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A continuous finite-time robust control method for the trajectory tracking control of a nonholonomic wheeled mobile robot
(NWMR) is presented in this paper. The proposed approach is composed of conventional sliding-mode control (SMC) in the
internal loop and modified switched second-order sliding-mode (S-SOSM) control in the external loop. Sliding-mode controller is
equivalently represented as stabilization of the nominal system without uncertainties. An S-SOSM control algorithm is employed
to counteract the impact of state-dependent unmodeled dynamics and time-varying external disturbances, and the unexpected
chattering has been attenuated significantly. Particularly, state-space partitioning is constructed to obtain the bounds of uncertainty
terms and accomplish different control objectives under different requirements. Simulation and experiment results are used to
demonstrate the effectiveness and applicability of the proposed approach.

1. Introduction

In the past few decades, the design of a robust control of non-
holonomic wheeled mobile robot (NWMR) has been a diffi-
cult task due to the nonlinearities, nonholonomic constraints,
and uncertainties in the system [1]. So, it received wide
attention and became a topic of great research interest due
to the practicability of its application [2]. Basically, trajectory
tracking is one of the important motion control problems,
which not only requires a designed controller [3] but also
has to robustly stabilize the nonlinear system against the
system uncertainties. Depending on whether the NWMR is
described by kinematics [4, 5] or dynamics [6, 7], the track-
ing problem can be classified as either a kinematic tracking
problem or a dynamic tracking problem. However, it is hard
to obtain excellent tracking performance if just a kinematic
model is considered, because of the existence of errors be-
tween the actual velocity and the output of the controller.
It is more realistic to consider the tracking problem of both
dynamic and kinematic models [8, 9] than that of the kine-
matic model, where only two control signals are needed for
the robot under the kinematic constraints.

Several approaches have been proposed and numerous
valuable results for dynamic trajectory tracking control prob-
lems have been obtained. The main control approaches in-
clude backstepping approach [10], neural network control [11,
12], sliding-mode control (SMC) [13], fuzzy algorithm [14],
and adaptive approach [15, 16]. The SMC, a robust control
technique which has many attractive features such as robust-
ness to parameter variation and insensitivity to disturbance, is
a suitable controlmethod forNWMR tracking control [17]. In
comparison with other robust control approaches mentioned
above, it has a simple control structure and can provide fast
dynamic responses. A number of applications can be found
in the literature [18]. Considering the system uncertain-
ties and external disturbances, a hierarchical sliding-mode
underactuated controller [19] is proposed for the system with
completely and partially known frictions and uncertainties.
Focusing on the fact that the SMC method has high robust-
ness, the tracking control for a NWMR with unknown sys-
tem uncertainties was solved by the method [20, 21]. How-
ever, conventional sliding-mode controllers feature an obvi-
ous drawback where control torque is discontinuous and
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oscillates at a high frequency, which cannot be tolerated in
some practical applications.

To avoid this phenomenon, some methods have been
proposed, such as equivalent control, boundary layer method
[22], and intelligent SMC [23]. A second-order sliding-mode
(SOSM) controller [24–26], which is effective in extending
the performance and robustness of the standard sliding-
mode controller, was also proposed to reduce the chattering
effect [27, 28].However, the systemuncertainties and external
disturbance are not completely considered and the bounds of
uncertainties are assumed to be known, which would limit
the wide application of the designed control method. Aiming
at the above problems, the PD-SOSM controller was pro-
posed to deal with the NWMR [29] with system uncertainties
and disturbance. An adaptive second-order terminal sliding-
mode controller [30] was proposed, and the bounds of un-
known parameters were estimated using the adaptation law,
but the estimate progress is rather complicated.Meanwhile, it
is also important to note that most of the tracking problems
treated in the literature have been mainly concerned with
NWMR whose trajectory converges to the desired trajectory
asymptotically. However, the tracking control achieved in
finite time is required in some practical situations. It can be
observed from the literature that the finite time is mainly
achieved by the sign function of states [31] or relative states
[32] for the nonlinear systems. Unlike most of the meth-
ods mentioned above, state-space partitioning [33, 34] is
embedded into the switched second-order sliding-mode (S-
SOSM) controllers, such that the trajectories can be driven
onto the desire trajectory in finite time and do not require
the knowledge of the bounds of the uncertainties. But it is
mainly applied to the systems whose trajectories converge
to a constant value of zeros instead of time-varying desired
trajectories, which is a big limitation of the application. In
this paper, the SOSM controller is adopted in the external
loop, overcoming the disturbance and uncertainties without
obtaining the upper bounds in advance.

