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Abstract. We analyze the notion of indiscernibility in the light of the Galois theory of field exten-

sions and the generalization to K-algebras proposed by Grothendieck. Grothendieck’s reformulation

of Galois theory permits to recast the Galois correspondence between symmetry groups and invari-

ants as a duality between G-spaces and the minimal observable algebras that separate theirs points.

In order to address the Galoisian notion of indiscernibility, we propose what we call an epistemic

reading of the Galois-Grothendieck theory. According to this viewpoint, the Galoisian notion of

indiscernibility results from the limitations of the ‘resolving power’ of the observable algebras used

to discern the corresponding ‘coarse-grained’ states. The resulting Galois-Grothendieck duality is

rephrased in the form of what we call a Galois indiscernibility principle. According to this princi-

ple, there exists an inverse correlation between the coarsegrainedness of the states and the size of

the minimal observable algebra that discern these states.

1. Introduction

“If you pursue this analogy too closely,

everything coincides identically; if you avoid

it, all is scattered into infinity.”

J.W. von Goethe

Maxims And Reflections, §554 [17]

The notion of indiscernibility is a fundamental notion in philosophy, mathematics and physics. This

notion is intimately related to the notion of symmetry and, therefore, to the mathematical concept of

group and its different generalizations (groupoids, pregroups, quantum groups, etc.). Now, the notion of

group was introduced for the first time by the French mathematician Evariste Galois (1811-1832) in order

to demonstrate that a general formula for the roots of a fifth (or higher) degree polynomial equation does

not exist (by using only the usual algebraic operations–addition, subtraction, multiplication, division–

and application of radicals–i.e. nth roots–). The notion of group permitted Galois to keep track of the

permutations of the roots of a polynomial p(x) ∈ K[x] that are indiscernible from the viewpoint of the

field K. More precisely, the so-called Galois group of the polynomial encodes the permutations of the

roots that are K-symmetry transformations, i.e. transformations that do not produce any ‘observable’

effect from the viewpoint of K. In this way, the very birth of the notion of group was motivated by the

need to formalize notions such as symmetry transformation, indiscernibility, and invariance.

In the aftermath of Galois, the main ideas of Galois theory were transferred and generalized to

other fields of modern mathematics, mainly to the theories of K-algebras, rings, covering spaces, and

differential equations [5, 14, 32]. In particular, Grothendieck’s generalization of Galois theory to the

topological theory of covering spaces led to a general reformulation of Galois ideas in terms of the so-

called Galois categories ([18]; [19], Exposé V, Section 4; see also Robalo, Galois Theory towards Dessins

d’Enfants (unpublished)1). Moreover, Janelidze proposed a general Galois theorem in the framework

of category theory that reduces to the Galois theories of fields, K-algebras, rings and covering spaces

under suitable specifications [5].2 In this way, the Galois theory of field extensions appears as a concrete
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realization of an abstract scheme in which the Galoisian notion of indiscernibility is addressed in full

generality. This multiplicity of concrete realizations and vast generalizations is a symptom of the richness

and deepness of Galois’ ideas, richness that goes far beyond the theory of polynomial equations and field

extensions. Moreover, and besides its importance in pure mathematics, Galois theory has started to

find its way in the realm of mathematical-physics, notably in the framework of renormalization theory

in quantum field theory (see Ref.[9, 10]).3

In what follows we propose a conceptual analysis of the Galoisian notion of indiscernibility. To do

so, we shall focus on the algebraic Galois theory of field extensions and the generalization of this theory

to K-algebras proposed by Grothendieck (the main references that we shall follow are Ref.[5], chap. 2

and Ref.[14], chap. 5; see also Ref.[33]4). In Section N◦2, we start the analysis of Galois theory by

unpacking the idea according to which the Galoisian notion of (in)discernibility is a relative notion. This

means that this notion depends on the resolving power of the domain of rationality from which the

individuals in question are being ‘observed ’. In Section N◦3, we show that the relativity of the notion of

indiscernibility entails one of the fundamental features of Galois theory, namely that the corresponding

symmetry group, far from being fixed once and for all, can vary. Indeed, instead of only considering

the invariants under the symmetry transformations generated by a fixed symmetry group, Galois theory

considers the variations of the algebraic structures of invariants under different symmetry breakings

of the symmetry groups. In this way, a variation of the domain of rationality entails a concomitant

variation of both the symmetry groups and the corresponding algebraic structures of invariants. Under

certain conditions, the variability of the symmetry group entails the existence of a Galois correspondence

between a partial order of symmetry groups on the one hand and a partial order of algebraic structures of

invariants on the other. Roughly speaking, the larger the symmetry group, the fewer the corresponding

invariants.

In the rest of the article we shall use the generalization of Galois theory proposed by Grothendieck

to analyze the notion of Galoisian indiscernibility in the framework of the duality between geometry

and algebra. More precisely, Grothendieck’s reformulation will permit us to revisit the duality between

an abstract algebraic structure and the different dual spaces on which the former can be represented as

concrete observable algebras. To do so, we shall introduce in Section N◦4 Grothendieck’s notion of functor

of points. Instead of considering the roots of a polynomial p(x) ∈ K[x] in a fixed ‘domain of rationality’,

the functor of points encodes the sets of A-roots of p(x) for every possible K-algebra A. The set of

A-roots of p(x) defines what we shall call A-dual space. Following Lavwere’s terminology, the K-algebra

A will be called dualizing object (see Ref.[29], p. 121). The notion of functor of points will allow us

to establish a distinction between the different restricted representation theories of a K-algebra defined

by the different dualizing K-algebras A and the general representation theory encoded in the functor of

points. Then in Section N◦5 we introduce the Gelfand transform between an algebraic structure defined

by p(x)–namely, the K-algebra that represents the functor of points defined by p(x)–and the algebras

of A-valued observables on the different A-dual spaces. In this way, a polynomial p(x) ∈ K defines

different A-dual spaces on the one hand and the corresponding algebras of A-valued observables on these

spaces on the other. We shall then analyze the conditions under which the Gelfand transform is an

isomorphism between the initial abstract algebra and a concrete observable algebra on a dual space. In

Section N◦6, we show that the Galois duality between symmetry groups and invariants on the one hand

and the duality between algebras and spaces on the other can be unified as a duality between dual G-

spaces and the minimal observable algebras that separate theirs points. We then rephrase the resulting

Galois-Grothendieck duality in terms of what we call a Galois indiscernibility principle. According to

this principle, there is an inverse correlation between the coarsegrainedness of the states in a dual G-

space and the size of the minimal observable algebra that discerns these coarse-grained states. In the

final section, we conclude by briefly discussing the relationship between Galois-Grothendieck theory and

Leibniz’s principle of the identity of indiscernibles.
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2. The Relativity of (In)discernibility

In what follows, certain algebraic structures (notably commutative fields and K-algebras) will play

the role of what we shall call, by borrowing an expression introduced by Kronecker, a domain of ratio-

nality (Rationalitäts-Bereich, see Ref.[24], Vol.2, pp. 251-256; see also Ref.[35]). By this term, we shall

understand an algebraic language wherein we can formulate certain kind of propositions. In particular, a

field K is a domain of rationality in which one can formulate propositions given by polynomial equations

of the form p(x) = 0 with p(x) ∈ K[x]. In a first approximation, we could say that the roots of p(x)

are the truthmakers of such a proposition. However, this definition is meaningless if we do not specify

the domain of rationality in which we shall look for its roots. In order to guarantee that a polynomial

equation p(x) = 0 with p(x) ∈ K[x] makes sense, the domain of rationality for the possible values of x

has to be a K-algebra.5 The first evident possibility is to look for the solutions of such a polynomial

equation in the field K itself. However, it is a remarkable fact that there might be roots of p(x) that

do not belong to K. Hence, the fact that a proposition is formulated in a domain of rationality K does

not mean that we have to restrict the search of its truthmakers to K. The distinction between the

domain of rationality to which belong the coefficients of a polynomial equation and the different possible

domains of rationality in which we can look for its solutions is one of the essential underpinnings of

Galois theory. Given a polynomial p(x) ∈ K[x] of degree n, it can be shown that there exist a minimal

extension of K, called a splitting field Kp of p(x), in which we can find n roots of p(x) (counted with

multiplicity).6 Hence, if we restrict the search of the roots of p(x) to K-algebras that are fields, we can

state that the truthmakers of a polynomial proposition p(x) = 0 are the n roots {α1, ..., αn} of p(x) in

a splitting field Kp (where n is the degree of p(x)). Let’s consider for instance the archetypical example

of the polynomial p(x) = x2 + 1 considered as a polynomial in R[x]. The two complex roots {i,−i} of

this polynomial do not belong to the field R in which the polynomial is defined. The best that we can

do from the viewpoint of R is to assign arbitrary names to these unknown roots, such as α1 and α2. We

can thus say that the individuals named α1 and α2 are truthmakers of the proposition x2 + 1 = 0, i.e.

that the saturated propositions α2
1 + 1 = 0 and α2

2 + 1 = 0 are both true. We shall now argue that the

individuals denoted by these names are R-indiscernible, i.e. indiscernible from the viewpoint of R.

