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Abstract. We propose a definition of physical objects that aims

to clarify some interpretational problems in quantum mechanics.

We claim that the transformations induced by an objective prop-

erty of a physical system must leave invariant all the other objec-

tive properties of the same system. The uncertainty principle is

understood as a natural consequence of the imbrication between

objective properties and non-objective properties. It follows from

the proposed definition that in classical mechanics non-objective

properties are wrongly considered objective. We conclude that, un-

like classical mechanics, quantum mechanics provides a complete

objective description of physical systems.

I. Introduction

According to Einstein, quantum mechanical description of physical

reality cannot be considered complete. In his words, there are ‘ele-

ments of physical reality’ that do not ‘have a counterpart in the phys-

ical theory’.1 In classical mechanics, the exact position and the exact

momentum of a particle can be simultaneously predicted for all times

from a given set of initial conditions. In quantum mechanics, on the

other hand, the momentum of a system characterized by a well-defined

position cannot be predicted by the theory (and vice versa). More gen-

erally, Heisenberg’s uncertainty principle states that canonically con-

jugated variables can be simultaneously predicted up to some inversely

1This is the conclusion of the seminal Einstein-Podolsky-Rosen article (Einstein

et al. [1935]). An historical account can be found in (Mittelsteadt [2006]).
1
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correlated uncertainties. The conceptual content of this principle has

been the object of a heated debate that remains unresolved to this day.2

In this paper, we argue that quantum mechanics can be understood

as the formalization of a rigorous definition of physical objects. Ac-

cording to the standard characterization, the objective properties that

define a physical object are invariants under a certain set of trans-

formations (Auyang [1995]; Born [1998]; Nozick [1998]; Weyl [1952]).

However, there is no general prescription for determining which trans-

formations are needed in order to define the objective properties of a

given physical system. Our definition of physical objects claims that

these transformations are induced by the objective properties them-

selves. In other words, we argue that the transformations induced by

the objective properties of a physical system must be automorphisms of

the system. This definition imposes a compatibility condition on the set

of objective properties of a given object. This condition requires that

an objective property be invariant under the transformations induced

by the other objective properties of the same object. The significant re-

sult is that this compatibility condition is not consistent with classical

mechanics, but rather with quantum mechanics.

According to our definition of physical objects, the uncertainty prin-

ciple is the formal translation of the imbrication between objective

properties and non-objective properties. As we shall see, asking which

position is objective in a quantum system with a well-defined momen-

tum is as nonsensical as asking which side of a die is the objective (or

privileged) one. This means that in classical mechanics non-objective

elements of physical reality are wrongly considered objective. On the

other hand, we claim that quantum mechanics provides a complete de-

scription of all the objective properties of a physical object. It follows

that the quantum description of a physical object is not incomplete,

2Many interpretations were proposed for the uncertainty principle. It was alter-

natively interpreted as a consequence of the unpredictable perturbations in experi-

mental measures of physical quantities, as a result of the mutual incompatibility of

certain experimental contexts, in terms of a subjective lack of knowledge of well-

defined objective states, as a description of the statistical spread in an ensemble of

similarly prepared systems, as the manifestation of an ontological indeterminate-

ness in the definition of physical quantities, etc. (see for example Hilgevoord and

Uffink [2006]).
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but rather that classical states are specified by means of too many vari-

ables. Since quantum states only describe all the objective properties

of the object, they depend on half of the classical variables.

This article develops, in more conceptual terms, the interpretation

of quantum mechanics begun in Catren [2008]. This interpretation

is founded on an analysis of the symplectic formulation of mechanics

(Abraham and Marsden [1978]; Libermann and Marle [1987]; Marsden

and Ratiu [1999]; Souriau [1997]) and the geometric quantization for-

malism (Brylinski [1993]; Kostant [1970]; Souriau [1997]; Woodhouse

[1992]). In Section II, we propose a definition of physical objects. In

Section III, we consider the dynamics of physical objects. In the last

Section we summarize the obtained results. Finally, in the appendix

we give a brief description of the relevant mathematical structures from

symplectic geometry.

II. Phases of an elephant

In this section, we propose a definition of physical objects by means

of two postulates. It is possible to show that these postulates cannot be

implemented in the framework of classical mechanics (see appendix and

Catren [2008]). On the contrary, quantum mechanics can be considered

a satisfactory implementation of the proposed definition of physical

objects.

