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Abstract. We argue that the classical description of a symplectic manifold endowed with a Hamil-

tonian action of an abelian Lie group G and the corresponding quantum theory can be understood

as different aspects of the unitary representation theory of G. To do so, we propose a conceptual

analysis of formal tools coming from symplectic geometry (notably, Souriau’s moment map and

the Mardsen-Weinstein symplectic reduction formalism) and group representation theory (notably

Kirillov’s orbit method). The proposed argumentative line strongly relies on the conjecture pro-

posed by Guillemin and Sternberg according to which “quantization commutes with (symplectic)

reduction”. By using the generalization of this conjecture to non-zero coadjoint orbits, we argue

that phase invariance in quantum mechanics and gauge invariance have a common geometric un-

derpinning, namely the symplectic reduction formalism. This fact points towards a gauge-theoretic

interpretation of Heisenberg indeterminacy principle.
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1. Introduction

Group theory is pervasive in both classical and quantum mechanics, both in the framework of ordinary

Hamiltonian systems and in the framework of constrained Hamiltonian systems or gauge theories (see for

instance Ref.[2]). In what follows, we plead in favor of a group-theoretical interpretation of ordinary (non-

constrained) Hamiltonian mechanics by studying the case of a symplectic manifold (M,ω) endowed with

a strongly Hamiltonian symplectic action of an abelian Lie group G. The proposed approach contrasts

with the C∗-algebra approach in which classical and quantum mechanics can be reobtained as the

representation theories of commutative and non-commutative C∗-algebras respectively [12, 19]. In order

to justify the election of a non-commutative C∗-algebra, it is common to make appeal to operationalistic

arguments concerning the impossibility of joint measurements of non-commuting observables.1 In the

approach that we explore in what follows, the difference between classical and quantum mechanics is

not explained by appealing to the commutativity properties of the corresponding abstract algebraic

structure. Moreover, we argue that the symplectic manifold (M,ω) and its quantum counterpart HM

play different roles in the representation theory of the same group G. The restriction to the case of

an abelian Lie group G, besides simplifying the discussion, allows us to stress that one of the more

characteristic features of quantum mechanics, namely the existence of indeterminacy relations, does not

result from the non-abelianity of the corresponding algebraic structure.2

In Section N◦2, we use the moment map formalism in symplectic geometry to start the construction

of a group-theoretical interpretation of the notions of classical state and classical observable. By using

these interpretations, we argue that the state-observable duality can be interpreted in terms of the duality

between a Lie group G and its unitary dual Ĝ (i.e., the collection of all equivalence classes of unitary

1According to Strocchi, “[...] the mathematical setting of quantum mechanics can be derived with a very strict logic

solely from the C∗-algebraic structure of the observables and the operational information of non-commutativity codified

by the Heisenberg uncertainty relations.” ([19], p. 22; see also Section 2.1).
2The simplest example of such an abelian case is given by the (cotangent lift of) the translations generated by G = R

n

acting on the n positions (q1, ..., qn) of the symplectic manifold M = R
2n parameterized by (q1, ..., qn; p1, ..., pn) (see

Ref.[14], Th. 12.1.4).
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irreducible representations–unirreps in what follows– of G). In Section N◦3, we use the Guillemin-

Sternberg conjecture according to which “quantization commutes with symplectic reduction” to analyze

the relationship between quantization and the symplectic reduction formalism. In Section N◦4, we use

the generalization of this conjecture to non-zero coadjoint orbits to argue that the symplectic reduction

formalism provides the common geometric underpinning of both the gauge invariance associated to the

presence of first-class constraints and the phase invariance associated to the eigenstates of ordinary (non-

constrained) observables. In the final section, we discuss some consequences of the proposed arguments

with respect to the interpretation of mechanics.

2. Group-theoretical interpretation of the state-observable duality

In this section, we consider the duality between classical states and observables in the framework

provided by the moment map formalism in symplectic geometry [1, 13, 14, 17, 18]. Given a symplectic

manifold (M,ω), the symplectic structure ω defines a Lie algebra homomorphism between observables

on M and symplectic vector fields:

C∞(M) → Symp(M)

π : f → vf ,

{g, f} 7→ v{g,f} = [vf , vg ]

defined by means of the symplectic Hamilton equation

df = ivfω.

The symplectic vector fields obtained by means of this application are called Hamiltonian vector fields.