In order to provide a formal definition of the notion of (in)discernibility, let’s introduce the notion of

K-algebraic relations for a given domain of rationality K. Let X = {α1, α2, ..., αn} be a set of n distinct

elements of a field extension of K, for example the n distinct roots of a polynomial p(x) ∈ K[x].7 The

ordering of the set X implies that the group of permutations of the elements of X can be identified

with the group of permutations of n elements Sn. The K-algebraic relations in the αi’s are polynomial

propositions of the form q(−→α ) = q(α1, α2, ..., αn) = 0, where q ∈ K[x1, x2, ..., xn]. The set X is said

to be a set of K-indiscernible elements if the validity of any K-algebraic relation in its elements is not

changed by any permutation of these elements. This means that for every permutation σ ∈ Sn and

every q ∈ K[x1, x2, ..., xn] such that q(−→α ) = 0, we have that σ · q(−→α ) = 0 where σ · q(x1, x2, ..., xn)
.
=

q(xσ−1(1), xσ−1(2), ..., xσ−1(n)).
8 This K-indiscernibility is maximal, in the sense that the K-algebraic

relations satisfied by −→α remain invariant under all the permutations of the αi’s in Sn. But we can

define weaker notions of K-indiscernibility such that the valid permutations belong to a subgroup H

of Sn. We shall say that the αi’s are (H,K)-indiscernible if and only if σ · q(−→α ) = 0 for every σ ∈ H

and every q ∈ K[x1, x2, ..., xn] such that q(−→α ) = 0. Reciprocally, given a set X = {α1, α2, ..., αn} of n

elements of an extension of K, we can define the set SK(X) of all the permutations of the n elements αi

that leave invariant the K-algebraic relations satisfied by −→α . More precisely, SK(X)
.
= {σ ∈ Sn : ∀q ∈

K[x1, x2, ..., xn]/q(−→α ) = 0, σ · q(−→α ) = 0}. It can be shown that SK(X) is a subgroup of Sn.9 The group

SK(X) encodes the K-indiscernibilities of the αi’s. The bigger SK(X) is, the more the αi’s ‘look alike’

from the viewpoint of K. It’s worth noting that the notion of (H,K)-indiscernibility and the group

SK(X) only depend on the set {α1, α2, ..., αn}, but not on the order of the αi’s.
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In particular, we shall say that two individuals α1 and α2 are K-indiscernible if every K-algebraic

relation in K[x1, x2] satisfied by these individuals is invariant under a permutation of α1 and α2. In

the previous example, the fact that i and −i are R-indiscernible means that there is no q ∈ R[x1, x2]

such that q(α1, α2) = 0 and q(α2, α1) 6= 0. In particular, there is no r(x) ∈ R[x] such that r(α1) = 0

and r(α2) 6= 0. On the contrary, two individuals will be called K-discernable with respect to a given

domain of rationality K if the algebraic relations in K[x1, x2] can resolve them, i.e. if there is at least one

K-algebraic relation satisfied by α1 and α2 that is not invariant under their permutation. For instance, i

and 2i are R-discernible, since whereas i is a root of x2+1, 2i is not. This example also shows that α1 and

α2 can be K-discernable even if they do not belong to K. The important point is that in the framework

of Galois theory the (in)discernibility of two individuals, far from being an absolute notion, depends on

the domain of rationality K from which one is trying to resolve them. The relative K-indiscernibility of

two individuals, far from entailing their identity, means that the ‘sufficient reason’ that explains their

qualitative (or predicable) difference lies beyond the domain of rationality K. In particular, a qualitative

multiplicity of L-discernible elements can appear, from the restricted viewpoint of a domain of rationality

K endowed with a lower resolving power, as a purely numerical multiplicity of K-indiscernible elements.

We could say that every domain of rationality K is endowed with a particular resolving power, i.e. with

a capacity to resolve or separate different individuals. We shall say that two K-indiscernible individuals

lack, from the viewpoint of K, predicable discernibility. This means that in K their difference is purely

numerical, which means that it cannot be ‘predicated’ by means of the algebraic resources of the domain

of rationality K. We could say that the difference between two K-indiscernible individuals is beyond

the cut-off defined by the resolving power of K. The best that we can do from the viewpoint of K is

to arbitrarily assign different names to K-indiscernible individuals. However, this nominal covering of

a numerical difference is not grounded on a K-predicable difference. All in all, the limitations of the

resolving power of a domain of rationality K implies that, from the standpoint of K, there is a numerical

multiplicity of K-indiscernible individuals.10

It is worth noting that any element in K can be discerned from any other element by means of the

K-algebraic relations. Indeed, any α ∈ K is the unique root of the polynomial p(x) = x − α ∈ K[x].

In other terms, x = α is the only truthmaker in K of the proposition p(x) = x − α = 0. We could say

that the proposition p(x) = x− α = 0 is the individuating K-predicate of α [31]. Every element of K is

thus endowed with an individuating K-predicate. Since the resolving power of a domain of rationality

K allows us to discern the elements of K itself, indiscernible elements necessarily belong to an extension

of K.

3. Galois correspondence

Let’s consider a polynomial p(x) of degree n over a field K and the set X = {α1, α2, ..., αn} of its

n different roots (assumed to be simple) in a splitting field Kp. We define the so-called Galois group

GalK(p) of p(x) over K as follows:

GalK(p) = SK(X) = {σ ∈ Sn : ∀q ∈ K[x1, x2, ..., xn]/q(−→α ) = 0⇒ σ · q(−→α ) = 0}.

The permutations in GalK(p) will be called Galois permutations.11 According to the definition of

GalK(p), a permutation of the roots of p(x) is a Galois permutation if and only if it does not modify

the K-algebraic relations between the roots. The Galois group of p over K is then the subgroup of Sn

such that any algebraic relation in K[x1, x2, ..., xn] satisfied by the n roots is still satisfied when a Galois

permutation of the roots is performed. Since there is no algebraic relation in K[x1, ..., x1] capable of

making the difference between the roots permuted by an element in GalK(p), the Galois permutations are

‘invisible’ from the viewpoint of K. In this way, the Galois group of p(x) ∈ K[x] encodes the limitations

of the resolving power of K to discern the roots of p. It is worth stressing that the K-indiscernibility

encoded by a Galois group is not always maximal, in the sense that the Galois group is not always equal
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to the whole Sn. In order to stress this fact we shall substitute the notion of K-indiscernibility by the

more precise notion of (G, K)-indiscernibility (where G
.
= GalK(p)).

In order to discern (G, K)-indiscernible individuals, we have to extend the domain of rationality

K. By extending K, it is possible to discern individuals that were K-indiscernible. For example, the

individuals i and −i, that are R-indiscernible, can be discerned by extending R to C. In fact, the

propositions x∓ i = 0 are the individuating C-predicates of the individuals i and −i. We could say that

the existence of a purely numerical difference that puts the discernibility resources of K into question

naturally induces the necessity of extending K. If K is not a splitting field of a polynomial p(x) ∈ K[x],

then we can extend the field K to a new field L such that K ⊂ L ⊆ Kp, where Kp is a splitting field

of p. By increasing the ‘resolving power’ of the field by means of which we try to discern the roots of p

it might be possible to discern more roots. It can be shown that such a field extension is given by an

injective field homomorphism K →֒ L, i.e. that K can be viewed as a subfield of L.12 Each element

α ∈ L defines the following evaluation homomorphism (which is a morphism of K-algebras):

εα : K[x] → L

f(x) 7→ f(α).

If εα is not injective, then its kernel is an ideal generated by an irreducible polynomial pα,K ∈ K[x]

(that can be assumed to be monic), called the minimal polynomial of α over K. In such a case, α

is said to be algebraic over K.13 The image K[α] of εα is isomorphic to K[x]/〈pα,K〉. Since pα,K

is irreducible, 〈pα,K〉 is a maximal ideal, and then K[x]/〈pα,K〉 is the smallest field (that we shall

denote K(α)) containing both K and α. The extension K(α) is a vector space over K of dimension

[K(α)] : K] = deg(pα,K) with basis
{
1, α, ..., αn−1

}
.14 To every algebraic element αi over K, we can

associate the Galois group GalK(pαi,K) that encodes the (G, K)-indiscernibilities of the Kp-roots of

pαi,K for Kp a splitting field. A field extension (L : K) is called algebraic if every l ∈ L is algebraic

over K, i.e. if p(l) = 0 for some p(x) ∈ K[x]. A field K is algebraically closed if it has no algebraic

extensions other than itself, i.e. if the splitting field Kp of every polynomial p(x) ∈ K[x] is K itself. An

algebraic closure K of K is an algebraic extension that is algebraically closed. On the contrary, if εα is

injective, i.e. if it does not exist a nonzero polynomial p ∈ K[x] such that p(α) = 0, we say that α is

transcendental over K. In this case, [K[α] : K] =∞ and K[α] ∼= K[X].