Physical experience is not a chaotic swarm of disconnected empiri-

cal data. As Whitehead put it: ‘Sometimes we see an elephant, and

sometimes we do not’ (Whitehead [1978], p. 4). In other words, physi-

cal reality is organized in different objective configurations that can be

identified and recognized. According to a standard characterization, an

object is a physical configuration that can be completely characterized

by specifying the set of the object’s objective properties. Such a set

will be called the eidos ε of the physical object.3 In order to unpack

this characterization, it is necessary to specify what we understand by

objective properties. As we shall see, the characterization of objective

properties as invariants under a certain set of transformations does

not suffice for defining the notion of objective properties. In order to

achieve a satisfactory definition of physical objects, it is necessary to

take into account that a physical objet does not only have objective

3This Husserlian terminology is borrowed from (Heelan [2004]).
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properties that allow us to identify and recognize it: it also has different

phases, aspects or profiles. In general, various kinds of transformations

can be performed in order to observe the different phases of an object.

For instance, there are objects that exhibit different phases when ro-

tated around a given axis. The transformations that interchange the

phases of an object will be called phase transformations of the object.

A set of phases connected by means of a given one-parameter family

of phase transformations will be called orbit of phases. For instance,

the different phases observed when the object is rotated around a given

axis belong to the same orbit of phases. Since a phase transformation

only modifies the observed phase, the objective properties that de-

fine the object are necessarily invariant under phase transformations.

In order to stress this fact, phase transformations will also be called

automorphisms of the object. In this way, we recover the idea that

an object can be defined by means of the invariants under a certain

group of transformations (see for example Auyang [1995]; Born [1998];

Nozick [1998]). Following H. Weyl, we can thus state that ‘[...] objec-

tivity means invariance with respect to the group of automorphisms’

(Weyl [1952]). Nevertheless this standard characterization is insuffi-

cient for defining objectivity. This problem was clearly stated by R.

Nozick [1998]: ‘The notion of invariance under transformations cannot

(without further supplementation) be a complete criterion of the ob-

jectivity of facts, for its application depends upon a selection of which

transformations something is to be invariant under.’4 The definition

of physical objects that we will propose provides this ‘further supple-

mentation’ by stating that the object’s automorphisms are induced by

the objective properties of the object. Hence, not only is an objective

property invariant under all the object’s automorphisms, but it also

induces a one-parameter family of automorphisms.

In order to formalize this idea, we will propose a definition of physi-

cal objects by means of two fundamental postulates. To do so, we will

introduce some terminology. We will say that a physical object realizes

a certain number of universal operators in a way that depends on the

objet. For example, an object that can be rotated around the z-axis

realizes (in a particular way that depends on the objet) the universal

4Analogously, H. Weyl continues the preceding quotation as follows: ‘Reality

may not always give a clear answer to the question what the actual group of auto-

morphisms is [...]’ (Weyl [1952]).
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operator that generates universal rotations around the z-axis. We will

sometimes say that a universal operator makes ingression into the ob-

ject in a way that depends on the objet. The important point is that

two different objects can realize different universal operators or realize

differently the same universal operator. Hence, an object can be char-

acterized by the way in which it realizes a particular set of universal

operators. Therefore, there are two ways of characterizing an object,

namely by means of its objective properties or by specifying how it

realizes certain universal operators. Our first postulate unifies these

two ways of characterizing an object:

Postulate ♠: the value of an objective property of a given object

specifies the particular way in which the object realizes a universal

operator.

The ingression of a universal operator into an object defines what we

will call an eigenoperator of the object. For example, there are objects

defined (at least partially) by the objective property that specifies how

the universal operator that generates universal rotations around the

z-axis makes ingression into the object. This ingression defines an

eigenoperator that generates the object’s rotations around the z-axis.

In this way, postulate ♠ states that the particular value p0 that an

objective property p takes on a given object O defines an ingression

application ιp0
of the form:

ιp0
: universal operator ξp → eigenoperator v̂p (1)

Each possible value of the objective property p defines a different

ingression of the same universal operator ξp, that is to say a different

eigenoperator v̂p of O.

