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Abstract

We investigate computable subshifts and the connection with effective
symbolic dynamics. It is shown that a decidable Π0

1 class P is a subshift if
and only if there is a computable function F mapping 2N to 2N such that
P is the set of itineraries of elements of 2N. Π0

1 subshifts are constructed
in 2N and in 2Z which have no computable elements. We also consider the
symbolic dynamics of maps on the unit interval.

1 Introduction

Computable analysis studies the effective content of theorems and constructions
in analysis. In this paper, we study computable dynamical systems and symbolic
dynamics associated with computable functions on the Cantor space 2N, 2Z and
the unit interval [0, 1].

The papers of Gregorczyk [14] and Lacombe [17] which initiated the study of
computable analysis provide the starting point of our study since those papers
provide careful definitions of computably closed sets of reals and computable
real functions. Computable real dynamical systems have been studied by Cen-
zer [3], where the Julia set of a computably continuous real function is shown
to be a Π0

1 class and Ko [16], who examined fractal dimensions and Julia sets.
The computability of complex dynamical systems have recently been investi-
gated Rettinger and Weihrauch [20], and by Braverman and Yampolsky [2].
Weihrauch [23] has provided a comprehensive foundation for computability the-
ory on various spaces, including the space of compact sets and the space of
continuous real functions.

This research was partially supported by NSF grants DMS 0532644 and 0554841.
Keywords: Computability, symbolic dynamics, Π0

1 Classes
This is an expanded version of the paper [5].
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Effectively closed sets (Π0
1 classes) occur naturally in the application of com-

putability to many areas of mathematics. See the recent surveys of Cenzer and
Remmel [7, 8] for many examples. In particular, the computability of a closed
set K in a computable metric space (X, d) may be defined in terms of the dis-
tance function dK , where dK(x) is the infimum of {d(x, y) : y ∈ K}. K is a Π0

1

class if and only if dK is upper semi-computable and K is a decidable (or com-
putable) closed set if dK is computable. One important example in Euclidean
space is the set of zeroes of a computably continuous function. This leads easily
to related examples such as the set of fixed points or the set of extrema of a
computably continuous function. That is, for any continuous function F , it is
easy to see that the set of zeroes of F , the set of fixed points of F , and the set
of points where F attains an extremum, are all closed sets. For a computably
continuous function F , the corresponding closed sets are all Π0

1 classes. In fact,
Nerode and Huang [22] showed that any Π0

1 class of reals may be represented as
the set of zeroes of a computably continuous function. Ko extended the Nerode-
Huang results [15] to show that any Π0

1 class may be represented as the set of
zeroes of a polynomial time computable function. Thus Π0

1 classes also appear
naturally in the theory of polynomial time computable functions on the reals.

The outline of this paper is as follows. Section 2 contains definitions and pre-
liminaries. In section 3, we construct a subsimilar Π0

1 class with no computable
element. The symbolic dynamics of effective dynamical systems on the Cantor
space 2N and 2Z is studied in section 4. For any finite k, the shift function on
{0, 1, . . . , k}Z ({0, 1, . . . , k}N) is defined by σ(x) = y, where y(n) = x(n+ 1). A
closed set Q ⊆ {0, 1, . . . , k}N ({0, 1, . . . , k}N) is said to be a subshift if it is closed
under the shift function; for Q ⊆ 2Z, Q is a subshift if it is closed under σ and
under σ−1. We will refer to a Π0

1 class which is also a subshift as a subsimilar
Π0

1 class.
Fix a finite alphabet Σ, let F : ΣN → ΣN be a computable function and let

a partition {U0, U1, . . . , Uk} of ΣN into clopen sets be given. The itinerary of a
point x ∈ ΣN is the sequence It(x) ∈ {0, 1, . . . , k}N where

It(x)(n) = i ←→ Fn(x) ∈ Ui.