In what follows we shall only consider algebraic extensions. The notion of field extension allows us to

provide an alternative definition of the notion of Galois group. Instead of considering the Galois group

GalK(p) of a polynomial p(x) over K, we can consider the group Aut(L : K) of K-automorphisms of a

field extension i : K →֒ L, i.e. the group of automorphisms of L that leave the elements of K invariant.

Since by definition these automorphisms must leave K invariant, an automorphism σ ∈ Aut(L : K) must

satisfy i = σ ◦ i. Now, let’s consider the extension K →֒ Kp where Kp is a splitting field of a polynomial

p(x) ∈ K[x] that is separable (i.e. that has only distinct roots in Kp). Then the Galois group of GalK(p)

of p(x) over K and the group Aut(Kp : K) are isomorphic:

GalK(p) ∼= Aut(Kp : K) (1)

Each K-automorphism σ̃ ∈ Aut(Kp : K) of Kp canonically induces a Galois permutation σ ∈ GalK(p)

of the roots by restriction: σ(αi)
.
= σ̃(αi). Since σ̃ fixes the coefficients of p(x), the element σ(αi) is again

a root of p(x) (indeed, p(σ̃(αi)) = σ̃(p(αi)) = σ̃(0) = 0). By using the same argument, one can check that

σ is a Galois permutation.15 Reciprocally, each σ in GalK(p) defines an automorphism σ̃ ∈ Aut(Kp : K)

given by y = q(~α) 7→ σ̃(y) = σ ·q(~α) (where we have used that any y ∈ Kp = K(α1, ..., α1) can be written

as a polynomial q in the variables (α1, ..., α1)).
16 One can check that these two process are inverse from

one another. The group Aut(Kp : K) is called Galois group of the extension (Kp : K) and is denoted

Gal(Kp : K). While the Galois GalK(p) of p(x) over K encodes the limitations of the resolving power of
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K to discern the roots of p(x), the Galois group Gal(Kp : K) encodes that automorphisms of Kp that

leave invariant K.

If the field extension (L : K) satisfies the condition of being a Galois extension, then it induces

a correspondence (called Galois correspondence) between intermediate extensions K →֒ M →֒ L and

subgroups of Gal(L : K). A finite algebraic extension (L : K) is a Galois extension if and only if the only

elements of the extension (L : K) that are invariant under the action of G
.
= Aut(L : K) are the elements

in K, i.e. if and only if LG = K ([32], p. 12). Since by definition K ⊆ LG, the extension(L : K) is Galois

if and only if G acts non-trivially on every l in L−K. This means that a Galois extension is an extension

for which the number of invariants is minimal (i.e. only those of K) and the number of K-symmetries

is maximal. Now, it can be shown that an extension (L : K) is a Galois extension if and only if it

is normal and separable. Normality means that if one root of an irreducible polynomial p(x) ∈ K[X]

belongs to L, then every roots does, i.e. p(x) splits into linear factors in L (possibly identical). If not

all the roots of p(x) were in L, then we would have Galois permutations between the roots of p(x) that

would not be in the group Aut(L : K) of K-automorphisms of L. In other terms, the group Aut(L : K)

would not encode all the K-indicernibilities.17 Another possibility for spoiling the maximality in the

number of K-symmetries is the presence of multiple roots for some irreducible polynomial p(x) in K[x].

A polynomial p ∈ K[x] of degree n is said to be separable if its roots in a splitting field Kp are simple,

i.e. if it has n different roots in Kp. An algebraic extension (L : K) is said to be separable if every

irreducible polynomial in K[x] that has a root in L is separable. In characteristic 0 (i.e. in the usual

cases of Q, R, C and their extensions), every irreducible polynomial p is separable. Hence, the problem

of inseparability can only appear in characteristic c > 0. Whereas in characteristic 0 we can distinguish

between 0 and c, in characteristic c the numbers 0 and c are identified. Hence, it might happen that roots

that are distinct in characteristic 0 become identified in characteristic c > 0. All in all, an algebraic field

extension (L : K) is Galois if and only if for every irreducible polynomial p ∈ K[x] such that l ∈ L is one

of its roots all the other roots of p(x) are in L (normality) and all the roots are simple (separability).

If these two conditions are satisfied, then we can guarantee that Gal(L : K) acts non-trivially on every

element in L−K.

Let’s consider now intermediate extensions K →֒ M →֒ L of a finite Galois extension K →֒ L. By

passing from the extension (L : K) over K to the extension (L : M) over a field M endowed with a ‘higher’

resolving power, i.e. by extending the domain of rationality from K to M , we can break some of the K-

indiscernibilities. In other terms, elements of L that were K-indiscernible might be M -discernible. In this

way, the extension of the domain of rationality from K to M induces a ‘symmetry breaking mechanism’

that amplifies the resolving power and reduces the corresponding indiscernibility. This means that

Gal(L : M) must be a subgroup of Gal(L : K). It can be shown that Galois extensions induce a Galois

correspondence between the lattice of subgroups H of G
.
= Gal(L : K) and the lattice of intermediate

extensions M . This correspondence is given by the following inverse applications. To a subgroup H of G,

we shall associate the set of H-invariant elements of L, i.e. the set Fix(H) = {x ∈ L : ∀h ∈ H,h ·x = x}.

Conversely, to an intermediate extension K →֒ M →֒ L, we shall associate the subgroup GM of G that

leaves invariant the elements in M , i.e. the group GM = {g ∈ G : ∀x ∈M, g ·x = x} = Gal(L : M). The

maps H 7→ Fix(H) and M 7→ Gal(L : M) define a contravariant bijection between the subgroups H

of the Galois group Gal(L : K) and the intermediate extensions M . In this way, intermediate domains

of rationality endowed with a resolving power higher than that of K define subgroups of Gal(L : K)

and larger sets of invariant elements. If we extend the domain of rationality from K to L itself, the

corresponding subgroup of G will be Gal(L : L) = {idL}. This simply means that every element of L

is L-discernible, i.e. that we have completely broken the indiscernibilities encoded by the Galois group

Gal(L : K).
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4. Grothendieck’s functor of points

We have thus far associated to an irreducible and separable polynomial p(x) ∈ K[x] a splitting

extension Kp and the symmetry group G = Gal(Kp : K). This group encodes the limitations of the

propositional resources of K to discern the roots of p(x). By successively extending K to intermediate

extensions K ⊂ M ⊂ Kp, we can progressively break these K-indiscernibilities and, in the limit (i.e.

when the intermediate field M is Kp itself), reduce the symmetry group to the identity. In this way,

we could think that the limitations of a domain of rationality K to discern the roots of a polynomial p

can be definitively sublated by passing to a splitting extension Kp.18 However, this is the case only if

we restrict the search for the roots of polynomial equations to fields. As we said before, a more general

algebraic structure in which we can search for the roots of a polynomial p(x) ∈ K[x] is a K-algebra.

Now, there is a remarkable differences between K-algebras and fields. The minimal polynomial over K

of some algebraic element of a K-algebra A is irreducible only if A is an integral domain (i.e. if ab = 0

implies a = 0 or b = 0 with a, b ∈ A) (see Ref.[5], p. 18). Therefore, whereas a polynomial p(x) ∈ K[x]

of degree n cannot have more than n roots (counted with multiplicity) in any field, p(x) can have more

than n roots in a K-algebra.19 In this way, the idea according to which it is always possible to find an

‘absolute’ field extension that contains ‘all’ the roots of a polynomial equation p(x) ∈ K[x] is misleading.

According to what we have just said, the ‘imperfection’ of a domain of rationality K with respect to

a polynomial p ∈ K[x] (i.e. the fact that it does not include all the roots of p) cannot be completely

overcome by passing to a splitting field Kp. Nevertheless, there is an alternative strategy for handling the

limitations of any possible domain of rationality. This strategy was proposed by Alexander Grothendieck

in the framework of his refoundation of algebraic geometry and consists in claiming that a polynomial

p(x) ∈ K[x] does not have a unique set of roots, but rather a set of A-roots for each possible K-algebra.

According to this idea, the ‘solution’ of a polynomial equation is not the set of its roots in an ‘absolute’

domain of rationality, but rather the ‘application’ that defines a set of A-roots for each possible K-algebra

A. We shall formalize this idea by associating to a polynomial p(x) ∈ K[x] a mathematical entity Vp(−)

that sends each K-algebra A to the set of A-roots of p(x) (i.e. to the set of roots of p(x) in A). In other

terms, to each polynomial p(x) we can associate an ‘application’ Vp(−) that sends each K-algebra A to

the set Vp(A) of its A-roots:

Vp(−) : K-alg → Sets

A 7→ Vp(A) = {roots of p(x) in A} .

