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Abstract

In the Bayesian approach to quantum mechanics, probabilities—and thus quantum states—

represent an agent’s degrees of belief, rather than corresponding to objective properties of physical

systems. In this paper we investigate the concept of certainty in quantum mechanics. Particularly, we

show how the probability-1 predictions derived from pure quantum states highlight a fundamental

difference between our Bayesian approach, on the one hand, and Copenhagen and similar

interpretations on the other. We first review the main arguments for the general claim that

probabilities always represent degrees of belief. We then argue that a quantum state prepared by

some physical device always depends on an agent’s prior beliefs, implying that the probability-1

predictions derived from that state also depend on the agent’s prior beliefs. Quantum certainty is

therefore always some agent’s certainty. Conversely, if facts about an experimental setup could imply

agent-independent certainty for a measurement outcome, as in many Copenhagen-like interpreta-

tions, that outcome would effectively correspond to a preexisting system property. The idea that

measurement outcomes occurring with certainty correspond to preexisting system properties is,

however, in conflict with locality. We emphasize this by giving a version of an argument of Stairs

[(1983). Quantum logic, realism, and value-definiteness. Philosophy of Science, 50, 578], which applies

the Kochen–Specker theorem to an entangled bipartite system.
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1. Introduction

At the heart of Bayesian probability theory (Bernardo & Smith, 1994; de Finetti, 1990) is
a strict category distinction between propositions and probabilities. Propositions are either
true or false; the truth value of a proposition is a fact. A probability is an agent’s degree of
belief about the truth of some proposition. A probability assignment is neither true nor
false; probability assignments are not propositions.
This category distinction carries over to probabilities for events or, more particularly,

for the outcomes of observations or measurements. This particular context, of
measurements and their outcomes, is the most relevant for this paper. The proposition
corresponding to an outcome of an observation is the statement that the outcome occurs.
Ascertaining or eliciting1 the outcome determines the truth value of the proposition for the
agent. The outcome is thus a fact for the agent. He can use the fact to modify his
probabilities, but the probabilities themselves are not facts.
Any actual usage of probability theory starts from an agent’s prior probability

assignment. Gathering data allows the agent to update his probability assignments by
using Bayes’s rule. The updated probabilities always depend on the agent’s prior
probabilities as well as on the data and thus can be different for agents in possession of the
same data. It is in this sense that probability assignments can be called subjective, meaning
they depend upon the agent. For lack of a better term, we adopt this usage in this paper.
Subjective probabilities are not arbitrary. They acquire an operational meaning in

decision theory (Savage, 1972). The Dutch-book argument (de Finetti, 1990) shows that, to
avoid sure loss, an agent’s gambling commitments should obey the usual probability
axioms. By maintaining a strict category distinction between facts and probabilities,
Bayesian arguments make an explicit distinction between the objective and subjective parts
of any application of probability theory. The subjective part of a statistical argument is the
initial judgment that leads to prior probability assignments. The objective part is any given
data and the application of the rules of probability theory to the (subjective) prior
probabilities. This part is objective because neither the data nor the rules of probability
theory depend upon the agent’s beliefs.
Bayesian theory is conceptually straightforward. It provides simple and compelling

accounts of the analysis of repeated trials in science (Savage, 1972), statistical mechanics
and thermodynamics (Jaynes, 1957a, 1957b), and general statistical practice (Bernardo &
Smith, 1994). Still, it might seem to have a limited purview. For instance, a subjectivist
interpretation of probability is natural in a deterministic world, where the outcome of any
observation can be predicted with certainty given sufficient initial information.
Probabilities then simply reflect an agent’s ignorance. But what of an indeterministic
world?
In quantum mechanics the usual perception is that not all probabilities can be

interpreted as subjective degrees of belief (Giere, 1973, 1979; Ismael, 2006; Loewer, 2001,
2004; Suppes, 1973). Particularly, the probabilities of the outcomes of a quantum
measurement on a system in a pure quantum state are given by physical law and are
therefore objective—i.e., not depending on any agent’s belief. Or so goes the usual
1We introduce ‘‘eliciting’’ here as an alternative to ‘‘ascertaining’’ because ‘‘ascertaining’’ has the connotation of

determining a preexisting property. This, however, is in conflict with the central point of our paper in the

quantum-mechanical case. ‘‘Eliciting’’ at least suggests subtly that the outcome might have no prior existence.
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argument. We have shown in a series of previous publications (Brun, Caves, & Schack,
2001; Caves, Fuchs, & Schack, 2002a, 2002b, 2002c; Caves & Schack, 2005; Fuchs, 2002;
Fuchs, Schack, & Scudo, 2004; Schack, 2003) that, despite this common perception, all
probabilities in quantum mechanics can be interpreted as Bayesian degrees of belief and
that the Bayesian approach leads to a simple and consistent picture, which resolves several
of the conceptual difficulties of the interpretation of quantum mechanics. A consequence
of the Bayesian approach is that all quantum states, even pure states, must be regarded as
subjective.

This is not to say, however, that everything in the quantum formalism is subjective. For
instance, the Born rule for calculating probabilities from quantum states is not subjective.
Instead it is akin to the rules of probability theory itself, which, as pointed out above, make
no reference to an agent’s particular beliefs. We will return to this point and make more of
it in the Conclusion.

In this paper, our main aim is to address more carefully than previously the problem of
certainty in the Bayesian approach to quantum mechanics. We show that a consistent
treatment of quantum probabilities requires that even if a measurement outcome has
probability 1, implying certainty about the outcome,2 that probability has to be interpreted
as a Bayesian degree of belief. This is the case if the premeasurement state is an eigenstate
of the measured observable. Even in this case we maintain, as we must if we are to hold
that pure states are subjective,3 that the measurement has no preassigned outcome. There
is no element of reality that guarantees the particular measurement outcome.4Certainty is a
function of the agent, not of the system.5