Let’s consider now a strongly Hamiltonian symplectic action Φ : G×M →M of a Lie group G (that we

shall call phase group) on a symplectic manifold (M,ω), i.e. an action that 1) preserves ω (i.e. such that

Φ∗
gω = ω) and 2) has an associated infinitesimally equivariant moment map. In what follows, such a

structure is called Hamiltonian G-manifold and denoted (M,ω,µM ). In these cases, there exists a map

(called co-moment map)

µ̃M : g → C∞(M) (1)

X 7→ fX

such that the following diagram commutes

g
µ̃M //

λ

$$

C∞(M)
π // Symp(M),

where

λ : g → Symp(M) (2)

X 7→ vX =
d

dλ
(exp(−λX) ·m)|λ=0

is the natural map between abstract Lie algebra elements and the so-called fundamental vector fields

on M . The commutativity of this diagram means the observable fX obtained by means of (1) and

the fundamental vector field vX obtained by means of (2) satisfy the symplectic Hamilton equation

dfX = ivXω. The dual moment map µM is given by

µM : M → g
∗

such that

〈µM (m),X〉 = fX(m) = µ̃M (X)(m). (3)
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If Xi is an element in the basis of g, the observable fXi evaluated in m gives the i-component of

µM (m). In what follows, C∞
g (M)

.
= µ̃M (g) will be called moment observable algebra and the observables

in C∞
g (M) will be called moment observables. Thanks to the existence of µM , we can characterize M as

a symplectic realization of the Poisson manifold g
∗ (endowed with the so-called Lie-Poisson structure).

This correspondence between M and g
∗ implies that each “classical state” m ∈ M defines a R-valued

linear functional on g

m̌ : g → R (4)

X 7→ 〈µM (m),X〉.

In turn, the co-moment map µ̃M can be interpreted as a sort of Gelfand transform in the sense that

it permits to realize the abstract algebra g as an observable algebra C∞
g (M)

.
= µ̃M (g) on the space M

of R-valued functionals on g. Indeed, expression (3) can be recast in terms of the usual state-observable

duality :

fX(m) = m̌(X).

The infinitesimal equivariance of the moment map means that µM infinitesimally intertwines the G-

action on M and the G-coadjoint action on g (i.e. that (TmµM )(vX(m)) = −ad∗X(µM (m)) for all X ∈ g,

where TmµM : TmM → Tg
∗ ≃ g

∗ and ad∗ denotes the coadjoint action of g on g
∗). In turn, this means

that the co-moment map µ̃ is an homomorphism of Lie algebras, i.e. that µ̃M ([X,Y ]) = {µ̃M (X), µ̃M (Y )}

[14, 17].

We shall now argue that the duality between a physical spectrum (M,ω, µM ) of g and its moment

observable algebra C∞
g (M) can be understood in the framework of the unitary representation theory of

g. To do so, let’s consider the role played by g
∗ in the theory of unitary representations of g. If G is

abelian, each integral linear map ξ : g → R in g
∗ defines a 1-dimensional unirrep ρGξ of G given by3

ρGξ : G → U(1)

eX 7→ e2πi〈ξ,X〉, X ∈ g. (5)

The abelianity of G guarantees that ρGξ is indeed a representation.4 Now, the moment map µM allows

us to transfer this relationship between the universal functionals in g
∗ and the unirreps of G to the points

m such that µM (m) is integral. Indeed, we can associate the 1-dimensional unirrep ρGµ(m) of G to each

integral m ∈M :

m ρGµM (m) : eX 7→ e2πi〈µM (m),X〉.

On the other hand, the co-moment map µ̃M : g → C∞(M) associates to each abstract Lie algebra ele-

ment X a moment observable fX on M . The moment observable fX encodes all possible representations

of X as concrete unitary operators acting on C. Indeed, the numerical value

fX(m) = 〈µM (m),X〉

obtained by evaluating fX on m defines the concrete unitary operator

e2πifX (m) (6)

that represents the abstract Lie algebra element X ∈ g in the unirrep ρµM (m). In this way, the duality

between the so-called “classical states” in M and the moment observables in C∞
g (M) can be reinterpreted

in the following group-theoretical terms. Whereas each element m ∈ M defines a single 1-dimensional

unirrep ρµM (m) of all the abstract elements in g, the moment observable fX encodes all possible unirreps

of a single Lie algebra element X ∈ g. By evaluating fX on m we obtain the concrete unitary operator

(6) that represents X in the unirrep ρµM (m). In this way, the duality between the “classical states” in

3En element ξ in g
∗ is integral if it belongs to the weight lattice of G, i.e. if 〈ξ, X〉 = 2πiZ for every X ∈ ker(exp :

g → G).
4This can be trivially proved by means of the Baker-Campbell-Hausdorff formula eXeY = eZ with Z = X + Y +

1

2
[X, Y ] + 1

12
[X, [X, Y ]] + ...
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M and the moment observables on M can be understood as a duality between the unirreps of G and the

elements of G, i.e. as a duality between the unitary dual Ĝ and the group G. Whereas M is a symplectic

realization of the unitary representation theory of G conveyed by g
∗, the moment observable algebra

C∞
g (M) is a realization of g itself as observables on M .