The second postulate of our definition of physical objects specifies the

nature of the transformations generated by the object’s eigenoperators:

Postulate ♣: the transformations generated by an object’s eigen-

operator are phase transformations.

In other words, a transformation generated by one of the object’s

eigenoperators is not an objective transformation of the object into

another object. In the previous example, this means that the object’s

rotation around the z-axis is not an objective transformation of the
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object, but rather an automorphism that leaves the objective prop-

erties invariant. These two postulates can be assembled together by

stating that an objective property specifies how a universal operator

is realized by the object in the form of an eigenoperator that gener-

ates automorphisms of the object. We will sometimes summarize this

characterization by saying that an objective property induces a one-

parameter family of automorphisms. In this way, the object’s eidos (i.e.

the set of its objective properties) defines the identity of the object by

inducing the phase transformations between its different phases. We

can therefore propose the following definition:

Definition: An object is a physical configuration that can be com-

pletely characterized by specifying the values of the objective properties

that induce all the object’s automorphisms.

We could say that this definition provides a rigorous formalization

of Weyl’s prescription: ‘Whenever you have to do with a structure-

endowed entity Σ try to determine its group of automorphisms, the

group of those element-wise transformations which leave all structural

relations undisturbed. You can expect to gain a deep insight into the

constitution of Σ in this way.’ (Weyl [1952]). In the case of the pro-

posed definition of physical objects, the objective properties that define

the object do induce the object’s automorphisms.

One significant consequence of this definition is that the phase trans-

formations induced by an objective property in the object’s eidos can-

not modify the other objective properties of the object. Objective prop-

erties must therefore be invariant under phase transformations induced

by the other objective properties of the same object. Let’s consider for

example an object defined by the eidos ε = {p1, p2, ..., pn}, where each

pi is an objective property of the object. This means that it is possi-

ble to completely characterize the object by the set of values that the

properties p1, p2, ..., pn take on the object. The standard definition of

objectivity requires that the value of each objective property pi be in-

variant under a certain group of transformations. Nevertheless – as we

have said before – it is not clearly stated which transformations have

to be considered. Our definition bypasses this flaw by stating that each

objective property pi induces a one-parameter family of automorphisms

of the object. Hence, we arrive at the conclusion that each objective

property has to be invariant under the automorphisms induced by all
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the other properties in the same eidos. This fact imposes a restrictive

condition on the eidos of an object. The eidos is not merely a collection

of unrelated objective properties. Each property has to satisfy the con-

dition of being invariant under the phase transformations induced by

all the others. If a property p1 is invariant under the phase transforma-

tions induced by p2, we will say that the properties are commensurable

or compatible. If a property is modified by the phase transformations

induced by an objective property in the object’s eidos, we will say that

the former is phased out by these phase transformations. Therefore,

the eidos is characterized by an internal structure that guarantees the

compatibility between the objective properties that define the object.5

The object will be completely determined if the eidos contains the

maximum number of mutually compatible properties. In particular, if

a property q is modified by the phase transformations induced by an

objective property p in the object’s eidos, then q cannot also be an

objective property of the object. This statement can be considered the

conceptual translation of the uncertainty principle. In particular, the

momentum p is a property that induces transformations in the position

q (and vice versa).6 Hence, if the momentum p is an objective property

in the object’s eidos, then the position q cannot also be an objective

property. The position q is rather a phase that changes when the ob-

ject is acted upon by the phase transformations induced by p. In other

words, since q and p are incompatible, they cannot both be objective

properties of the same object. Asking which position is objective in an

object with a well-defined momentum p is as nonsensical as looking for

the objective (or privileged) side of a die. Nevertheless, even if a die

has no objective side, it will show a particular side when thrown. This

does not mean that the resulting side was the objective but unknown

side of the die, nor that it becomes the objective side of a new die

produced by the toss. Analogously, even if a physical system with a

well-defined momentum p has no objective position q, it will appear in

a particular position q1 if a measurement of the position is performed.

5In technical terms, the action induced by a property g on a property f is given

by the Poisson bracket δgf = {f, g}. The requirement of internal consistency of

the eidos ε imposes the condition {f, g} = 0, ∀f, g ∈ ε. In other words, the eidos is

a commutative Poisson algebra.
6The Poisson bracket {q, p} = 1 means that the momentum p is the generator of

the infinitesimal canonical transformations of the position q (and vice versa).
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Fig. 1

This does not mean that q1 was the objective but unknown position of

the system, nor that q1 becomes the objective position of a new object

produced by the measurement.