Along with this, we give a precise account of a fundamental difference between our
Bayesian approach, on the one hand, and various Copenhagen-like interpretations of
2In this paper, we make no distinction between probability 1 and certainty. This is unproblematic because we

only consider measurements with a finite or countably infinite number of outcomes.
3In a previous publication (Caves et al., 2002c), the authors were confused about the status of certainty and

pure-state assignments in quantum mechanics and thus made statements about state preparation that we would

now regard as misleading or even wrong. For much discussion surrounding this point and sidelights on the

material in the present paper, see C. A. Fuchs, Quantum States: What the Hell Are They? (particularly, the essays

on pp. 35–113), available at http://netlib.bell-labs.com/who/cafuchs/PhaseTransition.pdf.
4This distinction of ours can also be reworked in terms drawn from the philosophy of language, as has been

done by Timpson (2006). It contrasts with what is sometimes called the ‘‘eigenstate–eigenvalue link,’’ which is

almost universally adopted (in the strong form quoted below) in the quantum foundations literature, even by

treatments otherwise sympathetic to a Bayesian view of quantum states. For instance, Brukner & Zeilinger (2001)

give this description of the case of certainty:

Only in the exceptional case of the qubit in an eigenstate of the measurement apparatus the bit value observed

reveals a property already carried by the qubit. Yet in general the value obtained by the measurement has an

element of irreducible randomness and therefore cannot be assumed to reveal the bit value or even a hidden

property of the system existing before the measurement is performed.
5More philosophical, quantum-independent precedents for this notion of ‘certainty’ can be found in the

discussion given by White (1972). White makes a distinction between the certainty of agents and the certainty of

things in themselves, and puts it this way:

The certainty of persons and the certainty of things are logically independent of each other. Somebody can be

(or feel) certain of something which is not itself certain, while something can be certain without anybody’s

being (or feeling) certain of it. ‘He is certain that p’ neither implies nor is implied by the impersonal ‘It is

certain that p’. The same thing cannot be both certain and not certain, though one person can be certain of it

and another of its opposite . . . People can become more or less certain of something which itself has not

become any more or less certain. . . . A gambler need not feel that it [our italics, for White is speaking of the

thing in this case] is certain that red will turn up next in order to feel certain that it will.

http://netlib.bell-labs.com/who/cafuchs/PhaseTransition.pdf
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quantum mechanics on the other.6 There are, of course, many versions of the Copenhagen
interpretation; here we focus on realist readings of it (Cohen & Stachel, 1979; Faye &
Folse, 1994; Jammer, 1974; Murdoch, 1987)—as opposed to anti-realist readings (Faye,
1991; Plotnitsky, 1994) and other more subtle interpretations (Folse, 1985)—which are the
most predominant in the physics community. To our knowledge, these all have in common
that a system’s quantum state is determined by a sufficiently detailed, agent-independent
classical description of the preparation device, which is itself thought of as an agent-
independent physical system (Peres, 1984; Stapp, 1972). This is the only salient feature of
the interpretations we consider here. Although this feature is often associated with
Copenhagen-like interpretations,7 we prefer to use the neutral term ‘‘objective-prepara-
tions view’’ to refer to it throughout the remainder of this paper. The most important
consequence of this feature is that, with it, quantum states must be regarded as objective.8

Measurement outcomes that have probability 1 bring this difference into stark relief. In the
objective-preparations view, a probability-1 outcome is objectively certain, guaranteed by
facts about the preparation device, and thus corresponds to a preexisting property of the
agent’s external world.
The paper is organized as follows. In Section 2, we discuss the strict category distinction

between facts and probabilities within the setting of applications of probability theory to
classical systems. We argue, following de Finetti (1931), that in the last analysis probability
6There exist many alternative attempts to solve the conceptual problems of quantum theory. Most notable are

the many-worlds (or Everett) interpretation, hidden-variable theories (e.g., Bohmian mechanics), and

spontaneous-collapse theories (e.g., the Ghirardi–Rimini–Weber model). All of these are the subjects of ongoing

debates. In this paper, we do not comment on any of these alternatives.
7We offer the following quotes as a small justification for associating the objective-preparations view with

Copenhagen-like interpretations and, specifically, with Bohr. The first is drawn from a letter from Niels Bohr to

Wolfgang Pauli, 2 March 1955 (provided to us by H. J. Folse):

In all unambiguous account it is indeed a primary demand that the separation between the observing subject

and the objective content of communication is clearly defined and agreed upon. . . . Of course, one might say

that the trend of modern physics is the attention to the observational problem and that just in this respect a

way is bridged between physics and other fields of human knowledge and interest. But it appears that what we

have really learned in physics is how to eliminate subjective elements in the account of experience, and it is

rather this recognition which in turn offers guidance as regards objective description in other fields of science.

To my mind, this situation is well described by the phrase ‘detached observer’. . . : Just as Einstein himself has

shown how in relativity theory ‘the ideal of the detached observer’ can be retained by emphasizing that

coincidences of events are common to all observers, we have in quantum physics attained the same goal by

recognizing that we are always speaking of well defined observations obtained under specified experimental

conditions. These conditions can be communicated to everyone who also can convince himself of the factual

character of the observations by looking on the permanent marks on the photographic plates. In this respect, it

makes no difference that in quantum physics the relationship between the experimental conditions and the

observations are of a more general type than in classical physics.

The second comes from Bohr (1939):

In the system to which the quantum mechanical formalism is applied, it is of course possible to include any

intermediate auxiliary agency employed in the measuring process [but] some ultimate measuring instruments

must always be described entirely on classical lines, and consequently kept outside the system subject to

quantum mechanical treatment.
8Even more extreme is this reading of Bohr, from Murdoch (1987, p. 107):

Bohr, then, held what I shall call the objective-values theory of measurement, according to which successful

observation or measurement reveals the objective, pre-existing value of an observable. . . . It is important here

to note that the objective-values theory should not be confused with what I shall call the intrinsic-values theory

of properties . . . according to which all the observables of an object have, at any moment, definite values. The

latter theory, which Bohr rejected, is logically independent of the former.
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assignments are always subjective in the sense defined earlier. We briefly consider the
concept of objective probability, or objective chance, and review the main argument
showing that this concept is problematic within the classical setting.

Section 3 addresses the role of prior belief in quantum state preparation. In our
interpretation, the quantum state of a system cannot be determined by facts alone. In
addition to the facts an agent acquires about the preparation procedure, his quantum state
assignment inevitably depends on his prior beliefs. This constitutes the central difference
between the Bayesian approach to quantum mechanics and the objective-preparations
view. We argue that, by positing that states are fully determined by facts alone, the
objective-preparations view neglects to take into account that quantum mechanics applies
to preparation devices, even when derived from the ‘‘ultimate measuring instruments’’ of
Bohr (1939).