For the general case of a non-abelian Lie group G, we cannot simply associate an unirrep of G with

each universal integral functional ξ ∈ g
∗. However Kirillov’s orbit method establishes a correspondence

between unirreps of a nilpotent Lie group G and the (integral) orbits of the coadjoint action Ad∗ of G

on g
∗ (coadjoint orbits) [10]:

Ĝ ≃ int(g∗/G).

It can be shown that the coadjoint orbits O ⊂ g
∗ are endowed with a canonical G-invariant symplectic

structure ωO [10]. The Kirillov’s correspondence depends on the fact that each coadjoint orbit O is a

homogeneous Hamiltonian G-manifold whose (geometric) quantization yields a Hilbert space that carries

an unirrep of G. In this way, given a Lie group G we can define a Poisson family g
∗ of Hamiltonian

G-manifolds (O, ωO, µO) such that the quantization of the integral ones yields the unirreps of G. It is

worth stressing that symplectic manifolds (i.e. “classical systems”) canonically appear in the unitary

representation theory of a Lie group G. In the case of an abelian Lie group, the coadjoint action is

trivial. Hence, the coadjoint orbits are simply the elements of g
∗. The (trivial) geometric quantization

of an (integral) coadjoint orbit ξ ∈ g
∗ yields a 1-dimensional Hilbert space Hξ containing a U(1)-class of

normalized vectors. The unitary G-action on these vectors is implemented by means of the phase factors

defined in (5). If we assume that quantum states are define modulo overall phase factors, the resulting

quantum theory is composed of a unique quantum state that we shall denote |ξ〉. In what follows, we

shall say that the state |ξ〉 is (G, ξ)-phase invariant. The concrete group (G, ξ) (i.e. the phase group

G acting in the unirrep labeled by ξ) will be called group of automorphisms of the state. The group

of automorphisms (G, ξ), while leaving the class |ξ〉 invariant, acts non-trivially on the corresponding

U(1)-orbit, that is on what we shall call the internal structure of the state.

In this way, the points m in µ−1
M (ξ) ⊂M (for ξ integral) are associated to the unirrep ρGξ of G. This

representation acts by means of (G, ξ)-phase factors on the internal structure of the unique quantum

state |ξ〉 obtained by quantizing ξ. In this way, the “classical states” m ∈ µ−1
M (ξ) and the quantum state

|ξ〉 play different roles in the unitary representation theory of the same group G: whereas the “classical

states” m ∈ µ−1
M (ξ) define the unirrep ρGξ of G, the quantum state |ξ〉 belongs to the representation space

in which this unirrep acts. According to this argumentative line, we could say that we misinterpret the

notion of phase space if we interpret as a space of states. According to the proposed arguments, a

Hamiltonian G-manifold (M,ωM , µM ) must be understood as a symplectic realization of the Poisson

manifold g
∗ that parameterizes the unirreps of G acting in the truly representation spaces, namely the

Hilbert spaces obtained by quantizing the integral elements in g
∗.

3. On Quantization and Symplectic Reduction

Thanks to the moment map, the (integral) “classical states” in M can be put in (a non-bijective)

correspondence with the elements on g
∗. In turn, the latter define 1-dimensional unirreps of G. These

representations were obtained by quantizing the (trivial) integral coadjoint orbits ξ ∈ g
∗. Now, what is

the relationship between the Hilbert spaces Hξ obtained by quantizing the coadjoint orbits ξ in g
∗ and

the Hilbert space HM obtained by directly quantizing M? Since G acts simplectically on M , we could

expect the quantization of M to yield a Hilbert space HM endowed with a unitary representation of

G. Now, the quantization of the coadjoint orbits O ∈ int(g∗/G) yields the unirreps HO of G (in what

follows, we denote the coadjoint orbits by O when the corresponding argument or formula is valid for

any coadjoint orbit besides the one-point orbits). Then, we should be able to decompose HM into a sum
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of unirreps HO , that is into a direct sum of the form

HM =
⊕

O∈int(g∗/G)

m(O,M)HO.

Here, m(O,M)
.
= HomG(H0,HM ) (being HomG(H0,HM ) the space of all G-equivariant linear maps

between H0 and HM ) is the multiplicity with which the unirrep HO occurs in HM . Therefore, we must

address the following questions: 1) what are the unirreps HO of G that occur in HM? and 2) what are

theirs multiplicities m(O,M)?

