense. For instance, Bishop says that ‘one of the important features

of the RHS is that evolution operators are often elements of semigroups rather than

groups, so that irreversible behavior can be modeled naturally’. (Bishop 2004b, 17), and

that ‘compared to the standard HS framework, the RHS framework provides a signifi-

cant advantage in the description of irreversible processes in that semigroup evolutions

arise naturally in the latter’ (Bishop 2004a, 1685), since ‘semigroups of operators are

the appropriate operators for the evolution of intrinsically irreversible processes’

(Bishop 2004a, 1679). The same idea reappears when the author discusses, in particular,

the works of Prigogine’s and Bohm’s groups: ‘the intrinsic irreversibility of LPS [large

Poincaré systems] must be described by semigroups’ (Bishop 2004b, 18; our italics);

‘these semigroups fall out of the analysis quite naturally in the RHS framework providing

a rigorous description of irreversible behavior in a scattering experiment’ (Bishop 2004a,

1680). In this section, we shall argue that, when the RHS’s realization used by the TAQM

school is analyzed from a mathematical viewpoint, the supposed link between the semi-

group evolution laws ant the irreversibility of the processes described by the theory is

not as close as these claims seem to suggest. In order to develop our argument, we have

to begin with recalling the definition of Hardy functions.

A function f(x) is a Hardy function on the upper (lower) half-plane Im z > 0 (Im z <

0) of the complex plane,  iff: 

(i) f(x) is a complex function of real variable, 

(ii) f(x) represents the boundary values of an analytic function f(z) on the upper

(lower) half plane Im z > 0 (Im z < 0) of the complex plane. This means that, for

any y0 > 0, y0 ∈ , the complex function f(z) = f(x + iy0) (f(z) = f(x − iy0)) is

analytic in the upper (lower) half-plane. In this case, it is said that f(z) is the analyt-
ical continuation of the function f(x) in the upper (lower) half-plane.

(iii) The following inequality holds: 

where the sign + (−) corresponds to functions defined on the upper (lower) half plane,

and the constant K depends on f(z).8

A Hardy function on the upper (lower) half-plane is called ‘smooth’ if it is infinitely

differentiable and fast decreasing. Therefore, the space of smooth Hardy functions on

the upper (lower) half-plane is the intersection between the Hardy space  and

e tiH t− +
×

≥, , 0

f : � �→

�

sup | ( )| ( )y f x iy x K
0 0 0
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∞
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the Schwartz space S. As a consequence of a theorem by Paley and Wiener (1934), the

intersections  are dense in ; then, if we endow  with the metric

topology inherited from S, it can be shown that 

are RHSs (cf. Bohm and Gadella 1989). In turn, as a consequence of a result of van

Winter (1974), any f+(z) (f− (z)) analytic in the upper (lower) half plane and fulfilling

condition (iii) is uniquely determined by its boundary values on the positive real semi-

axis. Therefore, instead of working with  , we can work with the restriction of

the functions of   to +:  . Since it can be proved that both

 are dense in L2 ( +) (Bohm and Gadella 1989), then 

are also RHSs: these are the particular realizations used in TAQM.

When time evolutions are governed by a unitary operator Ut, the time-reversal

invariance of the evolution law implies that the evolution operators Ut (t ∈ ) form a

group, in particular, that there exists an operator U−t such that UtU−t = I. By contrast,

the time-evolutions in the TAQM’s formalism are described by the operators  and

, which are defined only for t ≥ 0 and t ≤ 0, respectively; this means that  with

t < 0 and  with t > 0 do not exist and, therefore, the sets { : 0 ≤ t ∈ } and

{ : 0 ≥ t ∈ } of evolution operators form two semigroups. This is what breaks

down the time-reversal invariance of the original theory: now, we have two semigroup

evolution laws, each of which is non-time-reversal invariant. In turn, semigroups arise

as a result of using Hardy functions in this particular realization of the RHS formalism.

Such a mathematical result can be understood by considering the action of the evolu-

tion operator U−t = eiHt on the vectors φ± ∈ Φ±, where U−t is the adjoint (inverse) of

Ut.
9 The operator U−t is well defined on Φ± as subspaces of the Hilbert space on which

U−t acts; however, its behavior on Φ+ and Φ− is very different for different values of t.
In fact, it is desired that the action of eiHt turn smooth Hardy functions on the upper

half-plane into smooth Hardy functions on the upper half-plane: 

However, this requirement is not fulfilled for all values of t, since the third property in

the definition of the Hardy functions (Equation 11) does not hold for t < 0. Precisely,

only for t ≥ 0: 

An analogous argument can be applied to functions  the evolu-

tion operator eiHt turns smooth Hardy functions on the lower half-plane into smooth
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Hardy functions on the lower half-plane only for t ≤ 0 (cf. Bohm and Gadella 1989).