Figure 1 resumes the proposed definition of physical objects. The

property p is an objective property of the object represented. The

value p0 of this property specifies how the universal operator ξp makes

ingression into the object. The ingression of the universal operator

ξp defines the eigenoperator v̂p. This eigenoperator generates phase

transformations that act upon the property q. Hence, the different

values of this property are just different phases in the orbit of phases

generated by the eigenoperator v̂p.

According to postulate ♣, the transformations induced by the ob-

jective properties of an object are phase transformations. As we have

shown, the uncertainty principle is a formal consequence of this pos-

tulate. If the momentum p is an objective property of an object, then

the position q is completely phased out by the phase transformations

induced by p. Since the classical definition of objective physical states

comprises both the exact position and the exact momentum of the sys-

tem, this postulate cannot be consistently implemented in the frame-

work of classical mechanics. We can also argue differently. If both

the position and the momentum were included in the object’s eidos,

then both the position and the momentum would be phased out by
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the phase transformations induced by the momentum and the position

respectively. Therefore, both the position and the momentum would

only be non-objective phases, and the physical system would have no

objective properties at all. We can thus conclude that the classical

definition of states by means of both q and p is incompatible with our

definition of physical objects. The classical definition of a physical

state is consistent only if we deny that the transformations induced

by an objective property of the system are phase transformations. In

fact, in classical mechanics the transformations induced by an objec-

tive property are not interpreted as phase transformations, but rather

as transformations between states that are objectively different. For

example, the transformations induced by the Hamiltonian are inter-

preted as temporal evolutions between different objective states. In

this way, the definition of classical states becomes consistent. Never-

theless, objective properties can no longer be defined as quantities that

induce the object’s automorphisms. Hence, the classical definition of

both objective properties and physical objects remains problematic.

The situation has thus been conveniently reversed: the problem is no

longer how to recover objectivity in quantum mechanics, but rather

how to define classical objects in a consistent manner.

For the sake of simplicity we have only considered the case of an

object with a well-defined momentum and a completely undetermined

position. The reciprocal case – a well-defined position with an unde-

termined momentum – is completely analogous. In the general case,

both the position and the momentum are subject to certain indetermi-

nacies. In fact, the flexibility of quantum mechanics’ formalism makes

it possible to define physical objects characterized by properties which

are neither objective properties nor phases, but rather a mixture of

both. In these cases, neither q nor p are sharp objective properties

of the object. For example, if q is an unsharp objective property of

an object, then the induced phase transformations are unsharp phase

transformations. Therefore, the conjugated momentum p is phased out

only partially. Hence, p is in turn an unsharp objective property that

partially phases out the coordinate q. Therefore, q cannot be a sharp

objective property (as it was assumed at the beginning) and the circle

closes consistently. This means that a certain property can be partially

considered an unsharp objective property of the object and partially a
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phase. It follows that the mere distinction between objective proper-

ties and phases does not suffice for treating generic cases. The resulting

subtle equilibrium between unsharp objective properties and unsharp

non-objective phases is formally governed by the uncertainty principle.

III. The revenge of Zeno

“[...] comment l’objet qui se meut serait-il en un point

de son trajet ?”

H. Bergson, La pensée et le mouvant (Bergson [1938,

p. 158])

The analysis presented in the previous section makes no reference to

temporal processes. Since physics, as it is usually understood, studies

the temporal evolution of physical systems, we will now introduce a

temporal parameter t. The consideration of temporal processes allows

to shift the discussion from momenta pi (observables that generate

infinitesimal canonical transformations of positions qi) to velocities q̇i

(infinitesimal temporal variations of qi).

We will begin by noting that an object O characterized by a well-

defined velocity lacks, by definition, a well-defined position. Analo-

gously, a nomad is a person characterized by the property of not hav-

ing a well-defined position. We claim that this trivial fact contains the

conceptual kernel of the uncertainty principle for positions and veloc-

ities. One might argue that this lack of a well-defined position can

be bypassed by decomposing the movement in instantaneous objects

Ot that evolve in time, that is to say that change objectively as time

passes. Even though the state of motion of the object O makes it

impossible to assign it a constant position, it might still be possible

to define the objective positions of the different instantaneous objects

Ot. According to the standard terminology, the objects Ot might be

called the instantaneous states of the object O. We will now analyze

whether this strategy can be consistently pursued in the framework of

our definition of physical objects.