Since the unirrep HO is supported by the coadjoint orbit O, Kirillov conjectured that HO occurs in

HM if µ−1(O) 6= 0 (see Ref.[8], Th. 6.3). According to this idea, we have to consider the “realization”

µ−1(O) ⊂M of the universal coadjoint orbit O ⊂ g
∗. Let’s begin by considering the simplest coadjoint

orbit, namely 0 ∈ g
∗. If 0 is a regular value of the moment map, µ−1

M (0) is a submanifold of M . The

equivariance of the G-action implies that G preserves the surface µ−1
M (0), i.e. that the zero value of

the moment observables is conserved by the G-action. This means that the fundamental vector fields

vX = λ(X) (defined in (2)) that infinitesimally realize the G-action on M are tangent to µ−1
M (0). Now,

the 2-form i∗0ω obtained by restricting ω to the surface µ−1
M (0) is not necessarily non-degenerate (where

i0 : µ−1
M (0) →֒ M is the inclusion). Indeed, (i∗0ω)(v, vX) = 0 for all v ∈ T (µ−1

M (0)) [8]. Therefore, the

symplectic complement (Tµ−1(ξ))⊥ of Tµ−1(ξ) is included in Tµ−1(ξ), which means that µ−1(ξ) is a co-

isotropic submanifold of M . This means that the tangent spaces to the G-orbits define null directions for

the restricted 2-form i∗0ω on T (µ−1
M (0)). Therefore, i∗0ω does not define a symplectic structure on µ−1

M (0).

Now, we have a chance to reobtain a symplectic manifold if we eliminate these null-directions, i.e. if we

take the quotient of µ−1
M (0) by the group action. This is the content of the so-called Mardsen-Weinstein

symplectic reduction procedure [12, 15]. If 0 is a regular value of the moment map µM and G acts freely

and properly on µ−1
M (0), then it can be shown that the 0-symplectic quotient M0

.
= µ−1(0)/G (also

known as reduced phase space in the physics literature) is a manifold endowed with a unique symplectic

structure ω0 satisfying

π∗
0ω0 = i∗0ω,

where

µ−1
M (0)

� � i0 //

π0

����

M
µM // g

∗

M0
.
= µ−1

M (0)/G

(7)

This procedure can be generalized to any coadjoint orbit O ⊂ g
∗ by means of the so-called shifting

trick (see Ref.[8], p. 531). To do so, let’s consider the Hamiltonian G-manifold O− .
= (O,−ωO) dual to

O endowed with the moment map µO− (ξ) = −ξ. The product M × O− endowed with the symplectic

form π∗
O−ωO− + π∗

MωM (where πO− and πM are the projections on O− and M respectively) is also a

Hamiltonian G-manifold. The corresponding moment map Ψ : M × O− → g
∗ is given by Ψ(m,ϑ) =

µM (m)− ϑ. The preimage of 0 ∈ g
∗ in M ×O− is given by Ψ−1(0) = {(m, ξ)/µM (m) = ξ} ⊂M ×O−.

This set is in bijection with the set µ−1
M (O) ⊂M . Now, an element in Ψ−1(0)/G is an equivalence class

[(µ−1
M (ξ), ξ)]G. We can (partially) “fix the gauge” by choosing the representative(s) of this class defined

by an element ξ0 in O. However, the fact that ξ0 might have a non-trivial isotropy group Gξ implies that

this partial gauge fixing does not yield a single representative of the G-equivalence class [(µ−1
M (ξ), ξ)]G,

but rather the Gξ-class [(µ−1
M (ξ0), ξ0)]Gξ . The set of these classes is in bijection with µ−1

M (ξ0)/Gξ .
5 All

5The possible obstruction to the freeness of the G-action on Ψ−1(0) ≃ µ−1(O) is given by the isotropy group Gξ of

the elements ξ ∈ O. Hence, the group G acts freely on Ψ−1(0) ≃ µ−1(O) if Gξ acts freely on µ−1(ξ).
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in all, we have obtained three equivalent expressions of the O-symplectic quotient MO , namely

MO
.
= Ψ−1(0)/G

≃ µ−1
M (O)/G

≃ µ−1
M (ξ)/Gξ .

In what follows, the procedure of passing from M to MO will be called O-symplectic reduction. We

could say that the correct notion of quotient in the symplectic category is not the set-theoretic quotient

M/G but rather the space of G-orbits in the surfaces µ−1
M (O). In fact, the set-theoretic quotient M/G

is a Poisson manifold whose symplectic leaves are the symplectic quotients MO (see Ref.[12], Th. 1.5.5,

p. 326). This means that M can be decomposed in G-fibrations µ−1
M (O) → MO over the O-symplectic

quotients MO .