In this way, instead of considering the roots of p in a single K-algebra, the ‘application’ Vp(−)

encodes the different sets of A-roots of p(x) for any possible K-algebra A. It is possible to show that this

‘application’ assigns to every morphism f : A→ B of K-algebras a morphism Vp(f) : Vp(A)→ Vp(B) of

sets and that this application between morphisms respects the identity morphism of K-algebras and the

composition of morphisms. All this can be summarized by stating that Vp(−) defines a covariant functor

from the category of K-algebras to the category of sets. By following the standard terminology used

in algebraic geometry, this functor will be called functor of points (see for instance Ref.[15]). To sum

up we can say that Grothendieck substituted the notion of an ‘absolute’ domain of rationality supposed

to contain all the roots of a polynomial p(x) by the functor Vp(−) that encodes the different sets of

A-roots of p defined by all possible K-algebras A. We could say that Grothendieck bypassed the lack of

an ‘absolute’ domain of rationality by considering all the K-domains of rationality at once.

We have thus far associated to a polynomial p(x) over K a functor Vp(−) that assigns to each K-

algebra A the set Vp(A) of A-roots of p. We shall now interpret the set Vp(A) as a A-dual space over

which p(x) induces an algebra of A-valued functions. In other terms, we shall not consider the A-roots

of p as elements of an amorphous set, but rather as ‘points’ of a geometric space.20 To do so, we must

firstly define a K-algebra canonically associated to p(x), namely the quotient algebra K[x]/〈p(x)〉. Now,

it is easy to see that we have the following bijective correspondence between the set Vp(A) and the
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K-morphisms Hom
K-alg ( K[x]

〈p(x)〉
, A)21:

Vp(A) = {roots of p(x) in A}
≃
−→ Hom

K-alg

(
K[x]

〈p(x)〉
, A

)

α 7→ εα :
K[x]

〈p(x)〉
→ A,

where

εα(f̄) = f(α).

This means that the object K[x]/〈p(x)〉 represents the functor of points Vp(−) in the category of

K-algebras, i.e. that:

Vp(−) ∼= Hom
K-alg

(
K[x]

〈p(x)〉
,−

)
,

where the symbol “∼=” means that there is a natural transformation between both functors that is an

isomorphism ([20], p. 8).

In the rest of the article, we shall use the following terminology (partially coming from physics).

The set Vp(A) will be called A-dual space of the K-algebra K[x]
〈p(x)〉

. The A-roots α of p(x) in Vp(A),

i.e. the K-morphisms εα : K[x]
〈p(x)〉

→ A, will be called A-states (or A-points) of the K-algebra K[x]
〈p(x)〉

.

Each A-valued function on the A-dual space will be called an A-valued observable. As we shall see in

the following section, the representability of the functor of points Vp(−) allows us to represent abstract

elements in the K-algebra K[x]
〈p(x)〉

as concrete A-valued observables on each A-dual space.

5. The Gelfand transform

We shall now introduce the so-called Gelfand transform between K[x]
〈p(x)〉

and a K-algebra of A-valued

observables over the A-dual space Vp(A). In what follows we shall only consider K-algebras A of finite

dimension. The corresponding A-dual spaces are finite and discrete. This assumption allows us to avoid

technical topological problems that are not relevant for the present discussion. In our case, the Gelfand

transform defined by a K-algebra A sends each element f̄ ∈ K[x]
〈p(x)〉

to an A-valued observable f̂ over the

A-dual space Vp(A)22:

GelA :
K[x]

〈p(x)〉
→ C(Vp(A),A) (2)

f̄ 7→ f̂ : Vp(A)→ A

where

f̂(α) = εα(f̄).

This construction is analogue to the Gelfand transform that identifies a commutative C∗-algebra U

with the algebra of C-valued continuous functions that vanish at infinity on the spectrum of U (see

for instance Ref.[13], p. 11).23 The Gelfand transform (2) permits to represent the K-algebra K[x]
〈p(x)〉

in the algebra C(Vp(A), A) of A-valued observables on the A-dual space Vp(A).24 In turn, each A-

point α ∈ Vp(A) permits to represent the algebra C(Vp(A),A) in A by means of the evaluation map

f̂ 7→ f̂(α). In both cases, a ‘geometric’ entity (i.e. the space Vp(A) and each A-point α respectively)

defines a representation of an algebra (i.e. K[x]
〈p(x)〉

and C(Vp(A),A) respectively) in another algebra (i.e.

C(Vp(A), A) and A respectively).25 In other terms, geometric entities define morphisms between algebraic

structures.26 In turn, the composition of both representations

K[x]

〈p(x)〉

GelA−−−→ C(Vp(A),A)
εα−−→ A

where

f(x) 7→ f̂ 7→ f̂(α),
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permits to characterize each A-point α as a state that defines a K-linear representation of the abstract

algebra K[x]
〈p(x)〉

in A. In order to clarify the relationship between the notion of representation as a

morphism of K-algebras and the linear representations of K-algebras on a vector space, let’s note that

we can interpret the value f̂(α) as a multiplicative operator acting in A. In other terms, every A-point

α : K[x]
〈p(x)〉

→ A defines a K-linear representation K[x]
〈p(x)〉

→ EndK(A) of K[x]
〈p(x)〉

in the underlying vector

space of A, where the ‘operator’ α(f(x)) = f̂(α) ∈ A acts in A by multiplication.27 In this way, each A-

dual space Vp(A) parameterizes the different A-representations of K[x]
〈p(x)〉

. The evaluation of an observable

f̂ ∈ C(Vp(A),A) on a A-state α ∈ Vp(A) yields the multiplicative operator f̂(α) ∈ A that represents the

abstract algebra element f̄ ∈ K[x]
〈p(x)〉

in the representation labeled by α. It is worth remarking that we do

not have a single duality28 between the abstract K-algebra K[x]
〈p(x)〉

and the observable algebra on a single

dual space, but rather one duality for each possible dualizing object A. Each dualizing object A defines

the A-dual space of K[x]
〈p(x)〉

and each A-dual space parameterizes the different representations of K[x]
〈p(x)〉

as

multiplicative operators acting in A. The functor of points Vp(−) encodes the different representations

of K[x]
〈p(x)〉

as observable algebras that one can obtain by varying the dualizing object A. We could then say

that the functor of points Vp(−) of a K-algebra K[x]
〈p(x)〉

encodes the general representation theory of the

algebra. Differently from the restricted representation theory encoded in a single A-dual space Vp(A),

the general representation theory defined by the functor of points Vp(−) encompasses all the restricted

representations theories at once.

The fact that an abstract K-algebra can be represented as observable algebras on different dual spaces

does not mean that the former is necessarily isomorphic to the corresponding observable algebras. In

general, the Gelfand transform GelA : f 7→ f̂ defined by a K-algebra A is neither injective nor surjective.

The obstruction to the injectivity of the Gelfand transform stems from the fact that the dual space Vp(A)

might lack enough points. In such a case, the space Vp(A) cannot ‘support’ a faithful representation of
K[x]
〈p(x)〉

.29 This obstruction can be bypassed by choosing a suitable dualizing object, namely a splitting

field Kp of p(x) (which is assumed to be separable). Indeed, the fact that the Kp-dual space Vp(K
p)

contains all the roots of p(x) belonging to a field implies that Vp(K
p) supports a faithful representation

of K[x]
〈p(x)〉

.30 Now, it can happen that the K-algebra K[x]
〈p(x)〉

does not induce, via GelKp , all the Kp-valued

observables over Vp(K
p).31 However, we can solve this problem by extending the scalars of the K-algebra

K[x]
〈p(x)〉

from K to Kp, i.e. by passing from the K-algebra K[x]
〈p(x)〉

to the Kp-algebra Kp ⊗K
K[x]
〈p(x)〉

∼=
Kp [x]
〈p(x)〉

(see Ref.[5], p. 21). Indeed, it can be shown that the Gelfand transform

GelKp :
Kp[x]

〈p(x)〉
→ Hom

K-alg(Vp(K
p), Kp)

f̄ 7→ f̂ : α 7→ f̂(α) = α(f̄)

is an isomorphism ([5], p. 24). This means that the abstract Kp[x]-algebra Kp[x]
〈p(x)〉

is isomorphic to the

concrete algebra C(Vp(K
p), Kp) of Kp-valued observables on the Kp-dual space Vp(K

p) defined by the

Kp-roots of p(x).

6. Galois-Grothendieck duality

In Section N◦3, we have introduced the Galois correspondence between the lattice of intermediate field

extensions K →֒M →֒ Kp of a finite Galois extension (Kp : K) and the lattice of subgroups of the Galois

group GalK(p). In turn, in Sections N◦4 and N◦5 we have analyzed the relations between the abstract

K-algebra K[x]
〈p(x)〉

defined by p(x) and the different dual spaces on which K[x]
〈p(x)〉

can be represented, by

means of the Gelfand transform, as concrete observable algebras. We shall now show that Grothendieck’s

reformulation of Galois’ main theorem for K-algebras synthesizes the Galois correspondence on the one

hand and the Gelfand duality between algebraic structures and geometric entities on the other. By doing

so, we shall obtain a duality between algebraic and geometric structures endowed with an action of a

symmetry group.
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According to what we said in Section N◦4, a polynomial p(x) over K defines a functor Vp(−) that

encodes the different A-dual spaces associated to each each K-algebra A. In order to introduce a Galois

group action we shall now fix a finite Galois extension (L : K) of K. Instead of considering the different

A-dual spaces of a fixed K-algebra B by means of the functor of points VB(−) = HomK(B,−), we

shall consider the L-dual spaces (for L fixed) associated to different K-algebras by means of the functor

HomK(−, L). In other terms, we shall now fix the dualizing object L and vary the abstract K-algebra

that we want to represent as a concrete observable algebra on the corresponding L-dual space. Now, by

fixing the dualizing object to L, the L-dual space VB(L) = HomK(B,L) of B is naturally endowed with

an action of the Galois group G
.
= Gal(L : K). This action is defined by the following composition:

G×HomK(B, L) → HomK(B,L)

(g, φ) 7→ g ◦ φ,

and can be schematized by means of the following diagram:

L g∈G
yy

B

φ

>>}}}}}}}

K

``AAAAAAA

OO .