This mathematical argument clearly shows that the impossibility of defining an evolu-

tion operator for −∞ < t < ∞ depends on the third property in the definition of the

Hardy functions, which implies that, for any Hardy function φ± (ω) and for any y0 > 0,

the functions φ± (ω ± iy0) ei(ω±iyo)t must be square-integrable, and all the integrals must

be bounded by the same constant K > 0. This means that the non-time-reversal invari-

ance of the theory is a consequence of working with a particular realization of the RHS

formalism, based on Hardy functions. 

On the other hand, in the TAQM’s formalism, irreversibility is introduced by the

fact that processes that exponentially decay (grow) as  can be obtained: they

have a well-defined limit for t → ∞ (t → −∞). And this, in turn, depends on the exist-

ence of the decaying (growing) Gamow vector ΨD (ΨG), which is an eigenvector of

the Hamiltonian with complex eigenvalue . The possi-

bility of defining Gamow vectors is a result of using functions that can be analytically
continued in the lower and in the upper half-planes of the complex energy plane: each

pair of Gamow vectors corresponds to the resonance determined by the pair of poles

zR and  of those analytical continuations. However, the property of having analyti-

cal continuation in the half-planes of the complex plane is weaker than the property

of being a Hardy function, since it is only the second property in the definition of the

Hardy functions. This means that the existence of Gamow vectors does not depend on

the use of Hardy functions, that is, on the semigroup description of the evolution law,

but on the use of functions having analytical continuations in the half-planes of the

complex plane. Therefore, the theory’s ability to describe irreversible evolutions is not

a consequence of the fact that time evolutions are described by semigroups, that is, it

does not depend on the non-time-reversal invariance of the theory. In fact, irrevers-

ible evolutions can also arise in a time-reversal invariant theory based on an adequate

RHS. For instance, Gamow vectors can be obtained in a realization of the RHS

formalism in terms of functions that have analytical continuations but are not Hardy

functions (cf. Castagnino and Laura 1997, Castagnino et al. 2002). In this case, one

may eventually define a pair of structures to describe resonances, one for positive and

the other for negative values of time (cf. Castagnino et al. 2001). Here, resonances are

also related with the poles of the corresponding function of complex variable;

however, since the constraint imposed by the Hardy functions does not exist, the time

evolutions are governed by group evolution laws, and as a consequence, the theory

remains as time-reversal-invariant as standard quantum mechanics in separable

Hilbert space.

Summing up, in TAQM the semigroup description of the evolution law, which leads

to the non-time-reversal invariance of the theory, is a consequence of the use of Hardy

functions in the realization of the RHSs; the irreversibility of certain evolutions is

obtained by means of Gamow vectors, which depend on working with functions that

can be analytically continued in the two half-planes of the complex energy plane and,

in particular, on the existence of poles in those continuations. But since the existence

of Gamow vectors does not depend on the use of Hardy functions, the theory’s ability

to describe irreversible evolutions is not a consequence of its non-time-reversal

e e
t t−Γ Γ

2 2( )
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invariance. Therefore, the links between semigroup evolution laws and irreversible

evolutions are not as strong as usually suggested in the literature on TAQM.

5. Time’s Arrow in Time-Asymmetric Quantum Mechanics

5.1. Prigogine’s Version

As is well known, one of the motivations of Prigogine in his scientific work was to intro-

duce in physics the objective difference between past and future that we perceive in our

life. Whereas we structure our experience in terms of an asymmetric time ‘directed’

towards the future, the fundamental theories of physics do not distinguish between the

two directions of time. According to Prigogine, the second law of thermodynamics

would establish the desired difference between the two directions of time; the problem

is that this non-time-reversal invariant law cannot be adequately explained in terms of

the underlying time-reversal invariant laws of mechanics. Prigogine’s aim was to throw

a bridge from being to becoming by introducing the arrow of time in the fundamental

laws of physics (Prigogine 1980). In this context his final purpose consisted in develop-

ing a theory where ‘the existence of an “arrow of time” is taken to be a fundamental fact’

(Misra and Prigogine 1983, 421). During a first period, from the 1960s to the mid-1980s,

Prigogine’s approach was based on the attempt to reconcile irreversible macroscopic

dynamics with reversible microscopic dynamics in highly unstable systems by means of

a similarity transformation mapping trajectory descriptions of unstable classical systems

into a description in terms of probabilistic Markov processes. However, several technical

difficulties of this first approach led him to adopt RHSs as the mathematical framework

for describing irreversible phenomena (for details, cf. Bishop 2004b). For him, the fact

that, in the appropriate realization of a RHS, evolution operators are elements of semi-

groups rather than groups, is the key element in the account for the arrow of time.