The number of points in the O-sympletic quotient MO tells us how many times the orbit O “occurs”

in M . Following the argumentative line of Kirillov’s conjecture (i.e. that the unirrep HO occurs in HM

if O is in the image of µM ), we could conjecture that the multiplicity of HO in HM somehow depends on

this number. We shall now show that this heuristic conjecture can be made precise by reconsidering what

we understand by the notion of point in a symplectic framework. According to Guillemin and Sternberg’s

rephrasing of Weinstein’ “symplectic creed” [21], “the smallest subsets of classical phase space in which

the presence of a quantum-mechanical particle can be detected are its Lagrangian submanifolds [...] it

makes sense to regard the Lagrangian submanifolds as being its true “points”.” [8]. This notion of point

can be formalized by using the idea coming from category theory according to which the morphisms

X → Y between two objects in a category define the X-points of Y . In the present case, we must

use what we call the G-symplectic “category” Symp(G) [21]. The objects of Symp(G) are Hamiltonian

G-manifolds (M,ωM , µM ) and the morphisms between two objects (M2, ω2, µ2) and (M1, ω1, µ1) are

the Lagrangian submanifolds of the symplectic manifold (M1 ×M−
2 , π

∗
1ω1 − π∗

2ω2,Ψ
.
= µ1 − µ2) (where

π1,2 : M1 ×M2 → M1,2 are the projections) contained in Ψ−1(0) (these morphisms in Symp(G) are also

called canonical relations from M2 to M1). In particular, the morphisms between the zero-dimensional

symplectic manifold ξ ∈ g
∗ and (M,ωM , µM ) are given by the Lagrangian submanifolds of M × ξ− ≃M

contained in µ−1(ξ). In categorical terms, the Lagrangian submanifolds of M in µ−1(ξ) define the ξ-

points of M . Coming back to the general case, MO is a Hamiltonian G-manifold with trivial moment

map µMO
(m) = 0 for all m ∈ MO . Indeed, G acts trivially on MO given that MO was defined by

quotiening out the G-action. Then, the 0-points of MO are simply its Lagrangian submanifolds. Now,

the Lagrangian submanifolds of M×O− contained in the coisotropic submanifold Ψ−1(0) are G-invariant

(Ref.[23], Prop.3.1). Therefore, they are in bijective correspondence with the Lagrangian submanifolds

of MO
.
= Ψ−1(0)/G [7, 8, 22].6 In other terms, the 0-points of MO are in bijective correspondence with

the (necessarily G-invariant) O-points of M , that is with the G-equivariant morphisms O →M ([7], Th.

3.1.1). Briefly, we have found the following bijection:

MO ≃ HomG(O,M), (8)

where MO must be understood here as the set of its 0-points. According to this expression, the O-

symplectic quotient MO can be called the classical intertwiner space between O and M [22]. From a

conceptual viewpoint, it is worth stressing that the symplectic points of a Hamiltonian G-manifold, far

from being simple geometric entities, have an internal structure. The important point in the present

context is that the variable acted upon by G belongs to the internal structure of the O-points of M .

6Let’s consider for instance the symplectic manifold M = (q1, q2; p1, p2). If the value of p1 is fixed to p0

1
, then

the p0

1
-points of M are given by the G-invariant Lagrangian submanifolds of µ−1

M
(p0

1
) = (q1, q2; p0

1
, p2). These G-

invariant Lagrangian submanifolds are Lp2 (q1, q2) and Lq2 (q1, p2). In both cases, the coordinate q1 becomes an internal

coordinate of the p0

1
-points of M . Now, these G-invariant Lagrangian submanifolds are in bijective correspondence with

the Lagrangian submanifolds of M
p0
1

.
= µ−1

M
(p0

1
)/G = {q2, p2}. These Lagrangian submanifolds are Lp2 (q2) and Lq2 (p2).
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In a seminal work, Guillemin and Sternberg found the quantum version of (8) [8] (see also Ref.[20]).

Firstly, they conjecture (and demonstrate it for the particular case of a Khäler manifold) that quantization

(Q) commutes with symplectic reduction with respect to the trivial coadjoint orbit (R0). This is sometimes

symbolically summarized by means of the expression

[Q,R0] = 0.

More precisely, this means that

HM0
≃ HG

M , (9)

where HG
M is the Hilbert space containing the G-invariant quantum states on M . This means that the

Hilbert space obtained by quantizing the 0-symplectic quotient M0 defined by the trivial coadjoint orbit

0 ∈ g
∗ is in bijective correspondence with the Hilbert space containing the G-invariant quantum states

on M . Now, expression (9) just tells us that the dimension of HM0
coincides with the dimension of HG

M ,

i.e. with the number of copies of the trivial 1-dimensional unirrep of G defined by 0 ∈ g
∗. In other terms,

dim(HM0
) coincides with the multiplicity of the trivial unirrep of G in HM . Hence, we can rephrase (9)

by means of the following expression:

HM0
≃ HomG(H0,HM ), (10)

where H0 is the Hilbert space (obtained by quantizing 0 ∈ g
∗) carrying the trivial unirrep of G. In Ref.[8],