Motivated by the idea [21, 33, 34], we further propose a
combination of an integral sliding-mode controller and an S-
SOSM controller. At first, an integral sliding-mode controller
is applied to the system without uncertainties. Then, an S-
SOSM algorithm is employed to conquer the unmodeled
dynamics and external disturbances and guarantee system’s
precision and robustness. In the end, comparative simulation
and experimental studies demonstrate the effectiveness and
applicability of the proposed approach.

The paper is organized as follows. Section 2 gives the
NWMR’s kinematic and dynamic models and the SMC algo-
rithm. In Section 3, the improved S-SOSM algorithm is pro-
posed. In Section 4, the closed-loop stability and convergence
are given to demonstrate the efficiency and the correctness
of the improvement algorithm. In Section 5, the simulation
and experimental results are provided, and the conclusions
are given in Section 6.

2. SMC for NWMR

2.1. Description of NWMR Systems. The NWMR shown in
Figure 1 is an example of a nonholonomic mechanical system
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Figure 1: NWMR configuration.

consisting of a cart with two driving wheels (marked as 𝐷2
and𝐷4) and two omnidirectional castors (marked as𝐷1 and𝐷3). It generallymoves in the flat ground, so it is assumed that
there is no gravitational term.

The dynamic and kinematicmodels of NWMR are adopt-
ed from [35]:

𝑀0 (𝑞) ̇𝜂 + 𝜏𝑑 + 𝐹 (𝑞, ̇𝑞, ̈𝑞) = 𝐵 (𝑞) 𝜏, (1)

̇𝑞 = 𝑆 (𝑞) 𝜂, (2)

where 𝜂(𝑡) = [V𝑜1, 𝑤𝑜1]T are the velocities of the robot, V𝑜1 and𝑤𝑜1 denote the linear and angular velocities,𝑀(𝑞) = 𝑀0(𝑞)+Δ𝑀(𝑞) ∈ R2×2 is a symmetric positive-definite inertia
matrix, 𝜏𝑑 ∈ R2×1 denotes bounded external disturbances,𝐹(𝑞, ̇𝑞, ̈𝑞) = Δ𝑀(𝑞) ̇𝜂 ∈ R2×1 is the unmodeled dynamics,𝐵(𝑞) ∈ R2×2 is the vector of transformation matrix, and𝑞 = [𝑥, 𝑦, 𝜃]T with associated velocities ̇𝑞 and acceleration̈𝑞 are controlled by applied torque 𝜏 ∈ R2×1. Moreover,

𝑆 (𝑞) = [[
[
cos 𝜃 −𝑑 sin 𝜃
sin 𝜃 𝑑 cos 𝜃
0 1

]]
]

,

𝑀0 (𝑞) = [𝑚 0
0 𝐼 − 𝑚𝑑2] ,

𝐵 (𝑞) = 1𝑟 [1 1
𝑅 −𝑅] ,

𝜏 = [𝜏𝑟𝜏𝑙] ,

(3)

where 𝑚 and 𝐼 are the mass and inertia of the NWMR; 𝑑 is
the distance between points 𝑂1 and 𝑐; 𝑟 and 2𝑅 represent the
radius of thewheel and the distance of the two drivingwheels,
respectively.
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2.2. Sliding-Mode Function and Controller Design. The nom-
inal system is governed using the sliding-mode controller,
which can effectively realize the tracking objective of the
system without uncertainties.

The tracking errors are defined as

𝑞𝑒 = [𝑒1 𝑒2 𝑒3]T = 𝑇𝑞, (4)

with

𝑇 = [[
[

cos 𝜃 sin 𝜃 0
− sin 𝜃 cos 𝜃 0

0 0 1
]]
]

,

𝑞 = [[
[
𝑥𝑟 − 𝑥
𝑦𝑟 − 𝑦
𝜃𝑟 − 𝜃

]]
]

,
(5)

where 𝑞𝑟 = [𝑥𝑟, 𝑦𝑟, 𝜃𝑟]T denotes the posture of the reference
NWMR.