In what follows, we will restrict the analysis to the simplest case.

Let’s consider an object O consisting of a free particle moving with

a constant momentum p (or a constant velocity q̇). In principle, we

could decompose O in a sequence of instantaneous objects Ot. Each of
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these instantaneous objects Ot would be characterized by the objective

property p (which induces the displacements in q) and its position q(t)

at t. In other words, as in classical mechanics, both p and q(t) would

be objective properties of the instantaneous object Ot. Even if q(t) is

not an objective property of O, it might still be considered an objective

property of the instantaneous object Ot. Nevertheless, this decomposi-

tion of O in instantaneous objects Ot characterized by both p and q(t)

is inconsistent with the proposed definition of physical objects. Since

the position q(t) changes in time, the different instantaneous objects

Ot are objectively different. This results from the fact that the position

q(t) is considered an objective property of Ot. Hence, the different

instantaneous objects Ot differ in the objective property q(t). This

means that temporal evolution is a non trivial objective modification

of the instantaneous objects Ot. Therefore, the Hamiltonian h, which

induces the transformations of t, cannot be an objective property of

the instantaneous object Ot. According to our definition of physical

objects, if h were an objective property of Ot, then the transformations

induced by h would be phase transformations that could not objectively

modify the object. Since temporal evolution objectively modifies the

instantaneous objects Ot, the Hamiltonian h cannot be an objective

property of Ot. Nevertheless, this conclusion contradicts the fact that

if p is an objective property of Ot, then h = p

2m
should also be an ob-

jective property of Ot. We can also argue in the opposite sense. Since

p is an objective property of Ot, the Hamiltonian h = p

2m
is also an

objective property of Ot. Hence, according to our definition of physical

objects, the transformations induced by h are phase transformations.7

Therefore, the different Ot are not different instantaneous objects Ot,

but rather different phases of the same object O. We can thus con-

clude that the object O cannot be consistently decomposed in different

instantaneous objects Ot. Hence, the object O is an indecomposable

object with different non-objective temporal phases. In other words,

what we observe at different times are not different instantaneous ob-

jects Ot, but rather different non-objective temporal phases of the same

object O.

7This statement is a rigorous interpretation of the fact that ‘[...] the motion

of a mechanical system corresponds to the continuous evolution or unfolding of a

canonical transformation.’ (Goldstein [1981]).
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These considerations do not mean that it is impossible to define

physical objects that change objectively in time. We simply claim that

a system moving with a constant velocity cannot be analyzed in terms

of instantaneous objects (or objective states) that change objectively

in time. However, in principle, it is possible to define an instantaneous

object Ot such that its eidos contains the property t.8 Since the time

t is an objective property of the instantaneous object Ot, the property

h is phased out by the phase transformations induced by t. Hence, the

transformations induced by h are no longer phase transformations, but

rather objective transformations of the object. Therefore, at different

times t and t′, there are instantaneous objects Ot and Ot′ that are

objectively different.9

IV. Conclusion

We have defined a physical object as a set of mutually compati-

ble objective properties such that each objective property induces a

one-parameter family of automorphisms. The compatibility condition

guarantees that the objective properties are invariant under the auto-

morphisms induced by all the other objective properties of the same

object. The uncertainty principle is a direct consequence of the mutual

imbrication between objective properties and non-objective phases: if p

is a sharp objective property of an object, then the property q (phased

out by the phase transformations induced by p) cannot also be an ob-

jective property.

We could restate Einstein’s requirement by saying that a satisfac-

tory physical theory has to provide a complete objective description

of physical reality (Einstein et al. [1935]). Firstly, this means that

every objective property of physical reality should have a counterpart

in the theory. Secondly, non-objective properties should not be mis-

taken for objective properties by the theory. The classical descrip-

tion of a physical system includes both its objective properties and its

8We are supposing that it is possible to treat time and the Hamiltonian as another

pair of conjugated canonical variables. In fact, this is possible in the framework of

the so-called parameterized systems (see for example Lanczos [1986] and Castagnino

et al. [2002]).
9The arguments presented in this section suggest that a satisfactory compre-

hension of the uncertainty principle for time and energy might be an essential

component of a consistent interpretation of quantum mechanics.