In Section 4 we turn to the question of certainty in quantum mechanics and emphasize
that in the objective-preparations view, facts about an experimental setup imply objective,
agent-independent certainty for the outcomes of appropriate measurements. The objective-
preparations view thus implies a preexisting property of the agent’s external world
guaranteeing the measurement outcome in question—a point we find untenable. In Section
5, we support the view that measurement outcomes occurring with certainty cannot
correspond to preexisting properties by showing it to be in conflict with locality. For this
purpose, we use a modification of an argument of Stairs (1983)—independent variations of
the argument can be found in Heywood and Redhead (1983) and Brown and Svetlichny
(1990)—which applies the Kochen–Specker noncolorability theorem to an entangled
bipartite system.

Finally, in Section 6 we give a short general discussion on the meaning of certainty in a
world without preexisting instruction sets for quantum measurement outcomes (Mermin,
1985). We emphasize that certainty is always an agent’s certainty; there is nothing in the
physical world itself that makes a quantum-mechanical probability-1 prediction true
before the act of finding a measurement outcome. We conclude with brief discussions of
the status of the Born rule and directions for further work on the Bayesian approach.

2. Subjective probability versus objective chance

The starting point for our considerations is a category distinction. Probability theory
has two main ingredients. Firstly, there are events, or propositions. Mathematically,
the space of events forms a sigma algebra. Conceptually, what is important about
events is that, at least in principle, an agent can unambiguously determine whether
an event has occurred or not. Expressed in terms of propositions, the criterion is that the
agent can determine unambiguously in what circumstances he would call a proposition
true and in what others false (de Finetti, 1990). The occurrence or nonoccurrence
of an event is a fact for the agent. Similarly, the truth or falsehood of a proposition is a
fact. We shall say that facts are objective, because they are not functions of the agent’s
beliefs.

Secondly, there are probabilities. Mathematically, probabilities are measures on the
space of events. Probabilities are fundamentally different from propositions. Theorems of
probability theory take an event space and a probability measure as their starting point.
Any usage of probability theory starts from a prior probability assignment. The question of
whether a prior probability assignment is true or false cannot be answered.



ARTICLE IN PRESS
C.M. Caves et al. / Studies in History and Philosophy of Modern Physics 38 (2007) 255–274260
The subjectivist Bayesian approach to probability theory (Bernardo & Smith, 1994; de
Finetti, 1990; Jeffrey, 2004; Kyburg & Smokler, 1980; Savage, 1972) takes this category
distinction as its foundation. Probabilities are degrees of belief, not facts. Probabilities
cannot be derived from facts alone. Two agents who agree on the facts can legitimately
assign different prior probabilities. In this sense, probabilities are not objective, but
subjective.
Even though we hold that all probabilities, classical and quantum, are Bayesian, the

reader is encouraged to view this section as predominantly a discussion of applications of
probability theory to classical systems and the subsequent sections as having to do mainly
with quantum probabilities. In both settings, when we refer to facts, we are usually
thinking about data, in the form of outcomes or results, gathered from observations or
measurements.
It is often said that one can verify a probability, thereby making it a fact, by performing

repeated trials on independent, identically distributed systems. What is missed in this
statement is that the repeated trials involve a bigger event space, the space of all potential
sequences of outcomes. To apply probability theory to repeated trials requires assigning
probabilities to these potential sequences, and additional subjective judgments are required
to do this. (For two very nice expositions of this point, see Appleby, 2005a, 2005b.)
Moreover, the outcome frequencies observed in repeated trials are not probabilities. They
are facts. Like any fact, an observed frequency can be used, through Bayes’s rule, to update
subjective probabilities, in this case the subjective probabilities for subsequent trials.
Consider tossing a coin. The probabilities for Heads and Tails cannot be derived from

physical properties of the coin or its environment. To say, for example, that the coin is
‘‘fair’’ is ultimately a subjective judgment, equivalent to assigning a symmetric prior
probability to the possible outcomes. A symmetry argument applied to facts of the mass
distribution of the coin does not determine probabilities, because the outcome of a toss
also depends on the initial conditions. These, too, are facts, but a symmetry argument
applied to the initial conditions must be phrased in terms of probabilities for the initial
conditions, i.e., in terms of judgments, not facts. In coming to the judgment that a coin is a
fair coin, an agent is well advised, of course, to take into account all known facts about the
physical constitution of the coin, perhaps even developing a detailed model of the mass
distribution of the coin and the coin-tossing mechanism. In that case, however, the agent
must still make probabilistic judgments at an earlier stage of the model, say, regarding the
initial conditions for the tossing mechanism or the state of the surrounding gas. Probability
assignments are not arbitrary, but they always have an irreducibly subjective component.
To summarize, even probabilities that follow from symmetry arguments are subjective,

because the symmetry argument is applied to the probabilities, not to facts. The assumed
symmetry is an agent’s judgment about the events in question, and the resulting
probabilities are the expression of that judgment. This paper takes one important further
step: our central claim is that even probabilities that appear to be given by physical law, as
in quantum theory, are subjective.
The Bayesian approach is immediately applicable to physics experiments because it

accounts effortlessly for repeated trials (Caves et al., 2002b). For an excellent general
discussion of the use of subjective probability in science, see Savage (1972, chapter 4). An
example of an area where subjective probabilities have had notable success is classical
statistical mechanics (Jaynes, 1957a, 1957b), where the Bayesian approach draws a strict
category distinction between a system’s microstate, which is a fact, and the subjective
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probabilities assigned to microstates, which are a reflection of an agent’s ignorance of the
microstate. Even here, however, the success is often belittled because of a failure to
appreciate the category distinction (North, 2003; Shalizi & Moore, 2003). Suppose an
agent assigns an epistemic uniform probability distribution to an ice cube’s microstates.
The ice cube melts. Does the ice cube melt, it is asked, because of the agent’s probability
assignment (North, 2003)? How can an agent’s epistemic state have anything whatsoever
to do with the ice’s melting? The answer to these questions is simple: an agent’s epistemic
state is part of the reason for his prediction that the ice cube melts, not part of the reason
for the melting. The ice will either melt or not melt; it is indifferent to the agent’s
ignorance. ‘‘This ice cube will melt’’ is a proposition whose truth value is a fact about the
world. ‘‘Ice melts’’ is an abbreviated version of the subjective judgment that the probability
is close to 1 that a typical ice cube will melt. If an agent were able to determine the ice
cube’s initial microstate, this would have no effect on whether the ice melts, but it would
mean that the agent could extract more energy from the process than somebody else who is
ignorant of the microstate.