The Galois-Grothendieck theorem states that there is an anti-equivalence of categories between the

category SplitK(L)f of finite K-algebras split by L and the category of finite G-sets ([5], p. 28).32 In

one direction, this equivalence of categories is given by the functor HomK(−, L):

SplitK(L)f → G-FSet , (3)

B ⇒ HomK(B,L).

By following the terminology used in Ref.[5], this functor will be called spectrum functor and denoted

SpecL(−). Whereas the functor of points VB(−) defines the different A-dual spaces of a fixed K-algebra

B, the spectrum functor SpecL(−) = HomK(−, L) defines the L-dual spaces (with L fixed) of the

different K-algebras. By means of the Gelfand transform

GelL : B 7→ C(SpecL(B), L),

each finite dimensional K-algebra B split by L induces an algebra of L-valued observables on the L-dual

space SpecL(B) of B. Since the extension (L : K) is a finite Galois extension, the Gelfand transform

GelL is an injection.33

If the K-algebra B is an intermediate field K ⊂ B ⊂ L, then it can be shown that the G-action on

SpecL(B) is transitive, i.e. that SpecL(B) ∼= G/HB for some subgroup HB ⊂ G. In the general case,

we must use the fact that a finite dimensional K-algebra split by L is a product
∏

i Bi of intermediate

fields K ⊂ Bi ⊂ L. Since the Galois-Grothendieck duality is defined in terms of an anti-equivalence

of categories, the spectrum functor transform the (Cartesian) products in the category SplitK(L)f into

coproducts in the category G-FSet34:

SpecL(−) :
∏

i

Bi ⇒
∐

i

SpecL(Bi).

Conceptually, this means that the product of the observable algebras (induced by) Bi on the different

spaces SpecL(Bi) defines an observable algebra on the disjoint union of the spaces. For instance, the

L-dual space associated to the (Cartesian) product B1 × B2 is the coproduct (i.e. the disjoint union)

of SpecL(B1) and SpecL(B2). This means that the Gelfand transform applied to an abstract element

f = (f1, f2) ∈ B1 ×B2 defines an observable f̂ = (f̂1, f̂2) on SpecL(B1)
∐

SpecL(B2). The observable f̂
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is given by f̂(x) = f̂1(x) if x ∈ SpecL(B1) and f̂(x) = f̂2(x) if x ∈ SpecL(B1). In turn, the coproduct

in SplitK(L)f is given by the tensor product over K.35 The anti-equivalence of categories between

SplitK(L)f and G-FSet implies that the tensor products in SplitK(L)f induce, by means of the Gelfand

transform, observables on the Cartesian product of the corresponding L-dual spaces. For instance,

B1 ⊗K B2 induces an algebra of observable on the Cartesian product SpecL(B1)× SpecL(B1).
36

In order to define an anti-equivalence of categories between SplitK(L)f and G-FSet , we shall define

a quasi-inverse functor to the spectrum functor. Such a functor will be called functor of (L-valued)

G-invariant observables and denoted CG(−, L). The functor CG(−, L) has to assign a K-algebra split by

L to each G-FSet . Let’s begin by considering the case of a homogeneous finite G-set, i.e. of a G-set O

endowed with a transitive G-action. The transitivity of the action implies that O ∼= G/H , where H is a

subgroup of G that leaves fixed an element in O. Now, it can be shown that

SpecL(Fix(H)) ∼=
G

H
, (4)

as G-sets for every subgroup H of G, where Fix(H) = {l ∈ L/∀h ∈ H, h(l) = l} is the field of H-invariant

elements of L and H = Gal(L : Fix(H)).37 In this way we recover the original Galois correspondence

between intermediate fields K ⊆ Fix(H) ⊆ L and subgroups H of the Galois group G in the form of a

correspondence between intermediate fields Fix(H) and homogeneous G-sets isomorphic to G/H . The

L-dual space (4) associated to the K-algebra Fix(H) is a homogeneous G-set such that the isotropy

group of its points is H ⊆ G. Hence, the functor of G-invariant observables CG(−, L) must send each

homogeneous finite G-set O ∼= G
H

to the K-algebra Fix(H) of H-invariant elements in L:

SplitK(L)f ← G-FSet : CG(−, L)

Fix(H) ⇐
G

H
.

If the finite G-set O is not homogeneous, then O is the disjoint union of its G-orbits Oi, where each

orbit Oi is a homogeneous G-space isomorphic to G/Hi for some subgroup Hi ⊆ G. Since the functor

of observables CG(−, L) changes coproducts into products, we have that:

∏

i

Fix(Hi)⇐
∐

i

(Oi ≃
G

Hi

) : CG(−, L).

In other terms, the observable algebra on a disjoint union of G-homogeneous spaces Oi ≃
G
Hi

can be

obtained from the Cartesian product of the intermediate extensions Bi composed of the Hi-invariant

elements of L.

It can be shown that CG(−, L) = HomG(−, L), i.e. that CG(O, L) is the K-algebra of G-morphisms

between O and L (see Ref.[27]).38 This means that CG(O, L), far from yielding all the L-valued observ-

ables on a G-set O, only gives the observables that are G-morphisms, i.e. the observables f̂ ∈ C(O, L)

such that gf̂(x) = f̂(gx) for x ∈ O. This last expression can be rewritten as g−1f̂(gx) = f̂(x). Hence

we can say that the observables in CG(O, L) are the fixed points of LO under the descent action given

by (g · f)(x) = g(f̂(g−1 · x)) (see Ref. [5], p. 29). This explains why we have called the functor

CG(−, L) functor of G-invariant observables. All in all, the spectrum functor SpecL(−) and the functor

of G-invariant observables CG(−, L) define an anti-equivalence of categories

SplitK(L)f
SpecL(−)=HomK(−,L)

// G-FSet
CG(−,L)=HomG(−,L)

oo

between the category SplitK(L)f of finite K-algebras split by L and the category G-FSet of finite G-sets.

The use of products and coproducts allows us to generate the most general objects of both categories

(i.e. K-algebras that are not necessarily fields and G-sets that are not necessarily homogeneous) from

the simplest cases (treated by the original Galois correspondence) provided by intermediate fields and



12 GABRIEL CATREN AND JULIEN PAGE

homogeneous G-sets. The following diagram schematizes the Galois-Grothendieck duality for two K-

algebras B1 and B2 split by L:

K-algebras

B1 ⊗K B2

B1 ×B2

$$ $$JJJJJJJJJ

zzzzttttttttt

B1

1�

CC����������������
B2

- M

[[7777777777777777

K
, �

99tttttttttt2 R

eeJJJJJJJJJJ

G-Sets

SpecL(B1)× SpecL(B2)

{{{{xxxxxxx
xxxxxxxxxxxxxx

## ##FFFFFFFFFFFFFFFFFFFFF

SpecL(B1) ⊔ SpecL(B2)

SpecL(B1)
�(

55kkkkkkkkkkkkkk

)) ))SSSSSSSSSSSSSS
SpecL(B2)
V6

iiSSSSSSSSSSSSSS

uuuukkkkkkkkkkkkkk

SpecL(K)

The generalization of the Galois correspondence as a duality between K-algebras and G-sets permits

us to reinterpret the former in the following terms. Each K-algebra B ∈ SplitK(L)f defines a L-dual

space SpecL(B) such that each abstract element f ∈ B defines, by means of the Gelfand transform, a

concrete L-valued observable on SpecL(B). Now, in the previous section we argued that the observable

algebra induced by B on SpecL(B) cannot be isomorphic to the whole algebra of L-valued observables

on this space.39 As we have just explained, a K-algebra B only induces the L-valued observables on

SpecL(B) that are G-invariant with respect to the descent action. In other terms, GelL(B) is the

subalgebra of C(SpecL(B), L) ∼= B⊗K L composed of the G-invariant observables. Now, it can be shown

that the G-observables on SpecL(B) induced by B by means of the Gelfand transform are enough for

discerning (or separating) the states in SpecL(B). This means that if f̂(α) = f̂(β) for every f ∈ B

(with α, β ∈ SpecL(B)), then necessarily α = β. Conversely, if α 6= β, then necessarily there exists

at least one element f in B such that α(f) 6= β(f), i.e. such that f̂(α) 6= f̂(β).40 In this way, the

Galois-Grothendieck duality is a duality between finite G-sets O and the minimal K-algebras CG(O, L)

that separate states in O.