Guillemin and Sternberg found the straightforward generalization of this expression to the general case

of a non-trivial unirrep HO:

HMO

∼= HomG(HO,HM ). (11)

This means that the dimension of HMO
yields the number of independent G-intertwiners between

HO and HM . In this way, whereas the quantization of the coadjoint orbits O belonging to the image of

µM yields the unirreps HO appearing in the decomposition of HM , the quantization of the O-symplectic

quotients MO yields the multiplicity of the unirreps HO in HM . It is worth noting that in the general

case each state in HMO
does not define a single state in HM (as it happens in the particular case given

by (9)), but rather a copy of HO in HM .

Expression (11) can be considered the quantum counterpart of (8): whereas at the classical level the

0-points of MO define the G-equivariant maps O → M , at the quantum level the states in HMO
define

the G-intertwiners HO → HM . In this way, the (geometric) quantization of the classical intertwiner space

MO ≃ HomG(O,M) yields the quantum intertwiner space HMO
≃ HomG(HO,HM ). In particular, if O

is not in the image of µ, there is neither a O-symplectic quotient MO nor a reduced Hilbert space HMO
.

Hence, m(O,M) is zero, that is the unirrep HO does not occur in HM (Kirillov’s conjecture).

4. Gauge Invariance and Phase Invariance

The importance of the result (9) has been mainly stressed in the framework of the theory of constrained

Hamiltonian systems (or gauge theories) [6, 9]. Indeed, the symplectic reduction procedure that we have

just described is a particular case of the reduction formalism used in gauge theories [11]. If (9) is valid,

one can quantize a gauge theory and impose the (quantum operators associated to the) constraints on

the resulting quantum states instead of reducing at the classical level (which is in general problematic)

and quantizing the reduced theory afterwards. In other terms, the following “diagram” commutes:

M
Quantization

///o/o/o/o/o/o/o/o/o

0-symplectic reduction
��
�O
�O
�O

HM

G-invariant states
��
�O
�O
�O

M0
///o/o/o/o/o/o/o HM0

≃ HG
M .

(12)
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The important point in the present context is that the G-invariance of the quantum states of a gauge

theory is the quantum counterpart of the classical symplectic reduction with respect to the coadjoint orbit

0.

We shall now argue that expression (11) generalizes this correspondence between group invariance and

symplectic reduction from first-class constraints to the properties defined by the moment observables

in C∞
g (M). The important difference is that the moment observables are not constrained (like the

constraints) to take a unique value in g
∗. In the case of a one-point coadjoint orbit ξ 6= 0, expression

(11) leads to a straightforward generalization of the bijection (9) given by (see Appendix for details)

HMξ ≃ H
(G,ξ)
M . (13)

Here, H
(G,ξ)
M denotes the Hilbert space containing the (G, ξ)-phase invariant states in HM , i.e. the

quantum states |ξ, ...〉 whose group of automorphisms is given by the 1-dimensional unirrep of G defined

by ξ:

ρGξ : eX 7→ e2πi〈ξ,X〉.

In this way, the ξ-symplectic reduction of M does not yield the G-invariant states in HM , but rather

the (G, ξ)-phase invariant states. The corresponding commuting “diagram” is:

M
Quantization

///o/o/o/o/o/o/o/o/o/o

ξ-symplectic reduction
��
�O
�O
�O

HM

(G,ξ)-phase invariant states
��
�O
�O
�O

Mξ
///o/o/o/o/o/o/o HMξ ≃ H

(G,ξ)
M .

(14)

The important point is that the (G, ξ)-phase invariance of quantum states is the quantum counterpart

of the symplectic reduction with respect to the non-zero one-point coadjoint orbit ξ. This means that

quantum phase invariance is the generalization of the G-invariance appearing in gauge theories for the

ξ-symplectic reductions with ξ 6= 0.

We shall now use the correspondence (13) to revisit Heisenberg indeterminacy principle. As we have

said before, the ξ-points of M (or, as we shall call them, the symplectic realizations of ξ ∈ g
∗ in M)

are G-invariant. We could thus say the variable acted upon by G belongs to the internal structure of

the ξ-points of M . This is just the counterpart at the level of the symplectic realization M of g
∗ of the

fact that the isotropy group of ξ in g
∗ is G itself. Now, (13) implies that the ξ-points of M (considered

as 0-points in Mξ) “support” the (G, ξ)-phase invariant quantum states |ξ, ...〉 in HM . We could thus

say that the quantum states supported by the ξ-points of M have G as internal phase symmetry group.