An auxiliary velocity control input 𝜂𝑐 based on backstep-
ping method [36] is given as

𝜂𝑐 (𝑡) = [V𝑐𝑤𝑐] = [ V𝑜1𝑟 cos 𝑒3 + 𝑘1𝑒1𝑤𝑜1𝑟 + 𝑘2V𝑜1𝑟𝑒2 + 𝑘3V𝑜1𝑟 sin 𝑒3] , (6)

where V𝑐 is the speed tracking controller output of linear
velocity and 𝑤𝑐 is the angular velocity and 𝑘𝑖 > 0, 𝑖 = 1, 2, 3.

The integral sliding-mode surface is defined as

𝑠 (𝑡) = 𝑒𝑐 (𝑡) + 𝜆∫𝑡
0
𝑒𝑐 (𝜏) 𝑑𝜏, (7)

where 𝑒𝑐(𝑡) = 𝜂(𝑡) − 𝜂𝑐(𝑡) and 𝜆 is a positive surface integral
constant.

If 𝑒𝑐(𝑡) moves to sliding-mode manifold and stays on it
all the time, then it will be steered to the origin and the
exponential stability is guaranteed. Considering ̇𝑠(𝑡) = 0 and
using the model of the robot (1), the equivalent control law is
designed as

𝜏𝑒𝑞 = (𝑀−10 (𝑞) 𝐵 (𝑞))−1 ( ̇𝜂𝑐 (𝑡) − 𝜆𝑒𝑐 (𝑡)) . (8)

The whole control input vector is assumed as follows:

𝜏 = 𝜏𝑒𝑞 + 𝜏𝑠𝑤, (9)

where 𝜏𝑠𝑤 is designed by guaranteeing the global stability of
the NWMR against the unmodeled dynamics and external
disturbances.

Substituting (8) and (9) into system (1) results in the fol-
lowing closed-loop unknown subsystem dynamics equation:

̇𝜂 = 𝑀−10 (𝑞) 𝐵 (𝑞) 𝜏𝑠𝑤 − 𝜆𝑒𝑐 (𝑡)
− 𝑀−10 (𝑞) (𝜏𝑑 + 𝐹 (𝑞, ̇𝑞, ̈𝑞)) + ̇𝜂𝑐 (𝑡) .

(10)

3. S-SOSM Control

In order to effectively deal with the trajectory tracking con-
trol problem for NWMR with state-dependent unmodeled
dynamics and time-varying external disturbances, the defini-
tion of intermediate variables 𝑧1 on the sliding-mode surface
is employed.

Consider the second-order uncertain nonlinear auxiliary
system

𝑧̇1 = 𝑧2,
𝑧̇2 = 𝑓 (𝑧 (𝑡)) + 𝑔 (𝑧 (𝑡)) V + ℎ (𝑡) , (11)

where 𝑧𝑖 = [𝑧𝑖1, 𝑧𝑖2], 𝑖 = 1, 2, 𝑧 = [𝑧1, 𝑧2]T ∈ R2 are auxilia-
ry system state variables. 𝑧1 = 𝑠(𝑡) is the sliding variable.𝑓(𝑧(𝑡)) and 𝑔(𝑧(𝑡)) are uncertain smooth functions that can
be obtained from (7)–(10). V is the time derivative of 𝜏𝑠𝑤. ℎ(𝑡)
are time-varying external disturbances for which an upper
bound𝐻 is known.

To achieve the tracking objective, we need the following
assumptions.

Assumption 1. |𝑓(𝑧(𝑡))| ≤ 𝐹, 0 < 𝐺1 ≤ 𝑔(𝑧(𝑡)) ≤ 𝐺2, where𝐹, 𝐺1, and 𝐺2 are state-dependent positive constants.
Assumption 2. The extremal value 𝑧Max of 𝑧1 can be detected.