Let’s consider for instance the extreme cases of K-algebras split by L, namely the K-algebras K

and L. Firstly, SpecL(L) = HomK(L, L) = G. This means that the G-set associated to L is G itself

with respect to the left action given by the product in G. Since SpecL(L) = G ≃ G/HL, the isotropy

group HL of the states in SpecL(L) is just the trivial group {idG}. We could say that the ‘resolving

power’ of L completely breaks all the indiscernibilities encoded in the Galois group Gal(L : K). On the

other extreme, SpecL(K) = HomK(K, L) = {idK}, i.e. the only K-morphism from K to L is just the

identity on K. Hence, SpecL(K) is composed of a single state {idK}
.
= {∗}. Since SpecL(K) ≃ G/HK ,

the isotropy group HK of the unique state {∗} in SpecL(K) must be the whole Galois group G. We

can thus say that the whole space SpecL(L) collapses, from the ‘viewpoint’ of K, to a single maximally

‘coarse-grained’ state {∗}. We can interpret this fact by taking into account that the only observables

induced by K are the constant functions. Since constant functions assign the same numerical value to

every possible state, no state can be discerned from any other.

Let’s consider now the L-dual space SpecL(Fix(H)) associated to the K-algebra Fix(H) for some

H ⊆ G. The observables induced by Fix(H) separate the states in SpecL(Fix(H)). This means that,

from the viewpoint of the algebra Fix(H), the space SpecL(Fix(H)), far from being a purely numerical

multiplicity of indiscernible states, is a qualitative multiplicity of discernible states that differ in some

predicative respect. Now, each discernible state α in SpecL(Fix(H)) is endowed with an isotropy group H

that encodes the limitations of the resolving power of Fix(H). In other terms, a state α ∈ SpecL(Fix(H))
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is a ‘H-coarse-grained’ state composed of different ‘micro-states’ that cannot be discerned by means of

the resolving power of Fix(H). The ‘internal symmetries’ of α encoded by the isotropy group H , far

from resulting from the absolute indiscernibility between the micro-states in the H-orbit α, are just a

symptom of the limitations of the ‘resolving power’ of Fix(H). By passing to a domain of rationality

Fix(H ′) endowed with a higher ‘resolving power’ (i.e. with H ′ ⊆ H), the indiscernibilities between the

micro-states in a H-orbit can be partially broken. This means that the micro-states in a H-orbit can

be partially discerned by Fix(H ′). By ‘observing’ the states in SpecL(Fix(H)) by means of the algebra

Fix(H ′), we obtain a space of states composed of a higher number of discernible states endowed with a

smaller isotropy group H ′. In other terms, the symmetry breaking process associated to an increasing

of the ‘resolving power’ of the observable algebra separates each H-coarse-grained state into distinct

H ′-coarse-grained states that can be qualitatively discerned.

Conversely, let’s see what happens when we try to discern states in SpecL(Fix(H)) by means of

a K-algebra endowed with a lower ‘resolving power’. To do so, let’s consider the observable algebra

induced by Fix(H ′′) with H ⊆ H ′′. Since H ′′ is bigger than H , the set Fix(H ′′) of H ′′-invariant

elements in L is smaller that Fix(H). Hence, we can expect the observables induce by Fix(H ′′) not

to completely discern the states in SpecL(Fix(H)). Let’s consider for instance two states j and k in

SpecL(Fix(H)) such that k = h′′ · j with h′′ ∈ H ′′ − H . Since h′′ is not in the isotropy group H of

the states in SpecL(Fix(H)), the states j and k are different states in this space. Now, any element

f in the algebra Fix(H ′′) satisfies f̂(h′′ · j) = f̂(j) for h′′ ∈ H ′′.41 Then, all the observables induced

by Fix(H ′′) assign the same value to j and k even if they are different states in SpecL(Fix(H)). This

means that the ‘resolving power’ of the observables induced by Fix(H ′′) are too weak to discern states

in SpecL(Fix(H)) connected by transformations in H ′′−H . The observable algebra induced by Fix(H)

is the minimal observable algebra that discerns the H-coarse-grained states in SpecL(Fix(H)) ≃ G/H .

The space SpecL(Fix(H ′′)) ≃ G/H ′′ of states that can be discerned by means of Fix(H ′′) is smaller

than SpecL(Fix(H)) ≃ G/H (since H ⊆ H ′′). In fact, a state in SpecL(Fix(H ′′)) can be obtained by

identifying the states in SpecL(Fix(H)) connected by transformations in H ′′−H . From the ‘viewpoint’

of Fix(H), the states in SpecL(Fix(H ′′)) are (H ′′ −H)-coarse-grained states.

We can thus conclude that the higher the resolving power of a K-algebra B, the higher the number

of states in SpecL(B) that can be discerned by means of the observables induced by B and the smaller

the isotropy group HB that encodes the coarsegrainedness of these states. Reciprocally, the ‘bigger’ the

isotropy group of each ‘coarse-grained’ state in a G-set, the ‘smaller’ the number of states in the G-set

and the ‘smaller’ the observable algebra that separates these states. In this way, the different levels of

the Galois-Grothendieck duality realize different combinations between the ‘size’ of the isotropy group

of the ‘coarse-grained’ states and the ‘size’ of the observable algebra that discern these states. We could

then rephrase the Galois-Grothendieck duality in the form of a Galois indiscernibility principle: the ‘size’

of the isotropy group of the ‘coarse-grained’ states in a G-set is inversely correlated to the ‘size’ of the

minimal observable algebra that discern these states.

7. Conclusion

In order to address the notion of indiscernibility, we have proposed an epistemic reading of Galois-

Grothendieck theory. According to this particular way of understanding Galois-Grothendieck theory, the

resolving power of an abstract algebra B fixes the coarsegrainedness of the states in SpecL(B) that can be

discerned by means of the observable algebra on SpecL(B) induced by B. In this geometric framework,

the original Galois correspondence appears as an inverse correlation between the coarsegrainedness of

the states and the size of the minimal observable algebra that discern these states (result that we have

called Galois indiscernibility principle).
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In order to conclude, we shall say some words about the relation between Galois-Grothendieck theory

and Leibniz’s principle of the identity of indiscernibles. According to Leibniz’s principle, distinct individ-

uals, i.e. individuals that differ numerically, must also differ in some predicative respect. In other terms,

Leibniz claims that numerically distinct and indiscernible individuals cannot exist. According to this

stance, we should be able to reduce every indexical “thisness” to a conceptually determined “suchness”

[1, 36]. Now, in the framework of Galois-Grothendieck theory, the notion of indiscernibility, far from

being an absolute notion, is indexed by the domain of rationality from which one is trying to discern the

corresponding individuals. For instance, the (G, K)-indiscernibilities encoded in a Galois group GK(p),

far from resulting from the ontic (or absolute) indiscernibility between the roots of p ∈ K[x], result from

the limitations of the domain of rationality K. In the framework of Galois-Grothendieck theory, the

indiscernibility between two individuals always has (what we could call) an ‘epistemic’ cause. In this

way, whereas Leibniz proposed to simply identify indiscernible individuals, Galois theory summons to

resolve, separate or discern them by extending the original domain of rationality. The relative (G, K)-

indiscernibility between two individuals, far from entailing their identity, means that the ‘sufficient

reason’ that explains their qualitative (or predicable) difference lies beyond the domain of rationality

K. In this way, a ‘qualitative’ multiplicity of L-discernible individuals can appear, from the restricted

viewpoint of a domain of rationality K endowed with a lower resolving power, as a purely numerical

multiplicity of (G, K)-indiscernible individuals.42

Taking into account what we have just said, we could be tempted to argue that in the last instance

Galois-Grothendieck theory validates Leibniz’s principle. Indeed, we could reformulate Leibniz’s principle

in a Galoisian manner by saying that the indiscernibility between two individuals necessarily results

from the limits of the ‘resolving power’ of the algebraic ‘devices’ that allow us to ‘observe’ (or to ‘speak

about’) the individuals in question. We could indeed maintain that in the last instance individuals

that are absolutely indiscernible (i.e. irrespective of the indexation by any domain of rationality),

cannot exist. However, it is worth stressing that Galois-Grothendieck theory is neutral with respect to

such a possibility. Indeed, Galois-Grothendieck theory leaves open the question concerning the possible

existence of entities that are ontically indiscernible, i.e. of entities that differ solo numero in any possible

domain of rationality. Far from showing that ‘individuals’ that are absolutely indiscernible cannot exist,

Galois-Grothendieck theory just shows how a relative ‘epistemic’ indiscernibility can result from the

limited resolving power of the corresponding observable algebra.43
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Notes

1This reference can be found in https://dspace.ist.utl.pt/bitstream/2295/575330/1/dissertacao.pdf.
2It is also worth mentioning that Da Costa, Rodriguez and Bueno developed, in the wake of the works of Jose

Sebastiao e Silva and Mark Krasner, a “generalized or abstract Galois theory” (see Refs.[11, 12] and references therein).