As we have seen, two RHSs arise when we use Hardy functions in the particular real-

ization of the space Φ, which determines the properties of the antidual Φ×. Thus, two

antiduals can be defined, , which contain not only all the physically realizable states,

but also generalized states like the Gamow vectors and the Dirac kets. Time evolution

has a semigroup structure on the antiduals: the semigroups  with t ≥ 0 and 

with t ≤ 0 govern the time evolutions on  and , respectively. We have also

shown that the fact that  and  form semigroups is what breaks down the orig-

inal time-reversal invariance of quantum mechanics in its standard version. On the

basis of these previous results, now it is not difficult to see that those two RHSs with

their corresponding evolution operators lead to time-symmetric twins, since they are

two non-time-reversal invariant formalisms, one the temporal mirror image of the

other. In fact, if T is the time-reversal operator in the Hilbert space [hamilt] , it can be readily

shown that (Gadella and de la Madrid 1999): 

and if T× is the extension of T to the antiduals : 

Φ±
×

Ut
+× Ut

−×

Φ+
× Φ−

×

Ut
+× Ut

−×
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If we want to distinguish between the two directions of time, t ≥ 0 and t ≤ 0, the chal-

lenge consists in supplying a non-conventional criterion, based on theoretical consid-

erations, for choosing one of the twins of each pair as the physically meaningful one.

In his analysis of Friedrichs model for quantum scattering, Antoniou and Prigogine

adopt a time-ordering rule to decide upon the direction of integration of the Hardy

functions around the poles in the upper and lower complex half-planes: ‘excitations are

considered as past oriented, therefore they are extended from the lower to the upper

half-plane. … de-excitations or mode–mode transitions are understood as future

oriented and they are extended from the upper to the lower half-plane’ (Antoniou and

Prigogine 1993, 454–455). On this basis, the authors conceive both Gamow vectors, ΨD

∈  and ΨG ∈ , as representing decaying processes, directed to the future and

to the past, respectively, and evolving according their corresponding semigroup of

evolution operators: ‘The unitary group Ut when extended from the Hilbert space [hamilt]

to the space  +  splits therefore into two semigroups, the forward semigroup

 describing decay in the future, and the backward semigroup 

describing decay in the past’ (Antoniou and Prigogine 1993, 459). This means that

 carries states into the forward direction of time and then describes evolutions

reaching equilibrium in the future;  carries states into the backward direction of
time and then describes evolutions reaching equilibrium in the past.

It is clear that the time-ordering rule does not yet answer the problem of the arrow

of time to the extent that we still have a pair of time-symmetric twins only convention-

ally different: the theory by itself gives no basis for selecting one of the elements of the

pair as the physically relevant one. Therefore, Antoniou and Prigogine adopt an obser-

vational criterion for retaining one of the semigroups and discarding the other: since

no physical system has ever been observed evolving to equilibrium towards the past, the

physically relevant semigroup of evolution operators is the semigroup corresponding

to , valid for t ≥ 0; this is ‘the semigroup corresponding to our observation’

(Antoniou and Prigogine 1993, 459; cf. also Petrosky and Prigogine 1997).

Although this appeal to observational considerations is a legitimate move in the

everyday work of physicists, it is not acceptable when the problem at issue is to supply

a conceptually adequate account of the arrow of time, since the fact that our observa-

tions are time-directed was known from the very beginning. Furthermore, the question

about the arrow of time arises precisely when we seek a physical correlate of that intu-

itive asymmetry between past and future. For this reason, the problem consists in

accounting for the difference between the two directions of time by means of theoretical
arguments.