Despite the successes of the Bayesian approach to probability in physics, there appears
to be a strong desire, among a sizeable number of physicists, for an objective probability
concept. We now review the main argument against the validity of such a concept within
the classical setting.

In physics, probabilities appear side by side with physical parameters such as length and
are used in a superficially similar way. Both length and probability appear in mathematical
expressions used for predicting measurement outcomes. This has led to attempts, for
instance by Braithwaite (1968), to treat probability statements as physical parameters
residing in the category of facts. A probability statement such as ‘‘the probability of this
atom decaying in the next 5min is p ¼ 0:3’’ would thus be a proposition, analogous to,
e.g., a geometrical statement such as ‘‘the length of this ruler is l ¼ 0:3m’’. This
geometrical analogy (Feller, 1968) is inherently flawed, however (de Finetti, 1931).
Whereas the truth of a statement concerning the length of a ruler can be unambiguously
decided (at least in the approximate form 0:29mplp0:31m), the truth of statements
concerning probabilities cannot be decided, not even approximately, and not even in
principle. The usual method of ‘‘verifying’’ probabilities, through the outcomes of repeated
trials, yields outcome frequencies, which belong to the category of events and propositions
and are not probabilities. Probability theory allows one to assign a probability (e.g.,
p ¼ 0:99) to the proposition ‘‘the outcome frequency is in the interval 0:29pfp0:31’’, and
the truth of this proposition can be unambiguously decided, but this is a proposition about
an outcome frequency, not about probability.

In order to bridge the category distinction between probability and physical parameters,
a new principle or axiom is needed. In Braithwaite’s theory, for instance, the new principle
is introduced in the form of the acceptance and rejection rules of orthodox statistics
(Lehmann, 1986). These rules must be postulated, however, because they cannot be
systematically derived from probability theory (Braithwaite, 1968). Even though most of
non-Bayesian statistics is based on these rules, they are essentially ad hoc, and the way they
are used in statistics is highly problematical (Berger & Sellke, 1987; Jeffreys, 1961).

Instead of discussing the conceptual difficulties of orthodox statistics, we focus on a
simpler and more direct postulate designed to bridge the category distinction between
probability and physical parameters, namely, Lewis’s principal principle (Lewis, 1986a,
1986b). The principal principle (PP) distinguishes between chance and Bayesian
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probability. Chance is supposed to be objective. The numerical value of chance is a fact.
Chance therefore belongs to the same category as a physical parameter. If E is an event,
and 0pqp1, the statement ‘‘the chance of E is q’’ is a proposition. Denote this proposition
by C. The PP links chance and probability by requiring that an agent’s conditional
probability of E, given C, must be q, irrespective of any observed data. More precisely, if D

refers to some other compatible event, e.g., frequency data, then the Principal Principle
states that the Bayesian probability must satisfy

PrðEjC&DÞ ¼ q. (1)

Within the context of experimental situations with large sample sizes, where Bayesian
updating leads to similar posteriors for exchangeable priors, the geometric analogy,
combined with the PP to connect chance with probability, would appear to work quite
well. This gives rise to the idea that the PP accounts for the concept of objective chance in
physics. However, from a Bayesian perspective, the introduction of chance is completely
unmotivated (de Finetti, 1931; Jeffrey, 1997, 2004). More urgently, in those cases where the
idea is not already fraught with obvious difficulties, it serves no role that Bayesian
probability itself cannot handle (Jeffrey, 2004).
To illustrate one such difficulty, return to the coin-tossing example discussed above, and

assume that there is an objective chance q that a coin-tossing event will produce Heads. As
we have seen in the discussion above, the chance cannot be deduced from physical
properties of the coin alone, because the probability of Heads also depends on initial
conditions and perhaps other factors. An advocate of objective chance is forced to say that
the chance is a property of the entire ‘‘chance situation,’’ including the initial conditions
and any other relevant factors. Yet a sufficiently precise specification of these factors
would determine the outcome, leaving no chance at all. The circumstances of successive
tosses must be different to give rise to chance, but if chance aspires to objectivity, the
circumstances must also be the same. Different, but the same—there is no way out of this
conundrum as long as objective and chance are forced to co-exist in a single phrase.
Subjective probabilities easily dispense with this conundrum by maintaining the category
distinction. The differences between successive trials are differences in the objective facts of
the initial conditions; the sameness is an agent’s judgment that he cannot discern the
differences in initial conditions and thus assigns the same probability to every trial.
But what of probabilities in quantum mechanics? Given the last paragraph, one might

well think—and many have thought—there is something different going on in the quantum
case. For, in repeating a preparation of a pure state jci, are not all the conditions of
preparation the same by definition? Any subsequent probabilities for measurement
outcomes will then be determined by applying the Born rule to jci. They are not subjective
probabilities that come about by an inability to take all circumstances into account. Thus
quantum states (and hence quantum ‘‘chances’’) are objective after all, and the PP is just
the kind of thing needed to connect these quantum chances to an agent’s subjective
probabilities—or so a very beguiling account might run.
The objective-preparations view supports the seeming need for a PP-style account by

positing that classical facts about a preparation device determine the prepared quantum
state and its associated measurement probabilities. The subjective Bayesian interpretation
of quantum probabilities contends, in contrast, that facts alone never determine a quantum
state. What the objective-preparations view leaves out is the essential quantum nature of
the preparation device, which means that the prepared quantum state always depends on
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prior beliefs in the guise of a quantum operation that describes the preparation device. We
turn now to a discussion of these issues in the next two sections.

3. Prior beliefs in quantum state preparation

In the subjectivist interpretation of quantum-mechanical probabilities advocated in this
paper, the strict category distinction between (objective) facts and (subjective) probabilities
holds for all probabilities, including probabilities for the outcomes (facts) of quantum
measurements. Since probabilities are an agent’s subjective degrees of belief about the
possible outcomes of a trial and quantum states are catalogues of probabilities for
measurement outcomes, it follows that quantum states summarize an agent’s degrees of
belief about the potential outcomes of quantum measurements. This approach underlines
the central role of the agent, or observer, in the very formulation of quantum mechanics.
In this sense our interpretation is close to Copenhagen-like interpretations, even when
these interpretations incorporate the objective-preparations view, but the Bayesian
approach differs markedly from the objective-preparations view in the way facts and
quantum states are related.