This theory relates the invariance under symmetry transformations on the one hand and the notion of definability with

respect to a given language on the other.
3It is also worth noting that the formal analogy between Grothendieck-Galois theory and the Tannaka-Krein re-

construction theorem for compact topological groups points towards the possible relevance of the former in algebraic

quantum field theory (see Refs.[7, 22, 34]). Indeed, the Tannaka-Krein formalism is at the heart of the analysis of

superselection sectors in algebraic quantum field proposed by Doplicher, Haag, and Roberts (DHR) (see Ref.[21] and

references therein).
4For an account of some recent developments of Galois’ ideas, see Refs.[2, 3]. Different philosophical treatments of

Galois theory can be found in Refs.[8, 28, 35, 37].
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5A K-algebra A is a ring endowed with a scalar multiplication by elements of the field K such that k(aa′) = (ka)a′

with k ∈ K and a, a′ ∈ A. Equivalently, a K-algebra is a K-vector space endowed with a multiplication. A typical

example of a K-algebra is the power Kn where the addition and the multiplications are defined componentwise. The

K-algebra Kn for n > 1 is not a field. For instance, the element (1, 0) ∈ K2 does not have a multiplicative inverse

(where the unit of K2 is (1, 1)).
6It can be shown that a splitting field always exist and that two such fields are necessarily isomorphic (see Ref.[26],

p. 236).
7Let’s note that by writing the set X as X = {α1, α2, ..., αn}, we have ordered the set, i.e. we have chosen a bijection

Ord : {1, 2, ..., n} → X. The following discussion does not depend on this election.
8One can prove that this definition of K-indiscernibility is equivalent to that of Model Theory: for every first-order

K-formula φ (not only the atomic ones) and every permutation σ, K(−→α ) |= (φ(−→α ) ⇔ σ · φ(−→α )). See Ref.[30] (p. 178)

for details.
9Indeed, idX ∈ SK(X). If σ1, σ2 ∈ SK(X), then ∀q, q(−→α ) = 0 ⇒ σ1 · q(−→α ) = 0 and thus σ1 · q annuls −→α so that

σ2 · (σ1 · q) = (σ2 · σ1) · q annuls −→α . Finally, every σ in SX is of finite order so that σ−1 = σp for some p ∈ N.
10With respect to the relations between the notions of individuality and discernibility (or distinguishability), we report

the reader to Ref.[16]. It is worth noting that in Ref.[16], hypothetical elements that are absolutely indiscernible, i.e.

elements that can be distinguished solo numero in any possible domain of rationality, are called non-individuals. Now,

the notion of indiscernibility formalized by Galois theory is a weaker notion, since it is relative to the different possible

domains of rationality. Therefore, we have decided to call the corresponding elements K-indiscernible individuals.
11Note that this definition of GalK(p) depends on the choice of a splitting field Kp. Hence, the Galois group of p(x)

is actually defined up to isomorphisms.
12The kernel of a ring homomorphism σ : K → L is an ideal of K. But a field K has only one proper ideal, namely

{0}. Hence, a field homomorphism σ : K → L is necessarily injective.
13It is worth stressing that the minimal polynomial pα,K depends of the base field K. For instance, the minimal

polynomial of 4√3 is X4 − 3 in Q and X2 −
√

3 in Q(
√

3).
14From the equation pα,K(α) = 0, we can express αn as a linear combination of

{
1, α, ..., αn−1

}
with coefficients in

K. We can then express every g(α) in K(α) as a linear expression in
{
1, α, ..., αn−1

}
. The minimality of pα,K implies

that these elements are linearly independent.
15Indeed, q(~α) = 0 implies that σ · q(~α) = q(σ̃−1(~α)) = σ̃−1(q(~α)) = σ̃−1(0) = 0.
16This definition does not depend on the choice of q. Indeed, y = q(~α) = q′(~α) ⇒ (q − q′)(~α) = 0 ⇒ σ · (q − q′)(~α) = 0

since σ ∈ GalK(p) and finally σ · q(~α) = σ · q′(~α).
17 Consider for instance the polynomial p(x) = x3 − 2 ∈ Q. The unique R-root of p is α = 3√2. If σ ∈ Aut(Q(α) : Q),

then σ(α) must also be a root of p in Q(α). Since the other two roots of p are the complex numbers jα and j2α with

j = e2iπ/3 (which are not in Q(α)), necessarily σ(α) = α. Hence, G = Aut(Q(α) : Q) = {idQ(α)} and Q(α)G = Q(α) 6= Q.

Since not all the roots of p(x) are in Q(α), the transformation that permutes α and jα is not in G, but rather in

Aut(Q(j, α) : Q). One can prove that actually (Q(j, α) : Q) is a Galois extension and that Gal(Q(j, α) : Q) ∼= S3.
18The French philosopher Albert Lautman has described this succession of extensions from K to Kp as an “as ascent

towards the absolute” by means of which the “the imperfection of a base field K with respect to a given polynomial”

progressively decreases (see Ref.[?], pp. 126-128).
19For instance, the diagonal K-algebra Km is not an integral domain, since (1, 0, ..., 0)(0, 1, ..., 0) = (0, 0, ..., 0). Now,

the roots in Km of a polynomial p(x) = (x − α1)...(x − αn) with αi ∈ K, are vectors −→α whose components are given

by the K-roots of p(x). Each K-root αi can be identified with the Km-root (αi, ..., αi) of m identical components.

However, in addition to the Km-roots induced by the n K-roots, one has all the Km-roots given by vectors in Km

whose components are not all equal. These extra Km-roots of p(x) do not cancel any of the n linear factors of p(x).

Hence, the reducible minimal polynomial of each extra Km-roots −→α is the product of the factors (x−αi) where the αi’s

are the components of −→α .
20In the context of infinitary Galois theory, the corresponding dual spaces are indeed profinite topological G-spaces

(see Ref.[5], p. 62). In what follows, we shall only consider the case of finite K-algebras and finite dual spaces. In this

restricted framework, the topology of the dual spaces is the discrete topology. Hence, in the finite case the profinite

topological G-spaces of the general theory will be simply replaced by G-sets.
21A K-homomorphism ε ∈ HomK( K[x]

〈p(x)〉
, A) is completely specified by fixing the element α ∈ A to which x (i.e.

the class of the polynomial x ∈ K[x]) is sent. In other terms, ε(f̄(x)) = f(α), where f̄(x) denotes the class of f(x)

in K[x]/〈p(x)〉. Now, in order to guarantee that such a morphism is a homomorphism of K-algebras, the zero in the

quotient algebra K[x]
〈p(x)〉

has to be sent to the zero in A. In particular, the polynomial p̄(x), being zero in K[x]
〈p(x)〉

, has to

be sent to the zero in A. This means that ε(p̄(x)) = p(α) = 0. Hence, x has to be sent to a root α of p(x) in A. In this

way, a morphism in HomK(
K[x]

〈p(x)〉 , A) is completely specified by choosing a root α of p(x) in A ([5], p. 22).
22Since we shall only consider the finite case, where Vp(A) is discrete, the algebra C(Vp(A), A) of continuous functions

coincides with the algebra AVp(A) of all functions.
23The spectrum Spec(U) of a C∗-algebra U is the (locally compact) space of its characters. A character is a non-null

morphism of C-algebras χ : U → C. If U is unital, Spec(U) is a compact space. In functional analysis and modern

mathematical physics, a state of a C∗-algebra U is defined as a morphism of C-vector spaces φ : U → C satisfying certain

conditions (see for instance Ref. [25]). This explains why we have decided to call the points of Vp(A) (i.e. the K-algebra

morphisms α : K[x]
〈p(x)〉

→ A) A-states.
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24By representation, we understand here a K-algebra homomorphism. Equivalently, we can say that K[x]
〈p(x)〉

is repre-

sented in C(Vp(A), A) as a multiplicative operator.
25For the characterization of points as representations of algebraic structures, see Ref.[6], §5.
26The fact that the functor of points is representable allows us to generalize the previous construction to any K-algebra,

i.e. to K-algebras that are not necessarily of the form K[x]
〈p(x)〉

. Given any K-algebra B, we can define its functor of points

as VB(−) = HomK(B,−). The set VB(A) can be considered as the set of A-points of B. We can now define a kind of

Gelfand transform as GelA : B → AVB (A) given by f 7→ f̂ where f̂(α) = α(f) ∈ A. Given a morphism φ : A → C of

K-algebras, the composition of morphisms of sets guarantees that φ induces a map Hom
K-alg(B, A) → Hom

K-alg(B, C)

given by f 7→ φ ◦ f . This means that the representable functor VB(−) is a covariant functor.
27This way of interpreting f̂(α) is justified by considering an analogous situation in the framework of the GNS (Gelfand-

Naimark-Segal) construction for C∗-algebras applied to the commutative case. In this context, each C-valued state

χ : U → C on an abstract commutative C∗-algebra U defines a different representation πχ : U → B(Hχ) of U in a Hilbert

space Hχ defined by χ. The Hilbert space Hχ is the closure of U/Nχ, where Nχ is the ideal Nχ = {f ∈ U/χ(f∗f) = 0}.
The representation πχ of U in Hχ is given by πχ(f)(ḡ)

.
= fg, where the bar denotes the equivalence classes in U/Nχ (see

Ref.[25], p. 53). The Gelfand transform Gel : U → C0(Spec(U), C) associates to each abstract algebra element f ∈ U an

observable f̂ on the pure state space P(U) = Spec(U). It is easy to see that the representation πχ (which is irreducible if

χ ∈ Spec(U)) of f acting on ḡ amounts to multiply ḡ by the complex number f̂(χ) ∈ C, i.e. that πχ(f)(ḡ)
.
= fg = f̂(χ)ḡ.