Being perhaps aware that to use observational arguments in this context amounts

to begging the question, Antoniou and Prigogine appeal to a previous work by

Prigogine and George (1983), where the second law of thermodynamics is interpreted

as a selection principle on initial conditions, retaining only the conditions that lead to

equilibrium in the future. In a similar sense, when referring to such a work, Antoniou

and Prigogine (1993, 459) claim that the difference between the two directions of

T×
±
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time emerges ‘as a selection principle of the semigroup which reaches equilibrium in

our future’. With this move, the authors seem to endow the observational criterion

used to select the future directed semigroup and to disregard the past directed one

with a certain nomological character. But, if this is the case, the new strategy is even

more questionable than the previous one since it commits a petitio principii: now, we

have a theoretical criterion for retaining one semigroup, but such a criterion is

precisely the non-time-reversal invariant law whose microscopic foundation had to

be explained.

5.2. Bohm’s Version

Although the original aim of Bohm was focused on the description of the decaying

phenomena produced in quantum scattering, the scientific contact with Prigogine’s

group leads him to incorporate the interest in the issue of the arrow of time. In fact, in

several papers, he begins his technical presentation with a review of the different arrows

of time treated in the literature, including not only the arrows arising in the different

chapters of physics (the thermodynamic arrow TA, the radiation arrow RA, the

cosmological arrow CA) but also the psychological arrow of time (cf. Bohm et al. 1995,

introduction; Bohm and Harshman 1998, preface; cf. also Bohm et al. 1997, section 4).

In the context of this broad discussion, Bohm restricts his interest to the quantum

arrow of time (QAT), ‘given by the time evolution semigroup generated by the

Hamiltonian and used previously for the Gamow vectors’ (Bohm et al. 1995, 2593).

As we have seen, Prigogine and Bohm agree in the use of RHSs to develop their theo-

ries. However, there is a conceptual difference between the two groups with respect to

the interpretation of the formalism (for a comparison between both approaches, cf.

Bishop 2003, 2004b). Whereas, in Prigogine’s proposal, states and observables are

represented by mathematical objects belonging to the same spaces, Bohm introduces a

formal distinction between states and observables. In particular, Bohm replaces the

representational postulate of standard quantum mechanics—according to which states

are represented by the vectors of a separable Hilbert space and observables are repre-

sented by self-adjoint operators on that space—by a new postulate that distinguishes

between the mathematical descriptions of states ψ  and of observables ϕ: 

The new representational postulate asserts that the vectors |ψ〉 ∈  represent the

states of the system in the sense that a state is ρ = |ψ〉 〈ψ|, and the vectors |ϕ〉 ∈ 

represent the observables of the system in the sense that an observable is A = |ϕ〉〈ϕ|. If

the time t = 0 is considered as the time at which preparation ends and detection

begins, the energy distribution 〈ω|ψ〉 produced by the accelerator must be zero for t >
0, and the energy distribution 〈ω|ϕ〉 of the detected state must be zero for t < 0 (Bohm

et al. 1997, Bohm, Gadella and Mithaiwala 2003): 

{ } ( )� ≡ ⊂ ⊂− −
×Φ Φ 18�

{ } . ( )ϕ ≡ ⊂ ⊂+ +
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The time evolution for a state ρ = |ψ〉 〈ψ| (Schrödinger picture) is given by: 

This equation makes sense for t ≥ 0 since  for any ψ ∈ Φ− if and only if t ≤
0. This means that, although the energy distribution 〈ω|ψ〉 corresponding to the state

|ψ〉 is zero for t > 0, states evolve forward in time. On the other hand, the time evolution

for an observable A = |ϕ〉 〈 ϕ| (Heisenberg picture) is given by: 

This equation makes sense for t ≥ 0, since  for any ϕ ∈ Φ+ if and only if t
≥ 0. Therefore, observables also evolve forward in time. In turn, the Gamow vectors

 and  represent growing and decaying processes, respectively,

both evolving towards the future. However, the time evolution corresponding to the

growing Gamow vector ΨG can be defined only for t ≤ 0, and the time evolution corre-

sponding to the decaying Gamow vector ΨD can be defined only for t ≥ 0.

As we can see, Bohm’s approach breaks the symmetry between the time-symmetric

twins—resulting from the two semigroups of evolution operators—by means of a

new representational postulate which distinguishes between sates and observables. In

turn, such a distinction is grounded on the so-called ‘preparation-registration arrow of
time’, expressed by the slogan ‘no registration before preparation’ (Bohm et al.