In the objective-preparations view, the facts about a classical preparation procedure
determine the quantum state (Peres, 1984; Stapp, 1972). According to the objective-
preparations view, one can give, in unambiguous terms, a description of an experi-
mental device that prepares a given quantum state; thus a quantum state is completely
determined by the preparation procedure. In the objective-preparations view, there
is no room for prior beliefs in quantum state preparation; quantum states and the
probabilities derived from them are determined by objective facts about the preparation
device.

In our interpretation, the quantum state of a system is not determined by classical facts
alone. In addition to the facts, an agent’s quantum state assignment depends on his prior
beliefs. We now show why this must be so.

Classically, Bayes’s rule,

PrðhjdÞ ¼
PrðdjhÞPrðhÞ

PrðdÞ
, (2)

is used to update probabilities for hypotheses h after acquiring facts in the form of data d.
The posterior probability, PrðhjdÞ, depends on the observed data d and on prior beliefs
through the prior probabilities PrðhÞ and the conditional probabilities PrðdjhÞ.9

In quantum mechanics, the most general updating rule has the form

r7!rd ¼
AdðrÞ

pd

. (3)

Here d is an observed measurement outcome (a fact); rd is the post-measurement
(posterior) state; r is the premeasurement (prior) state; and Ad is a completely positive
9Bayesian updating is consistent, as it should be, with logical deduction of facts from other facts, as when the

observed data d logically imply a particular hypothesis h0, i.e., when PrðdjhÞ ¼ 0 for hah0, thus making

Prðh0jdÞ ¼ 1. Since the authors disagree on the implications of this consistency, it is fortunate that it is irrelevant

to the point of this paper. That point concerns the status of quantum measurement outcomes and their

probabilities, and quantum measurement outcomes are not related by logical implication. Thus we do not discuss

further this consistency, or its implications or lack thereof.
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linear map, called a quantum operation, corresponding to outcome d and given by

AdðrÞ ¼
X

j

AdjrA
y

dj . (4)

The linear operators Adj define POVM elements

Ed ¼
X

j

A
y

djAdj , (5)

which obey the normalization conditionX
d

Ed ¼ 1, (6)

and

pd ðrÞ ¼ trrEd ¼ tr
X

j

AdjrA
y

dj (7)

is the probability for outcome d. Similar to the classical case, the posterior state depends on
the measurement outcome, the prior state, and the completely positive map Ad , which is
analogous to the conditional probabilities of Bayesian updating (Fuchs, 2002; Leifer,
2006a, 2006b).
We now argue that the posterior state always depends on prior beliefs, even in the case

of quantum state preparation, which is the special case of quantum updating in which the
posterior state is independent of the prior state. To be precise, in the state-preparation
case, there is a state s such that for outcome d,

AdðrÞ ¼
X

j

AdjrA
y

dj ¼ pdðrÞs (8)

for all states r for which pdðrÞa0. If the preparation depends on obtaining a particular
measurement outcome d, i.e., if pdðrÞo1 for some r, the preparation operation is called
stochastic; if pdðrÞ ¼ 1 for all r, the preparation device is deterministic. Notice that if the
posterior state s is a pure state jci, it corresponds to certainty for the outcome of a yes-no
measurement of the observable O ¼ jcihcj.
It is tempting to conclude that objective facts, consisting of the measurement outcome d

and a classical description of the preparation device, determine the prepared quantum state
s. This would violate the category distinction by allowing facts to fully determine
probabilities derived from s. What this can only mean for a thoroughgoing Bayesian
interpretation of quantum probabilities is that the posterior quantum state s must depend
on prior beliefs through the quantum operation (Fuchs, 2002; Fuchs & Schack, 2004;
Fuchs et al., 2004). We now consider this crucial difference in more detail.
The quantum operation depends, at least partly, on an agent’s beliefs about the device

that executes the state-preparation procedure. Any attempt to give a complete specification
of the preparation device in terms of classical facts (i.e., observations or measurements of
the device and its method of operating) and thus to derive the quantum operation from
classical facts alone comes up against the device’s quantum-mechanical nature.
Classical facts cannot suffice to specify a preparation device completely because a

complete description must ascribe to the device an initial quantum state, which inevitably
represents prior beliefs of the agent who is attempting to describe the device. It is quite
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possible—indeed, likely—that other subjective judgments are involved in an agent’s
description of the preparation device, but to find a prior belief that is unavoidably part of
the description, it is sufficient to recall the usual justification for the mapping given in Eq.
(3) (Nielsen & Chuang, 2000). The mapping can always be modeled as coming about from
an unitary interaction between the system and an apparatus, followed by an observation
on the apparatus alone. To say what the unitary operation actually does, however, one
must specify initial quantum states for all systems concerned. But which quantum state for
the apparatus? That, the subjective Bayesian would say, is subjective. The objective-
preparations assumption that a preparation device can be given a complete classical
description neglects that any such device is quantum mechanical and thus cannot be
specified completely in terms of classical facts. An example of the dependence of the
system’s output state on the input state of the apparatus is given in Fig. 1. Mermin (2006)
analyzes the same preparation apparatus, but reaches quite different conclusions.
Fig. 1. (a) Quantum-circuit diagram for a device that prepares the system qubit in the state j0i: The controlled-

NOT gate puts the system qubit and the apparatus qubit in the entangled state aj00i þ bj11i; a measurement of

the apparatus qubit yields result a ¼ 0 or 1; the system state is flipped if a ¼ 1, thus always preparing the system

qubit in state j0i, regardless of the system’s initial state. The single lines in the circuit diagram carry quantum

states, which are subjective in the Bayesian view, and the double lines carry the outcome a of the measurement,

which is an objective fact that is used to conditionally flip the system qubit. This quantum circuit describes passing

a spin-1
2
particle (photon) through a Stern–Gerlach magnetic field (polarizing beam splitter), which sends spin-up

(horizontal polarization) and spin-down (vertical polarization) along different paths; measuring which path; and

then flipping the spin (rotating the polarization from vertical to horizontal) if the particle is determined to be

moving along the spin-down (vertical-polarization) path. This is a deterministic preparation device. Any

deterministic preparation operation can be realized in this way: entangle system and apparatus, measure

apparatus, and then change the system state conditional on the measurement outcome. (b) In the circuit of (a), the

flip based on the measurement result a can be moved in front of the measurement, becoming a controlled-NOT

gate. The measurement can then be omitted, making the preparation device into a unitary interaction between

system and apparatus. Any deterministic preparation operation can be realized by such a purely unitary

interaction. (c) If the initial apparatus state in (b) is changed to j1i, the system qubit is prepared in the state j1i.