Define the state-space partitioning as follows.
Assume that the system state space 𝑍 is divided into 𝑛

regions 𝑅𝑖, 𝑖 = 1, 2, . . . , 𝑛. The innermost region is defined
as

𝑅𝑖 fl { (𝑧1, 𝑧2) : 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨 ≤ 𝑧1,𝑖, 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 ≤ 𝑧2,𝑖} , (12)

with 𝑧𝑗,𝑖+1 < 𝑧𝑗,𝑖, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑗 = 1, 2. The outermost
region is defined as

𝑅1 fl { (𝑧1, 𝑧2) : 󵄨󵄨󵄨󵄨𝑧1󵄨󵄨󵄨󵄨 > 𝑧1,1, 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨 > 𝑧2,1} , (13)

where 𝑍𝑖 = 𝑅𝑖/𝑅𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 − 1, 𝑍𝑛 = 𝑅𝑛. 𝑊𝑖 =𝛿𝑅𝑖+1, 𝑖 = 1, 2, . . . , 𝑛 − 1, denotes the edge of region 𝑅𝑖+1 (see
Figure 2).

Conclusion 3. Under Assumption 1 and the description of
the state-space partitioning in (12) and (13), the bounds of
the uncertainty terms 𝑓(𝑧(𝑡)) and 𝑔(𝑧(𝑡)) can be determined
based on the fact that the state variables of each region are
bounded. One can rewrite

󵄨󵄨󵄨󵄨𝑓 (𝑧 (𝑡))󵄨󵄨󵄨󵄨 ≤ 𝐹𝑖,
0 < 𝑔1,𝑖 ≤ 𝑔 (𝑧 (𝑡)) ≤ 𝑔2,𝑖, 𝑖 = 1, 2, . . . , 𝑛. (14)
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Figure 2: An example of the state-space partitioning.

Remark 4. In this paper, the state-space partitioning is em-
ployed to obtain the bounds of the uncertainty terms, so that
the assumption of bound for the uncertain functions can
be relaxed. Moreover, different from the traditional analysis
methods such as Lyapunov functions [37, 38], it is difficult to
build a Lyapunov function for the system, and it may be re-
constructed if the system changes. It is noted that invariant
sets are introduced in this paper, which is the key to prove
that the trajectory converges to the desired trajectory.There is
no need to build complex functions, and this will not change
much with the system changes.

A set is expressed as

𝑅̃𝑖 = 𝑍𝑖 \ {𝑝1,𝑖𝑝2,𝑖 ∪ 𝑝5,𝑖𝑝6,𝑖} , 𝑖 = 1, 2, . . . , 𝑛, (15)

where

𝑝1,𝑖𝑝2,𝑖
= {(𝑧1, 𝑧2) ∈ 𝑊𝑖: 𝑧1 ∈ [−𝑧1,𝑖 + 𝑧2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2𝑉̃𝑖 , 𝑧2 = 𝑧2,𝑖]} .
𝑝5,𝑖𝑝6,𝑖
= {(𝑧1, 𝑧2) ∈ 𝑊𝑖: 𝑧1 ∈ [𝑧1,𝑖 − 𝑧2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2𝑉̃𝑖 , 𝑧2 = −𝑧2,𝑖]} .

(16)

If 𝑧 ∈ 𝑅̃𝑖, 𝑖 = 1, 2, . . . , 𝑛, the control law V𝑖 is defined as

V𝑖 = −𝛼𝑖𝑉𝑖 sign (𝑧1 − 𝛽𝑧Max) , (17)

𝛼𝑖 = {{{
𝛼∗𝑖 (𝑧1 − 𝛽𝑧Max) (𝑧Max − 𝑧1) > 0
1 else, (18)

where𝑉𝑖 is the control gain for the region𝑅𝑖,𝛼𝑖 is themodula-
tion factor, and 𝑧Max is a piecewise constant function (𝑧Max =𝑧1(𝑡1), 𝑧2(𝑡1) = 0), 𝛽 = 1/2. The following constraints are
satisfied tomake the system trajectory converge to the desired
trajectory in finite time:

𝛼∗𝑖 ∈ (0 1] ∩ (0 3𝑔1,𝑖𝑔2,𝑖 ) ,
𝑉𝑖 > max{𝐹𝑖 + 𝐻𝛼∗𝑖 𝑔1,𝑖

4 (𝐹𝑖 + 𝐻)
3𝑔1,𝑖 − 𝛼∗𝑖 𝑔2,𝑖} ,

𝑉𝑖 > 𝑉Max = max
𝑗=2,3,...,𝑛

(𝐹𝑗 + 𝐻
𝛼∗𝑗 𝑔1,𝑗 ) ,

(19)

where 𝑉̃𝑖 = 𝛼∗𝑖 𝑔1,𝑖𝑉Max − 𝐹𝑖 − 𝐻 > 0, 𝑖 = 1, 2, . . . , 𝑛.
If 𝑧 ∈ {𝑝1,𝑖𝑝2,𝑖 ∪ 𝑝5,𝑖𝑝6,𝑖}, 𝑖 = 1, 2, . . . , 𝑛, the control law V

is defined as

V𝑖 = −𝛼𝑖𝑉𝑖 sign (𝑧1 − 𝛽𝑧Max) , (20)

V𝑖−1 = 𝛼𝑖𝑉𝑖 sign (𝑧1 − 𝛽𝑧Max) , (21)

where 𝛼𝑖 is chosen as (18).
Inserting (8) and (17)–(21) into (9), (9) can be rewritten

as

𝜏𝑖 = (𝑀−10 (𝑞) 𝐵 (𝑞))−1 ( ̇𝜂𝑐 (𝑡) − 𝜆𝑒𝑐 (𝑡)) + ∫ V𝑖 𝑑𝑡. (22)

Remark 5. The S-SOSM controller is applied into the design
of the switching controller 𝜏𝑠𝑤. The discontinuous sign func-
tion is replaced by a continuous function, so the unexpected
chattering can be attenuated significantly.

Remark 6. Different control objectives in the different
regions could be accomplished, for the curvature of the tra-
jectory can be adjusted, for example, a short settling time or
a minimal overshoot. There is no need to design different
control strategies for the various control objects in different
environments; for example, the UAV needs a minimal over-
shoot before reaching the target position and needs a short
settling time when hovering in the target position.

4. Convergence Analysis

Theorem 7. For the second-order uncertain nonlinear auxil-
iary system, under the proposed controller, the following con-
traction property is featured:

󵄨󵄨󵄨󵄨󵄨𝑧𝑀𝑎𝑥𝑖+1 󵄨󵄨󵄨󵄨󵄨 < 󵄨󵄨󵄨󵄨󵄨𝑧𝑀𝑎𝑥𝑖 󵄨󵄨󵄨󵄨󵄨 , 𝑖 = 1, 2, . . . , 𝑛 − 1. (23)

Proof. Assume that 𝑧1(0) = 𝑧Max, 𝑧2(0) = 0, and the initial
point lies on the positive direction of the abscissa with the
control law V𝑖 = −𝛼𝑖𝑉𝑖. When the commutation takes place at
time instant 𝑡2 such that 𝑧1(𝑡2) = 𝑧Max/2, the value of 𝑧2(𝑡2)
becomes within the interval

𝑧2 (𝑡2)
∈ [−√𝑧Max (𝛼∗𝑖 𝑔2,𝑖𝑉𝑖 + 𝐹𝑖 + 𝐻) −√𝑧Max (𝛼∗𝑖 𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻)] , (24)

and when 𝑡 > 𝑡2, the auxiliary system with control law V𝑖 =𝑉𝑖 shows that the trajectories intersect with the axis, and the
intersection point belongs to the interval
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[−(𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)
2 (𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻) 𝑧Max

(𝑔2,𝑖 − 𝛼∗𝑖 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)
2 (𝑔2,𝑖𝑉𝑖 + 𝐹𝑖 + 𝐻) 𝑧Max] . (25)

It is obvious that the right extreme of the interval is closer
to the origin than the last intersection. Then, the sufficient
condition for satisfying the contraction property is that the
magnitude of the left extreme of the interval is less than 𝑧Max,
which can be denoted by the following system of inequalities:

𝛼∗𝑖 ≤ 1,
𝛼∗𝑖 𝑔1,𝑖𝑉𝑖 ≥ 𝐹𝑖 + 𝐻,

((𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻))
(𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻) ≤ 2.

(26)

Finally, it can be obtained that

𝑉𝑖 > max{𝐹𝑖 + 𝐻𝛼∗𝑖 𝑔1,𝑖
4 (𝐹𝑖 + 𝐻)

3𝑔1,𝑖 − 𝛼∗𝑖 𝑔2,𝑖} . (27)

The proof process is the samewhen the initial point is at other
locations.

For the second-order uncertain nonlinear auxiliary sys-
tem, the control law V steers the state variables to the origin.

Define

𝑅𝑖 = 𝑍𝑖 \ {𝑈1,𝑖 ∪ 𝑈2,𝑖} , 𝑖 = 1, 2, . . . , 𝑛, (28)

where

𝑈1,𝑖 = {(𝑧1, 𝑧2) : 𝑧1 ∈ [𝑧1,𝑖 − 𝑧2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2𝑉̃𝑖 , 𝑧2 > 0]} ,
𝑈2,𝑖 = {(𝑧1, 𝑧2) : 𝑧1 ∈ [−𝑧1,𝑖 − 𝑧2 󵄨󵄨󵄨󵄨𝑧2󵄨󵄨󵄨󵄨2𝑉̃𝑖 , 𝑧2 < 0]} .

(29)

Proof. Region 𝑅𝑖 is the largest positively invariant set con-
tained in 𝑅𝑖. The proof of this theorem can be found in
[39].

Theorem 8. Consider the state-space partitioning (12) ad (13)
and the region definition (17) and assume that the bounds (15)
hold. Under the control of the proposed method, the auxiliary
system states converge to the origin in finite time.

Proof. The time sequence {𝑡Max} is the time instant at which
an extremal value of 𝑧1 occurs, where
𝑡Max𝑖+1 = 𝑡Max𝑖

+ (𝛼∗𝑖 𝑔2,𝑖 + 𝑔1,𝑖) 𝑉𝑖
(𝑔1,𝑖𝑉𝑖 − 𝐹𝑖)√(𝛼∗𝑖 𝑔2,𝑖𝑉𝑖 + 𝐹𝑖)√𝑧Max𝑖 ,

𝑖 = 1, 2, . . . , 𝑛.
(30)

By means of simple computations, the following inequality
holds:

𝑡Max𝑖+1 ≤ 𝑡Max1

+ max
𝑗=2,3,...,𝑛

( 3√22√𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻) 𝑛∑
𝑖=1

√𝑧Max𝑖

= 𝜂 𝑛∑
𝑖=1

√𝑧Max𝑖 + 𝑡Max1 .
(31)

Then, inserting (26) into (23) yields

󵄨󵄨󵄨󵄨󵄨𝑧Max𝑖
󵄨󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−
(𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)

2 (𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1 󵄨󵄨󵄨󵄨󵄨𝑧Max1

󵄨󵄨󵄨󵄨󵄨 . (32)

From (31) and (32), it can be obtained that

𝑡Max𝑖+1

≤ 𝜂 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−
(𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)

2 (𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1√󵄨󵄨󵄨󵄨󵄨𝑧Max1

󵄨󵄨󵄨󵄨󵄨
+ 𝑡Max1

= 𝜂󸀠 𝑛∑
𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨−
(𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)

2 (𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑖−1 + 𝑡Max1 .

(33)

Obviously, |−((𝛼∗𝑖 𝑔2,𝑖−𝑔1,𝑖)𝑉𝑖+2(𝐹𝑖+𝐻))/2(𝑔1,𝑖𝑉𝑖−𝐹𝑖−𝐻)| <1. Therefore, according to (31), there is

lim
𝑖→∞

𝑧Max𝑖 = 0. (34)

Finally,

lim
𝑖→∞

𝑡Max𝑖

< 𝜂󸀠1 − 󵄨󵄨󵄨󵄨((𝛼∗𝑖 𝑔2,𝑖 − 𝑔1,𝑖) 𝑉𝑖 + 2 (𝐹𝑖 + 𝐻)) /2 (𝑔1,𝑖𝑉𝑖 − 𝐹𝑖 − 𝐻)󵄨󵄨󵄨󵄨
+ 𝑡Max1 .