GABRIEL CATREN 13

non-objective phases. Unlike classical mechanics, quantum mechanics

provides a complete objective description of physical systems.

V. Appendix

We will now give a brief account of the formal structures that un-

derlie the proposed definition of physical objects (for more details see

Abraham and Marsden [1978]; Catren [2008]; Libermann and Marle

[1987]; Marsden and Ratiu [1999]). A symplectic action of a Lie group

G (of Lie algebra g) on a symplectic manifold (M,ω) is a group action

Φ : G×M → M that preserves the symplectic form ω, i.e. that satisfies

Φ∗
gω = ω, where Φ∗

g is the pullback defined by the map Φg(·)
.
= Φ(g, ·).

Such an action defines a map ι : g → TM (that we have called ingres-

sion) between Lie algebra elements ξ ∈ g (that we have called universal

operators) and fundamental vector fields vξ on M (that we have called

realized operators). The fundamental vector field vξ is given by the

expression

vξ(x) =
d

dλ
(exp(−λξ) · x)|λ=0,

where x ∈ M and ξ ∈ g. The symplectic action is said to be Hamilton-

ian if the ingression map ι : g → TM can be “factorized” as follows

g
µ̃

//

ι

%%

C∞(M)
π

// TM, (2)

where µ̃ : g → C∞(M) is the so-called co-momentum map and π :

C∞(M) → TM is the map between classical observables on M and the

so-called Hamiltonian vector fields. A classical observable f ∈ C∞(M)

defines a Hamiltonian vector field vf by means of the expression ivf
ω =

df , where ivf
ω denotes the contraction of vf with the symplectic 2-form

ω. The Hamiltonian vector field vf is the generator of the symplectic

diffeomorphisms φ
f
λ : M → M , that is to say of the canonical transfor-

mations induced by the observable f . In R
2, the Hamiltonian vector

field associated to an observable f ∈ C∞(M) is given by the expression

vf =
∂f

∂p

∂

∂q
−

∂f

∂q

∂

∂p
.

In other words, a symplectic action is Hamiltonian if the fundamen-

tal vector field vξ that realizes on M the universal operator ξ ∈ g can

also be obtained as the Hamiltonian vector field vf associated to a

physical observable f . It might seem that we have all the elements for
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implementing the proposed definition of physical objects. In fact, the

sequence of maps (2) seems to be the formal implementation of the

application (1) between universal operators and eigenoperators. Ac-

cording to (2), the objective properties f ∈ C∞(M) “factorize” the

ingression on M of universal operators ξ ∈ g. Nevertheless, the two

postulates that we used for defining physical objects are not satisfied in

the classical framework. The main problem is that the homomorphism

π between the Poisson algebra of classical observables f ∈ C∞(M) and

the Lie algebra of classical operators vf (under the Lie bracket of vector

fields) is not an isomorphism of Lie algebras. This is a consequence of

the fact that the map f 7→ vf is not injective (since vk = 0 for any

k ∈ R). The fundamental consequence of this non-injectivity is that

Lievp
vq = [vq, vp] = v{q,p} = v1 = 0, even if Lievp

q = {q, p} = 1. This

means that in classical mechanics, a non-trivial transformation (gener-

ated by the classical operator vp) of the value of an objective property

q does not necessarily modify the realized operator vq. This means

that in classical mechanics, different states (characterized by different

values of q) do not realize differently the same universal operator in g.

Hence, an objective property cannot be defined – as we did in postu-

late ♠ – as a quantity that specifies the particular way in which the

object realizes a universal operator. As for postulate ♣ (according to

which a realized operator generates automorphisms of the object), we

have already shown why it cannot be consistently implemented in clas-

sical mechanics. In order to satisfy these postulates, it is necessary to

extend the classical operators vf to quantum operators v̂f such that

the latter satisfy Dirac’s quantization conditions. In the framework

of geometric quantization, this can be done by means of the so-called

prequantization formalism (Brylinski [1993]; Kostant [1970]; Souriau

[1997]; Woodhouse [1992]).
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