1995).10 The key intuition behind this proposal is that observable properties of a

state cannot be measured until the state acting as a bearer of those properties has

been prepared. For instance, in a scattering process, it makes no sense to measure the

scattering angle until an incoming state is prepared by an accelerator. Sometimes, the

adoption of this arrow seems to be based on merely empirical considerations: ‘exper-

imentally, these two entities can be distinguished and can be given operational defi-

nitions: A state W is prepared by a preparation apparatus while an observable A is

registered by a registration apparatus’ (Bohm and Wickramasekara 2002, 316).

Nevertheless, in other cases, Bohm emphasizes that the preparation-registration

arrow does not have to be understood as expressing an experimental fact: the arrow

‘is also there without experimentalists performing any experiment’ (Bohm, Gadella

and Mithaiwala 2003, 138). In some papers, the preparation-registration arrow is

presented in terms of causality: ‘it is nothing but a general expression of causality’

(Bohm et al. 1995, 2594; for a similar claim, cf. Bohm and Harshman 1998, 208). Of

course, if the preparation-registration arrow is adopted by appealing to empirical

arguments or to a pretheoretical notion of causality, from a conceptual viewpoint

Bohm’s account of the arrow of time has the same shortcomings as Prigogine’s

| | ( )ϕ ω ϕ〉 ∈ 〈 〉 =+
×Φ 0 21for t < 0.
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proposal: neither of these two positions supply a conceptually adequate response to

the problem of the arrow of time in quantum mechanics.

Bohm’s proposal turns out to be more interesting from a philosophical point of view

when the intuition behind the preparation-registration arrow is conceived as having an

ontological content. This interpretation has been suggested by Bishop (1999): the

existence of a state is ontologically prior to the existence of its properties; therefore,

observable properties do not exist unless there exists a state which carries them. Of

course, this interpretation makes Bohm’s account of time’s arrow at the quantum

mechanical level subtler than the response given by Prigogine and his coworkers.

However, it is worth noting that the ontological assumption of the priority of states

over observables is based on the implicit adoption of an Aristotelian-style ontology of

substances and properties, where the ontological priority of the substance is a conse-

quence of the fact that it exists in and by itself, whereas properties require the substance

to exist. But, of course, from a different metaphysical picture (for instance, in a bundle-

theory metaphysics), the ontological priority of substances over properties cannot be

defended. Nevertheless, even if we accept a traditional ontology of substances and

properties, ontological priority implies nothing about temporal priority. If the asym-

metry between past and future is not presupposed, we cannot say that the ontologically

previous entity must also be temporally previous to the other: in fact, if we have not

defined the relation of ‘temporally previous’ in advance, we cannot relate ontological

priority with temporal priority. Even if we accept the ontological interpretation of the

preparation-registration arrow, the assumption of a correlation between ontological

priority and temporal priority is the result of the projection of our intuitions about past

and future into ontology, violating the ‘nowhen’ requirement of adopting an atempo-

ral perspective purged of time-asymmetric preconceptions.

This argument shows that the preparation-registration arrow says much more than

what ontological priority imposes: it presupposes the arrow of time in advance by

adding a particular temporal relationship to the ontological priority of states with

respect to observables. In fact, without the time-asymmetric intuition introduced by

the preparation-registration arrow, nothing prevents us from reversing the representa-

tional postulate by stating that  is the RHS for the representation of

observables, and  is the RHS for the representation of states. In this case,

we would obtain the temporal mirror image of Bohm’s theory, where the Gamow

vectors ΨG ∈  and ΨD ∈  correspond to growing and decaying processes,

respectively, both evolving towards the past. This new representational postulate

restores the symmetry because now we have two postulates leading to two non-time-

reversal invariant theories, one the temporal mirror image of the other: they also lead

to time-symmetric twins, and the challenge consists, again, in supplying a theoretical

and non-conventional criterion for retaining one of them and discarding the other.

When analyzed in detail, Bohm’s decision of selecting the future directed alternative is

not merely based on an ontological assumption, but on presupposing the arrow of time

from the very beginning on the basis of pretheoretical intuitions.

In conclusion, the TAQM school’s proposal, either in Prigogine’s or in Bohm’s

version, does not supply a conceptually acceptable answer to the problem of the arrow

Φ+
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×
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of time in quantum mechanics. We have argued elsewhere (Castagnino and Lombardi

2004, 2005a, 2005b) that this conclusion is not surprising to the extent that the prob-

lem of the arrow of time cannot be solved in local terms. Nevertheless, the detailed

discussion of this point goes beyond the limits of the present paper.