Exactly as it happens with ξ and |ξ〉, the internal G-structure of the ξ-points of M is lifted to the (G, ξ)-

phase invariance of the quantum states |ξ, ...〉 in HM supported by these ξ-points. Now, the quantum

state |ξ, ...〉 is (G, ξ)-phase invariant, that is its group of automorphisms is (G, ξ). This means that

the variable acted upon by G, far from being an “external” variable that could be used to localize

the state |ξ, ...〉, is an “internal” variable acted upon by the group of automorphisms of |ξ, ...〉. Hence,

the variable acted upon by G can be transformed without modifying the state |ξ, ...〉. In more usual

terms, the variable acted upon by G is completely “undetermined”.7 This indeterminacy just reflects

the internal G-structure of the ξ-points in Mξ that support the states |ξ, ...〉. We could thus propose

the following group-theoretical interpretation of Heisenberg indeterminacy principle: if the variable that

fixes the unirreps of G is sharply defined, then the conjugated variable acted upon by G is completely

undetermined.

We have argued that non-constrained quantum mechanics encodes a generalization of the symplectic

reduction procedure used in gauge theories in the sense that it allows reductions with respect to non-zero

7In gauge-theoretic terms, the observables on M that are not G-invariant do not induce well-defined phase invariant

observables on the ξ-symplectic quotient Mξ that supports the states |ξ, ...〉.
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coadjoint orbits. This is just a consequence of the difference between moment observables and (first-class)

constraints: whereas one considers all the possible values of a moment observable (like for instance the

different values of the momentum p), one restricts the theory to a single value of a constraint (namely

zero). In other terms, whereas in gauge theory one only considers G-invariant quantum states (i.e. states

whose group of automorphisms is given by the trivial unirrep of the gauge group), in non-constrained

quantum mechanics one considers (G, ξ)-phase invariant states for all the integer values ξ (i.e. states

whose group of automorphisms can be given by the different unirreps of the phase group). Now, in

quantum mechanics one can superpose the (G, ξ)-phase invariant states defined by the different unirreps

ρGξ . In other terms, HM contains states of the form |ψ〉 =
∑
ξ ψ(ξ)|ξ, ...〉. The important point is that

the state |ψ〉 is not G-phase invariant since the action of G changes the relative phases between the

terms |ξ, ...〉 of the superposition. Therefore, a state |ψ〉 not transforming in a well-defined unirrep of

G is not G-phase invariant. This means that the superposition of states transforming under different

unirreps of G breaks the G-phase symmetry. In turn, the presence of states transforming under different

unirreps of G is just a consequence of the fact that one does not “constraint” the theory to a single

value of the corresponding moment observable. In this way, the introduction of an indeterminacy in the

variable that labels the unirrep of G breaks the complete indeterminacy in the variable acted upon by

G. We can thus conclude that Heisenberg indeterminacy principle relates the indeterminacy in the value

of the variable that defines a unirrep of G and the (inversely correlated) indeterminacy in the value of

the variable acted upon by G.

5. Conclusion

In order to plead in favor of a group-theoretical interpretation of mechanics, we have analyzed the case

of a symplectic manifold (M,ω) endowed with a strongly Hamiltonian symplectic action of an abelian

Lie group G. We shall now summarize the results of this analysis.

Firstly, we have argued that the classical and quantum description of a Hamiltonian G-manifold

(M,ω) should not be considered as alternative descriptions of the same physical system, but rather

as different structures of the unitary representation theory of G. Whereas the ξ-points of M are the

symplectic realizations of the multiplicative characters ξ ∈ g
∗ that define the unirreps ρGξ of G, the

quantum states |ξ, ...〉 obtained by quantizing these ξ-points belong to the representation spaces wherein

these unirreps act.

Secondly, we have argued that the phase-invariance of quantum states generalizes the strict invariance

appearing in gauge theories to the case of (moment) observables that are not constrained to take a single

value in g
∗. Now, the quantum phase invariance can be understood as a manifestation of Heisenberg

indeterminacy principle. Therefore, the fact that phase invariance and gauge invariance have the same

geometric underpinning (namely, as we have argued, the symplectic reduction formalism) points towards

a gauge-theoretic interpretation of Heisenberg indeterminacy principle. In gauge theories, the variable

canonically conjugated to a constraint G(q, p)–i.e. the variable acted upon by the Hamiltonian vector

field vG–is completely “gauged out” by the gauge transformations generated by the operator defined by