Indeed, (b) and (c) show that the system qubit is prepared in a state identical to the initial apparatus state,

whatever that state is. This highlights our conclusion that the operation of a preparation device always depends on

prior beliefs about the device, in particular, its initial quantum state. The objective-preparations view, by positing

that the operation of a preparation device can be specified completely in terms of facts, is forced to conclude that

the input state to the apparatus is an objective fact. Thus if one adopts the objective-preparations view, one is

forced to regard quantum states as objective, a conclusion we reach by a different route in Section 4.
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There is an analogy between the coin-tossing example discussed above and the quantum-
mechanical analysis of a preparation device. By examining the coin and the tossing
mechanism, a scientist cannot derive the probabilities for Heads and Tails. These always
depend on some prior judgment. Similarly, by examining a preparation device, a scientist
cannot derive the output quantum state and its associated probabilities for measurement
outcomes. These also always depend on some prior judgment. The analogy cannot be
pushed too far, however, even though in both cases, facts never determine probabilities. In
the classical setting, a complete specification of the coin’s physical properties, the tossing
mechanism, and the initial conditions leads to certainty for the outcome. For a quantum
preparation device, a complete specification of the device in terms of facts is simply not
allowed by the quantum formalism.
In practice, of course, experimenters depend on their experience and on manufacturers’

specifications to inform the prior judgment. They also use repeated trials to test the entire
setup (D’Ariano, Maccone, & Lo Presti, 2004). To analyze the test results, however,
requires the use of the quantum-mechanical formalism, which inevitably involves a prior
judgment as input. An example of such a prior judgment is the assumption of
exchangeability for repeated trials; for thorough discussions of exchangeability in
quantum tomography of states and operations, the reader is urged to consult our previous
papers on these subjects (Caves et al., 2002b; Fuchs & Schack, 2004; Fuchs et al., 2004).
An important consequence of our argument is that a quantum operation assigned to a

preparation device belongs to the same category in our category distinction as quantum
states. This must be so because such a quantum operation determines its output state
irrespective of the input. The quantum operations assigned to preparation devices are
therefore subjective. The subjectivity of these quantum operations is akin to the
subjectivity of conditional probabilities in probability theory.
It follows from all this that two agents who agree on all the facts relevant to a quantum

experiment can disagree on the state assignments. In general, two agents starting from the
same facts, but different priors, arrive at different (posterior) state assignments. For
sufficiently divergent priors, the two agents might even legitimately assign different pure
states (Caves et al., 2002a), as in the example of Fig. 1.

4. Certainty and objective properties

The previous section can be summarized as follows. A crucially important difference
between the objective-preparations view and the Bayesian approach lies in the way
quantum state preparation is understood. In the Bayesian view, a prepared quantum state
is not determined by facts alone, but always depends on prior beliefs, in the form of a prior
assignment of a quantum operation to a preparation device. Facts, in the form of
measurement outcomes, are used to update the prior state (or, as in quantum process
tomography, the prior quantum operation), but they never determine a quantum state. By
contrast, according to the objective-preparations view, the state of a system is determined
by the preparation procedure, which can be completely specified in unambiguous, classical
terms. The objective-preparations view holds that a quantum state is determined by the
facts about the experimental setup. This means that, according to the objective-
preparations view, quantum states are objective.
These considerations have an important implication for the concept of certainty in the

objective-preparations view. Let jci be a state prepared by a preparation device, and
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consider the observable O ¼ jcihcj, which has eigenvalues 0 and 1. If the state is jci, a
measurement of O will give the outcome 1 with certainty. In the objective-preparations
view, this certainty is implied by the facts about the experimental setup, independently of
any observer’s information or beliefs. Effectively, in the objective-preparations view, it is a
fact, guaranteed by the facts about the experimental setup, that the measurement outcome
will be 1. The measurement outcome is thus objectively certain. Whatever it is that
guarantees the outcome, that guarantor is effectively an objective property. It might be a
property of the system alone, or it might be a property of the entire experimental setup,
including the system, the preparation device, and the measurement apparatus. In any case,
the guarantor is a property of the world external to the agent.

The above constitutes a major problem for any interpretation that incorporates the
objective-preparations view while also maintaining that quantum states are not part of
physical reality, but are epistemic (Spekkens, 2007), i.e., representing information or
knowledge (Brukner & Zeilinger, 2001; Mermin, 2002). It is simply inconsistent to claim
that a quantum state is not part of physical reality if there are facts that guarantee that the
measurement of O defined above has the outcome 1. This is a point made by Roger
Penrose in his book The Emperor’s New Mind (Penrose, 1989, p. 340):
It is an implication of the tenets of the theory that for any state whatever—say the
state jwi—there is a yes/no measurement that can in principle be performed for which
the answer is YES if the measured state is (proportional to) jwi and NO if it is
orthogonal to jwi. [. . .] This seems to have the strong implication that state-vectors
must be objectively real. Whatever the state of a physical system happens to be—and
let us call that state jwi—there is a measurement that can in principle be performed
for which jwi is the only state (up to proportionality) for which the measurement
yields the result YES, with certainty. [. . .]
A more concise version (Busch, 2002) of the same argument is that the existence of this yes/
no measurement ‘‘is sufficient to warrant the objective reality of a pure quantum state.’’
The objective reality of the quantum state follows here from the notion that there is
something in the world, independent of any agent, that guarantees the outcome YES. This
notion in turn is implied by the objective-preparations interpretation. The objective-
preparations view is, therefore, inconsistent with the idea that a quantum state does not
represent a property of the external world.

How does our Bayesian approach escape the same conclusion? In the Bayesian view, the
quantum state of the system is not fully determined by facts about the preparation device,
since prior beliefs about the preparation device inevitably enter into the assignment of the
quantum state it prepares. The statement that the measurement outcome is 1 with certainty
is thus not a proposition that is true or false of the system, but an agent’s belief—and
another agent might make a different prediction. Certainty resides in the agent, not in
the physical world. In the Bayesian approach there is no property of the system, or of the
system plus the preparation device and measurement apparatus, that guarantees that the
outcome will be 1.