6. Conclusions

In this paper, we have shown that, although in the case of unitary evolutions time-

reversal invariance and reversibility seem to go hand in hand, both properties are

different to the extent that they are related with distinct features of the formalism:

whereas time-reversal invariance implies the group structure of the evolution opera-

tors, reversibility is a consequence of the unitary character of such operators. These

considerations are applicable to time-asymmetric quantum mechanics, where the non-

time-reversal invariance of the theory is due to the semigroup structure of the evolu-

tion laws which, in turn, is a consequence of the use of Hardy functions in the

realization of the RHS. In turn, the irreversibility of the evolutions is due to the

existence of Gamow vectors, which depend on the use, not of Hardy functions, but of

functions having analytical continuations in the imaginary half-planes of the complex

plane. Since irreversible evolutions given by Gamow vectors can be obtained in time-

reversal invariant versions of the theory where evolutions are described by groups, irre-

versibility is clearly not a consequence of semigroup evolution laws as it is usually

suggested.

With respect to the arrow of time, we have seen that the TAQM school does not solve

the problem either in Prigogine’s version or in Bohm’s version. In fact, we have

identified the time-symmetric twins in Prigogine’s and Bohm’s proposals, showing that

they do not supply a non-conventional and theoretically grounded criterion for select-

ing one of the twins as the physically relevant one.

Of course, these criticisms do not affect the scientific value of the TAQM school’s

works: time-asymmetric quantum mechanics is a powerful theory for the description

of intrinsic irreversibility. Here, our only purpose has been to supply a conceptual clar-

ification of the school’s proposal, where the discussions about irreversibility and time’s

arrow are closely entangled, with no clear elucidation of the concepts involved in the

arguments. Our main aim is to contribute to the adequate interpretation of a theory

that has been successfully applied in different areas of physics.
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Notes

[1] From here, we will not distinguish between mathematical entities (equations and solutions)

and physical entities (laws and evolutions).

[2] The fact that we recognize the relevance of Price’s claims about the need of adopting the

‘nowhen’ standpoint does not mean that we agree with his proposal for the solution of the

problem of time’s arrow (for a detailed discussion, cf. Castagnino, Lombardi and Lara 2003;

Castagnino and Lombardi 2005a, 2005b).

[3] Let us note that we are saying that these arguments are not legitimate in the discussions about

the arrow of time: we are not talking about the problem of irreversibility, where such argu-

ments may be acceptable when de facto irreversibility is the question under discussion.

[4] The space Φ has its own topology, which is stronger than the topology that Φ possesses as a

subspace of  [hamilt] . The topology in Φ is not given by a norm but usually by a countable infinite

family of norms.

[5] The assumptions are: (i) the domain D(A†) of A† includes the space Φ, (ii) for each φφφφ ∈ Φ, A†

φφφφ ∈ Φ, and (iii) the A† is continuous on Φ in the own topology of Φ (cf. Schäffer 1970). The

duality formula also applies when A is self-adjoint; in this case, A† = A, and the duality

formula becomes: 

[6] The possibility of complex generalized eigenvalues of self-adjoint operators was suggested by

Gamow (1928) in the context of the decay of quantum systems. As poles of the resolvent,

Gamow vectors were first introduced by Grossmann (1964), independently of RHSs. Later,

they were unexpectedly obtained in the RHS formalism as generalized eigenvectors of self-

adjoint operators with complex eigenvalues (Lindblad and Nagel 1970). The association

between the poles of the S-matrix with the vectors in the RHS was established in the 1980s

(Bohm 1981, Gadella 1983, 1984): these works showed that RHSs supply the formal represen-

tation to the decaying states and resonances heuristically constructed by Gamow.

[7] Second-and higher-order poles of the scattering operator S are treated in Bohm et al. (1997)

and in Antoniou, Gadella and Pronko (1998).

[8] Therefore, any f(z) analytic in the upper (lower) half-plane fulfilling condition (iii) uniquely

determines its boundary values on the real line, given by a Hardy function on the upper (lower)

half-plane. After the Titchmarsh theorem (Titchmarsh 1937), the reciprocal is also true.

[9] Recall that we want to obtain the evolution operator  for the vectors belonging to 

and, therefore we have to begin with the adjoint of  (cf. the duality formula (4))

[10] Bohm recognizes that the origin of the idea of a preparation-registration arrow can be traced

back to the works of Günther Ludwig (1983–1985).
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