G(q, p). Analogously, the variable canonically conjugated to a moment observable f taking a well-defined

value f = f0 is completely “phased out” by the phase transformations generated by the operator defined

by f .8 In group-theoretical terms, by fixing a unirrep ξ of G we obtain quantum states |ξ, ...〉 that do

not depend on the variable acted upon by G. Roughly speaking, the value of such a variable is “pure

phase”. In this conceptual framework, Heisenberg indeterminacy principle is not a consequence of the

commutativity properties of the phase group G, but rather a consequence of the duality between the

unirreps of the phase group G and the variables acted upon by G in certain G-sets (namely, the ξ-points

of M).9

8This gauge-like interpretation of Heisenberg indeterminacy principle was proposed in Refs.[3, 4, 5].
9In Ref.[16], we provide a Galoisian interpretation of the duality between unirreps and the elements of a G-space.
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By resuming ideas proposed by Weinstein, Guillemin and Sternberg [7, 8, 21], we have argued that in

order to unveil the rational necessity of Heisenberg indeterminacy principle, we cannot simply understand

a Hamiltonian G-space M as a partes extra partes arrangement of mutually external and structureless

set-theoretic points. Rather, a Hamiltonian G-space M must be understood in terms of its ξ-points,

i.e. in terms of its G-invariant Lagrangian submanifolds. The fact that these ξ-points are G-invariant

implies that the variable acted upon by G, far from being an “external” variable that could be use

to separate the different ξ-points, belong to the “internal” G-structure of the latter. This difference

between structureless set-theoretic points and structure-endowed symplectic points explains the fact that

the quantum states |ξ, ...〉 supported by the ξ-points can be defined by using only half the number of

variables needed to localize a set-theoretic point in M (that is, a “classical state”). The (im)possibility

of localizing a quantum state in M depends on the notion of point that we are using: whereas quantum

states cannot be completely localized in the set-theoretic points of M , they can be completely localized

in the symplectic ξ-points of M . Of course, considered from a set-theoretic perspective, the symplectic

ξ-points of M are intrinsically delocalized.

6. Appendix. Multiplicities of non-trivial 1-dimensional unirreps

Since the conjecture (9) only concerns the value 0 ∈ g
∗ of the moment map, it cannot be directly

applied to a non-zero element ξ. In other terms, the fact that Mξ cannot be obtained as a symplectic

reduction of M with respect to the zero value of the original moment map µM implies that the quantum

states in HMξ are not in bijection with the G-invariant states in HM . However, we shall now show (by

following Ref.[8]) that the shifted moment map Ψ : M ×O− → g
∗ allows us to obtain a correspondence

analogous to (9) for ξ-symplectic quotients Mξ with ξ 6= 0 (namely, the correspondence (13)).

Let’s consider the line bundle LM ⊠ L
∗
ξ
.
= π∗

MLM ⊗ π∗
ξ−L

∗
ξ− defined by the following diagram

LM

��

LM ⊠ L
∗
ξ

��

L∗
ξ

��

M M × ξ−πM
oo

π
ξ−

// ξ−

By using that Mξ ≃ Ψ−1(0)/G, the Guillemin-Sternberg conjecture (9) yields the following bijection:

HMξ ≃ HG
M×ξ−

where

HG
M×ξ−

.
= ΓGP(LM ⊠ L

∗
ξ)

is the Hilbert space of G-invariant sections of LM ⊠ L
∗
ξ polarized with respect to a suitable polarization

P . Now, the quantum theory over ξ is composed of a unique state, namely the state |ξ〉 associated to

the U(1)-class of normalized section of Lξ . The phase group G acts on the elements of this equivalence

class by means of phase factors of the form e2πi〈ξ,X〉 for X ∈ g. Let’s write now an element in LM ⊠ L
∗
ξ

as s = sM ⊗ 〈ξ|0, where 〈ξ|0 is a representative in the class |ξ〉. The G-action on LM ⊠ L
∗
ξ is given by

(eX · s) = ρGM (eX) · sM ⊗ e−2πi〈ξ,X〉〈ξ|0.

A section s will be G-invariant iff

ρGM (eX) · sM ⊗ e−2πi〈ξ,X〉〈ξ|0 = s.

This will be the case for the sections sξM in LM that transform under G as

ρGM (eX) · sξM = e2πi〈ξ,X〉sξM .
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Hence, the G-invariant states in LM ⊠L
∗
ξ are defined by the sections sξM in LM that transform under G

by means of phase factors of the form e2πi〈ξ,X〉. On the other hand, a G-invariant section s = sξM ⊗ 〈ξ|0
in LM ⊠ L

∗
ξ defines a morphism Ts : Lξ → LM given by

Ts(|ξ〉0) = sξM ⊗ 〈ξ|0ξ〉0 = sξM .

The fact that sξM transforms under the G-action by means of phase factors of the form e2πi〈ξ,X〉

guarantees that Ts intertwines the two representations. All in all, we have the following maps

HMξ → HG
M×ξ− → HM

given by

ψ 7→ sψ 7→ sξM = Tsψ (|ξ〉0).

In this way, a state ψ in HMξ defines a (G, ξ)-phase invariant state in HM .
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