Indeed, fg − f̂(χ)ḡ = 0 in Hχ iff fg − f̂(χ)ḡ ∈ Nχ. Now, h ∈ Nχ iff ĥ(χ) = 0 (indeed, h ∈ Nχ iff χ(h∗h) = 0 iff

ĥ∗h(χ) = ĥ∗(χ)ĥ(χ) = |ĥ(χ)|2 = 0 iff ĥ(χ) = 0). In our case, ̂(fg − f̂(χ)g)(χ) = f̂(χ)ĝ(χ) − f̂(χ)ĝ(χ) = 0. It is also

worth noting that the set of numerical values
{

f̂(χ) = χ(f)
}

χ∈Spec(U)
that the observable f̂ takes coincides with the

spectrum of f ∈ U (i.e. with the set of elements λ ∈ C such that f − λ1U has no inverse in U). Indeed f̂ − λ · 1̂ is not

invertible iff there is some χ ∈ Spec(U) such that f̂(χ) − λ = 0.
28By duality we merely mean here a functor HomK-Alg(−, A) that permits to canonically associate the space Vp(A) =

HomK-Alg( K[x]
〈p(x)〉

, A) to the K-algebra K[x]
〈p(x)〉

. This duality is for the moment weak in the sense that the functor does

not necessarily define an equivalence of categories.
29For instance, the set of R-points of the polynomial x2 + 1 is the empty set. Hence, the algebra R[x]

〈x2+1〉
≃ C cannot

be faithfully represented into an observable algebra on such a space.
30Let’s consider an element f ∈ K[x] such that f̂(α) = 0 for every α ∈ Vp(Kp). Then, since p is assumed to be

separable, the polynomial p divides f . Therefore, f = 0 in K[x]
〈p(x)〉

. We have thus shown that a null function f̂ on Vp(Kp)

necessarily comes from the null element in
K[x]

〈p(x)〉 . Hence, GelKp is injective.

31Take for instance K = R and p(x) = x2 +1. Then Kp ∼= K[x]
〈p(x)〉

∼= C and Vp(C) ∼= 2. But by no means GelC : C → C2

can be surjective. In the general case, it can happen that a K-algebra B does not induce, via the corresponding Gelfand

transform, all the A-valued observables on the A-dual space VB(A). For instance, if we take B = K et A = Kp, the

A-dual space is composed of a single point VK(Kp) = HomK(K, Kp) = {idK} corresponding to the inclusion K →֒ Kp.

Now, the image of the K-algebra K by the Gelfand transform is the algebra of K-valued functions on a one-point set,

which coincides with K itself. Hence, it is evident that this observable algebra is not isomorphic to the algebra of

Kp-valued observables on VK(Kp), which is Kp.
32A K-algebra A is split by an extension L of K if 1) A is algebraic over K and 2) the minimal polynomial over K of

every element α ∈ A factorizes in L[x] into linear polynomials with distinct roots. It can be shown that A is split by L

if and only if there is some n such that A⊗ L ∼= Ln as L-algebras ([5], p. 23-24). It can also be shown that a K-algebra

B split by L is a product
∏

i Bi of intermediate fields K ⊆ Bi ⊆ L. It is worth noting that the fact that a K-algebra A

is split by a field L does not mean that L contains all the roots of the minimal polynomials of every α ∈ A. Since L is

a field, it cannot contain all the roots belonging to K-algebras that are not fields.
33By the Primitive Element Theorem (see Ref.[26], p. 243), L is of the form L = K(a) ∼= K[x]/〈q(x)〉, where the

irreducible and separable polynomial q(x) ∈ K[x] has all its roots in L. This means that L is a splitting field Kq of q(x).

Hence the Gelfand transform is injective (see endnote N◦30).
34It is worth noting that the possibility of making products in the algebraic category is a consequence of Grothendieck’s

generalization from fields to K-algebras. Indeed, while the product of K-algebras is a K-algebra, the product of two

fields is not a field. This has as a consequence that the geometric category, far from only including homogeneous G-sets,

includes general G-sets composed of many G-orbits.
35If B1 and B2 are two K-algebras, it is well-known that B1 ⊗K B2 is their coproduct in the category of commutative

K-algebras. Now if B1 and B2 are split by L, we have to check that B1 ⊗K B2 is also split by L. But as K-algebras,

B1 ⊗K L ∼= Ln and B2 ⊗K L ∼= Lm imply that B1 ⊗K B2 ⊗K L ∼= B1 ⊗K Lm ∼= (B1 ⊗K L)m ∼= Lnm, where we have

used that B ⊗K Lm ∼= (B ⊗K L)m (see Ref.[26], p. 608).
36Indeed, it can be shown that the application µ : KX ⊗ KY → KX×Y defined by µ(f ⊗ g)(x, y)

.
= f(x)g(y) is an

isomorphism if X and Y are finite sets.
37Indeed, let’s consider the restriction map ϕres : G

H → HomK(Fix(H), L) defined by [g] 7→ g|F ix(H). This map is

well-defined in the sense that it does not depend on the choice of g in the class [g]. If we take another g′ ∈ [g], we

have g′ = g · h for some h ∈ H = Gal(L : Fix(H)) and g′|F ix(H) = g|F ix(H) since h|F ix(H) = idF ix(H). The map

ϕres is surjective because every f ∈ HomK(Fix(H), L) can be extended to a g ∈ HomK(L, L) = G. Indeed, if K is an

algebraic closure of K that contains L, f can be extended to a K-morphism f : L → K (see theorem 2.8 in Ref.[26], p.

233). We can then take g = f |F ix(H). The normality of (L : K) implies that Im(g) ⊆ L. Indeed, every a in Fix(H)
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is a root of pK,a that belongs to L. Then g(a) is also a root of pK,a ∈ K[x]. By normality g(a) ∈ L and thus g ∈ G.

Finally, ϕres is injective since ϕres(g) = ϕres(g′) ⇒ (g′ · g−1)|F ix(H) = idF ix(H) ⇒ g′ · g−1 ∈ H ⇔ g′ = g. The map

ϕres is obviously a G-morphism.
38We shall show that this is the case for a homogeneous G space O ≃ G/H. Given a G-morphism φ : G

H → L,

we want to define an element a ∈ Fix(H). Let’s take a = φ(e). We have to verify that a is in Fix(H): for all

h ∈ H, h(a) = h(φ([e])) = φ(h · [e]) = φ([h · e]) = φ([h]) = φ([e]) = a. Reciprocally, given a ∈ Fix(H) we want to

define a morphism φa : G
H → L and show that it is indeed a G-morphism. Let’s define φa by φa([g]) = g(a). This

definition does not depend on the choice of the representative g in the class [g]. For example if we take another g′ ∈ [g],

we have g′ = g · h for some h ∈ H = Gal(L : Fix(H)). Hence h(a) = a and g′(a) = g · h(a) = g(a). Moreover,

φa(g′ · [g]) = φa([g′ · g]) = (g′ · g)(a) = g′ · g(a) = g′ · φa([g]), which means that φa is indeed a G-morphism. It is easy

to verify that the two processes are inverse one of the other.
39As we argued in Section N◦5, it is the L-algebra B ⊗K L that is isomorphic to the whole algebra of L-valued

observables on SpecL(B).
40According to the Galois correspondence, H = Gal(L : Fix(H)). For every f ∈ Fix(H), f̂([g1]) = f̂([g2])) if and

only if f̂(g1|F ix(H)) = f̂(g2|F ix(H)), where we have used the isomorphism (4). Now, this will be the case if and only if

g1(f) = g2(f), that is if and only if g−1
2 g1 ∈ H. This implies that [g1] = [g2].

41Indeed the L-valued observable algebra induced by Fix(H′′) is C(G/H′′, L), which can be identified with the algebra

of functions f : G → L that are constant on every H′′-orbit.
42The relationship between Galois theory and the notion of individuals was also addressed in Ref.[35], notably in §32,

pp. 286-289.
43With respect to the relationship between Galois theory and the problem of absolute indiscernibility see also Ref.[23].

In Ref.[16], the notion of (what the authors call) non-individuals (i.e. of entities that are absolutely indiscernible) is

extensively addressed.
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pp. 78-92.

8. Châtelet, G.: 2010, L’enchantement du virtuel. Mathématique, physique, philosophie, Éditions rue dUlm, Paris.
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