(35)

The convergence of the time sequence {𝑧Max} in finite time
implies the convergence to zero of the auxiliary system.Then,
the NWMR system will be steered to the desired trajectory in
finite time. Here, the proof is complete.

5. Simulations and Experimental Results

In this section, simulation and experiment studies for track-
ing control of a NWMR system are conducted to verify the
effectiveness of the proposed control laws. The numerical
values of the parameters are listed in Table 1.
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Figure 3: Simulation results of the mobile robot with the proposed controller.

5.1. Simulations Results. The tracking controller is compared
with the traditional sliding-mode controller, and the adjust-
ment of 𝛼𝑖 in Remark 6 is verified.

Compared with Figures 3(a) and 3(b) and Figures 4(a)
and 4(b), one can see that both trajectories can track the

desired trajectory. However, it can be observed from Fig-
ure 3(f) that the tracking errors decreased to zero, which
cost 1.5 s less than in Figure 4(d), which indicates that
the proposed method has a better response with a faster
convergence speed. In Figure 3(c), the torque control input
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Figure 4: Simulation results of the mobile robot with the SMC controller.

Table 1: Parameters used for the simulation.

𝑚 = 2.92 kg 𝛼∗ = [0.65, 0.30, 0.8]T
𝑑 = 0.11m [𝑘1, 𝑘2, 𝑘3] = [3, 120, 20]
𝐼 = 2.5 kgm2 𝑧1 = [70, 50, 5; 70, 50, 5]T
𝑅 = 0.17m 𝑧2 = [70, 50, 5; 70, 50, 5]T
𝑟 = 0.03m [V𝑜1𝑟, 𝜔𝑜1𝑟] = [1.0m/s, 1.0 rad/s]
𝜆 = 6.9 𝑉 = [5.0, 1.80, 1.0; 5.0, 0.81, 0.3]T
𝐻 = 0.3 𝜏𝑑+𝐹(𝑞, ̇𝑞, ̈𝑞) = [0.1∗𝜂+0.1 sin(𝑡), 0.2∗ ̇𝜂+0.1 cos(𝑡)]T

𝜏 of the proposed control can be confined to an arbitrarily
small repose, and the chattering is well attenuated compared
with that in Figure 4(c).

5.2. Experimental Results. Experiments are conducted to test
the effectiveness of the proposed control laws in a practical
NWMR system. QUANSERQBot2 as shown in Figure 5(a) is
used for the experiments. Figure 5(b) shows the diagram of
experimental platform. The robots move on a 300 × 360 cm
white surface. In the experiment, the robot starts at 𝑥 = 0m,𝑦 = 0m, and 𝜃 = 0 rad/s and should follow a circle trajectory
of reference. The maximum velocity of QUANSER QBot2 is
V = 0.7m/s, so the reference velocities in experiment are

chosen as V𝑜1𝑟 = 0.3m/s and 𝜔𝑜1𝑟 = 0.25 rad/s and the radius
of the circle is 1.2m.

The experimental results shown in Figure 6 illustrate the
trajectory tracking result for a circle trajectory. The actual
trajectory reaches the desired circle quickly. According to
the experimental results for the circle trajectory tracking,
the trajectory can remain stable and robust despite external
disturbances and unmodeled dynamics in the robot.

In summary, both simulation studies and the experiment
results demonstrate that the proposed control laws are effec-
tive.

6. Conclusion

An innovative robust controller has been investigated for
dealing with the tracking problem of NWMR. Finite-time
convergence of tracking error was achieved in the presence of
external disturbances and unmodeled dynamics. Comparing
simulation and experimental studies, the effectiveness and
the superior performance of the proposed control method
are verified.There are several features that are worth pointing
out. (1)The assumption of bound for the uncertain functions
can be relaxed. (2) The NWMR can accommodate different
control objectives under different requirements. (3) The
chattering problem is effectively alleviated and has a better
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Figure 5: Experimental environment.
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Figure 6: Experiment results of the mobile robot with the proposed controller.
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response with a faster convergence speed. In future work, the
assumption of the bound of disturbance should be relaxed so
that this control algorithm can be applied to more nonlinear
systems.
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