5. Certainty and locality

In the preceding section, we established that the objective-preparations view of quantum
state preparation implies that there are physical properties of the agent’s external world
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guaranteeing measurement outcomes occur with certainty. In this section, we show that
such properties must necessarily be nonlocal. We show that the assumption of locality
rules out the existence of a preassigned outcome even in a measurement where the
premeasurement state is an eigenstate of the observable. This buttresses our previous
argument that probability-1 predictions are not preordained.
Consider a measurement of the observable

O ¼
Xd

k¼1

lkjfkihfkj, (9)

where the states jfki form an orthonormal basis. If the system state, jfi, before the
measurement is an eigenstate of O, say jfi ¼ jfji for some j 2 f1; . . . ; dg, the measurement
outcome will be lj with probability 1. In other words, the measurement outcome is certain.
It is tempting to say, in this situation, that lj is a property that was attached to the system
already before the measurement. All the measurement would do in this case would be to
reveal this preexisting property of the system. This property of the system would guarantee
that the result of the measurement will be lj.
We now give a version of an argument by Stairs (1983) showing that the idea that a

measurement of a system in an eigenstate of an observable reveals a preexisting property of
the system, or indeed a preexisting property of the world external to the agent, conflicts
with locality, i.e., with the assumption that a system property at a point x in space-time
cannot depend on events outside the light cone centered at x.
For this we consider, for the sake of concreteness, the set S of 33 states in three

dimensions introduced by Peres in his version of the proof of the Kochen–Specker theorem
(Peres, 1993). The 33 states in S can be completed to form 40 orthonormal bases,
fjck

1i; jc
k
2i; jc

k
3ig, k ¼ 1; . . . ; 40, consisting of a total of 57 distinct states (Larsson, 2002).

These bases are, of course, not disjoint. For this set of states, one proves the
Kochen–Specker theorem by showing that there is no map,

f : S! f0; 1g, (10)

such that, for each basis fjck
1i; jc

k
2i; jc

k
3ig, exactly one vector is mapped to 1 and the other

two are mapped to 0; i.e., there are no integers jk 2 f1; 2; 3g, for k ¼ 1; . . . ; 40, such that a
function on the 57 states can be defined consistently by the conditions

f ðjck
j iÞ ¼

1 if j ¼ jk;

0 if jajk:

(
(11)

We show now that the assumption of preexisting properties for eigenstates, combined with
the assumption of locality, implies the existence of such an impossible map and is therefore
ruled out by locality.
Take two particles, at spatially separated locations A and B, in the maximally entangled

state

jCi ¼ 1ffiffi
3
p ðj00i þ j11i þ j22iÞ, (12)

where the states j0i, j1i, j2i form an orthonormal basis. For any single-system state

jci ¼ c0j0i þ c1j1i þ c2j2i, (13)
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define the complex conjugate state

j ~ci ¼ c�0j0i þ c�1j1i þ c�2j2i. (14)

For some k 2 f1; . . . ; 40g, let a von Neumann measurement in the basis fj ~c
k

1i; j
~c

k

2i; j
~c

k

3ig be
carried out on the particle at A. Denote the outcome by jk 2 f1; 2; 3g. The resulting state of
the particle at B is jck

jk
i. It follows that a measurement of the observable

Ok
jk
¼ jck

jk
ihck

jk
j (15)

on the particle at B gives the outcome 1 with certainty and that a measurement of

Ok
j ¼ jc

k
j ihc

k
j j for jajk, (16)

gives the outcome 0 with certainty. According to our assumption that such measurements
correspond to preexisting properties, there must be a property of the world that guarantees
the outcome 1 for the measurement of Ok

jk
and the outcome 0 for the two orthogonal

measurements.
Locality demands that this property be independent of the measurement at A. Since the

conclusions of the last paragraph hold for any choice of measurement, k 2 f1; . . . ; 40g, the
assumption of locality requires that the world have physical properties that guarantee, for
each state jck

j i 2 S, a unique outcome 2 f0; 1g for a measurement of jck
j ihc

k
j j, and these

properties define a map f : S! f0; 1g satisfying the impossible conditions (11). It follows
that the assumptions of locality and preexisting properties for eigenstates are mutually
contradictory.

Of course, one could take the position that the quantum state of system B, after the
measurement on A, is an objective property, but not an objective property of B alone
(Grangier, 2005).10 It would instead be an objective property of the two systems, the device
that prepares them, and, more generally, of the entire history of B and anything it has
interacted with. In our view, this inevitably involves nonlocal influences, or it leads one
down the path of a many-worlds (or Everett) interpretation.

6. Discussion: quantum certainty

The arguments in the preceding two sections imply that there are no preassigned values to

quantum measurement outcomes, even outcomes that are certain. In other words, there is
nothing intrinsic to a quantum system, i.e., no objectively real property of the system, that
guarantees a particular outcome of a quantum measurement. This means that we must
abandon explanations in terms of preexisting properties.

The Bayesian approach sketched in the previous sections takes this conclusion fully on
board by denying objective status to any state assignment, including pure-state
10N. D. Mermin (private communications, 2003 and 2006) characterizes as ‘‘dangerously misleading’’ the idea

that the post-measurement quantum state jci of B is an objective property of system B alone. He ‘‘reject(s) the

notion that objective properties (must) reside in objects or have physical locations.’’ Yet the quantum state of B, if

objective, is a property of the world, external to the agent, and since it changes as the world changes, it is hard to

see how it can have only the disembodied objectivity Mermin is describing. If the objectivity of jci does reside

somewhere, say, in the entire experimental setup, including the device that prepares A and B and the measurement

on A and its outcome, then consider a measurement of an observable of B for which jci is an eigenstate with

eigenvalue l. If l is an objective property, how can it fail to reside in B (under the assumption of locality), thus

making jci a property of B after all?
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assignments. In the Bayesian approach, there is never one unique correct quantum state
assignment to a system. Two scientists obeying all the rules of quantum mechanics can
always in principle assign different pure states to the same system, without either of them
being wrong. The statement that an outcome is certain to occur is always a statement
relative to a scientist’s (necessarily subjective) state of belief. ‘‘It is certain’’ is a state of
belief, not a fact (see footnote 3).
A common objection to this goes as follows. Imagine a scientist who performs a

sequence of Z measurements on a qubit. Quantum mechanics, plus his experience and
prior judgment and perhaps the outcomes of a long sequence of previous measurements,
make him certain that the outcomes will all be ‘‘up’’. Now he performs the measurements,
and he always gets the result ‘‘up’’. Should not the agent be surprised that he keeps getting
the outcome ‘‘up’’? Does not this mean that it is a fact, rather than a mere belief, that the
outcomes of his experiment will be ‘‘up’’? Does not this repeated outcome demand an
explanation independent of the agent’s belief?
The answer to the first question is easy: Surprised? To the contrary, he would bet his life

on it. Since the agent was certain that he would get the outcome ‘‘up’’ every time, he is not
going to be surprised when that happens. Given his prior belief, only observing ‘‘down’’
would surprise him, since he was certain this would not happen, though nature might
choose to surprise him anyway.
The answer to the second question is similarly straightforward. According to our

assumption, the agent has put together all his experience, prior beliefs, previous
measurement outcomes, his knowledge of physics and in particular quantum theory, all
to predict a run of ‘‘up’’ outcomes. Why would he want any further explanation? What
could be added to his belief of certainty? He has consulted the world in every way he can to
reach this belief; the world offers no further stamp of approval for his belief beyond all the
factors that he has already considered.
The third question brings us closer to a deeper motivation for this challenge. The

question could be rephrased as follows: Isn’t not asking for a further explanation a
betrayal of the very purpose of science, namely, never to give up the quest for an
explanation (Garrett, 1993)? Shouldn’t a naturally curious scientist never give up looking
for explanations? The answer to these questions is that truth can be found at different
levels. At one level, a scientist who accepts the Bell/EPR arguments should indeed stop
looking for an explanation in terms of hidden variables or preassigned values. The Bell/
EPR arguments show that there simply is no local and realistic explanation for the
correlations predicted by quantum mechanics. Giving up the quest for such an explanation
is unavoidable if one stays within the framework of quantum theory. On a different level, it
appears that the absence of a mechanistic explanation is just the message that quantum
mechanics is trying to send us. Accepting the Bell/EPR analysis at face value means
accepting what might be the most important lesson about the world, or what we believe
about the world, coming from quantum theory, namely, that there are no instruction sets
behind quantum measurement outcomes. Go beyond quantum mechanics if you wish to
formulate an explanation in terms of instruction sets, but accept the lesson of no
instruction sets if you wish to interpret quantum mechanics.
It might still be argued that an agent could not be certain about the outcome ‘‘Yes’’

without an objectively real state of affairs guaranteeing this outcome, i.e., without the
existence of an underlying instruction set. This argument, it seems to us, is based on a
prejudice. What would the existence of an instruction set add to the agent’s beliefs about
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the outcome? Why would he be more confident about the outcome ‘‘up’’ if he knew that
the particle carried an instruction set? The existence of instruction sets might make the
agent feel better if he is bound by a classical world view, but from the perspective of
quantum mechanics, would not contribute to his certainty about the outcome.

Let us end with a couple of points for future research. We have emphasized that one of
the arguments often repeated to justify that quantum-mechanical probabilities are
objective, rather than subjective, is that they are ‘‘determined by physical law.’’ But, what
can this mean? Inevitably, what is being invoked is an idea that quantum states jci have an
existence independent of the probabilities they give rise to through the Born rule,

pðdÞ ¼ hcjEd jci. (17)

From the Bayesian perspective, however, these expressions are not independent at all, and
what we have argued in this paper is that quantum states are every bit as subjective as any
Bayesian probability. What then is the role of the Born rule? Can it be dispensed with
completely?

It seems no, it cannot be dispensed with, even from the Bayesian perspective. But its
significance is different than in other developments of quantum foundations: the Born rule
is not a rule for setting probabilities, but rather a rule for transforming or relating them.

For instance, take a complete set of Dþ 1 observables Ok, k ¼ 1; . . . ;Dþ 1, for a
Hilbert space of dimension D (Wootters, 1986). Subjectively setting probabilities for the D

outcomes of each such measurement uniquely determines a quantum state jci (via
inverting the Born rule). Thus, as concerns probabilities for the outcomes of any other
quantum measurements, there can be no more freedom. All further probabilities are
obtained through linear transformations of the originals. In this way, the role of the Born
rule can be seen as having something of the flavor of Dutch-book coherence, but with an
empirical content added on top of bare, law-of-thought probability theory: an agent
interacting with the quantum world would be wise to adjust his probabilities for the
outcomes of various measurements to those of quantum form if he wants to avoid
devastating consequences. The role of physical law—i.e., the assumption that the world is
made of quantum mechanical stuff—is codified in how measurement probabilities are
related, not how they are set.11

This brings up a final consideration. What we have aimed for here is to show that the
subjective Bayesian view of quantum probabilities is completely consistent, even in the case
of certainty. One of our strong motivations for doing this is our belief that taking this
approach to quantum mechanics alleviates many of the conceptual difficulties that have
been with it since the beginning. But even so, this is no reason to stop digging deeper into
the foundations of quantum mechanics. For all the things the Bayesian program seems to
answer of quantum mechanics, there is still much more to question. For instance, from our
point of view, the existence of Bell inequality violations is not particularly mysterious, but
this conceptual point does not get us much closer to a technical understanding of the exact
violations quantum mechanics does provide: What, from a Bayesian point of view, would
justify that correlations be constrained by the Tsirelson bound (S. J. van Enk, private
communications, 2000–2006)? Indeed, why is the structure of quantum probabilities
11These ideas mesh to some extent with Pitowsky’s development (Pitowsky, 2003). Pitowsky, however, suggests

that quantum mechanics entails a modification of probability theory, whereas we think the Born rule is an

empirical addition to probability, not a modification.
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(Bayesian though they be) just the way it is? Why does that structure find its most
convenient expression through the Hilbert-space formalism? Most importantly, let us pose
a question we never lose sight of: given that the Bayesian approach promises a clear
distinction between the subjective and objective, what features of the quantum formalism
beyond the ones discussed here actually correspond to objective properties? All of these
questions have no immediate answer. Yet finding answers to them will surely lead to a
better understanding of quantum phenomena. As we see it, subjective probability is the
firmest foundation for a careful approach to that quest.
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