Now let IT [F ] = {It(x) : x ∈ ΣN}. We will show that IT [F ] is a decidable
subsimilar Π0

1 class and that, for any decidable subsimilar Π0
1 class Q ⊆ ΣN,

there exists a computable F such that Q = IT [F ]. We also consider itineries in
ΣZ for points x such that inverse −n(x) are defined. The topology on ΣN has a
basis of intervals, which are clopen sets of the form

J [w] = {x : w ≺ x}.

Similarly the topology on ΣZ has a basis of intervals, which are clopen sets of
the form

J [w] = {x : w G x}.

A subset of ΣN or ΣZ is clopen if and only if it is a finite union of basic
intervals.
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A tree T over Σ∗ is a set of finite strings from Σ∗ which contains the empty
string λ and which is closed under initial segments. We say that w ∈ T is an
immediate successor of v ∈ T if w = va for some a ∈ Σ.

A bi-tree T over Σ∗ is a set of finite strings of odd length from Σ∗ which
also contains the empty string and is closed under central segments. w ∈ T is
an immediate successor of v ∈ T if w = bva for some a and b in Σ.

We will assume that Σ ⊆ N, so that T ⊆ N∗.
For any tree T , an infinite path through T is a sequence (x(0), x(1), . . .) such

that xdn ∈ T for all n.
And similarly for any bi-tree T , an bi-infinite path through T is a sequence

(. . . , x(−1), x(0), x(1), . . .) such that xd[−n, n] ∈ T for all n.
We let [T ] denote the set of infinite or bi-infinite paths through T . It is

well-known that a subset Q of ΣN(ΣZ) is closed if and only if Q = [T ] for some
tree(bi-tree) T . A subset P of NN(NZ) is a Π0

1 class (or effectively closed set)
if P = [T ] for some computable tree(bi-tree) T . A node w ∈ T is extendible
(bi-extendible) if there exists x ∈ [T ] such that w ≺ x (w G x). The set of
extendible (bi-extendible)nodes forms a tree TP which is a co-c.e. subset of Σ∗

but is not in general computable. P is said to be decidable (or computable) if
TP is a computable set.

A tree T ⊆ Σ∗ said to be subsimilar if for every v and w, vw ∈ T implies
w ∈ T . Similarly a bi-tree T ⊆ Σ∗ said to be subsimilar if for every v and every
w of odd length, vw ∈ T implies w ∈ T .

The closed set P is subsimilar (or a subshift) if TP is subsimilar.
A function F : ΣZ → ΣZ is computable (or computably continuous) if there

exists a computable approximating function f : Σ∗ → Σ∗ such that, for all
x ∈ ΣZ and all v, w ∈ Σ∗:

(i) v G w −→ f(v) G f(w).

(ii) (∀m)(∃n)(∀v ∈ Σn)|f(v)| ≥ m.

(iii) F (x) =
⋃
n f(xd[−n, n]).

Similarly, a function F : ΣN → ΣN is computable if there exists a computable
approximating function f : Σ∗ → Σ∗ such that, for all x ∈ ΣN and all v, w ∈ Σ∗:

(i) v ≺ w −→ f(v) � f(w).

(ii) (∀m)(∃n)(∀v ∈ Σn)|f(v)| ≥ m.

(iii) F (x) =
⋃
n f(xdn).

Note that in both cases (iii) implies (ii) by compactness.
A function F : [0, 1] → [0, 1] is computable if there exists a computable

approximating sequence 〈fn〉 of functions fn : D → D (where D is the set of
dyadic rationals in [0, 1]) and a computable modulus function M : N→ N such
that for all n ∈ N, all d ∈ D and all x ∈ [0, 1],

(i) |x− d| < 2−M(n) −→ |F (x)− fn(d)| < 2−n.
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2 Undecidable subshifts

In this section, we construct a subsimilar Π0
1 class with no computable element.

We will give the construction in 2N and 2Z, but it can be generalized to ΣN and
ΣZ for any finite Σ. Now every decidable Π0

1 class has a computable element (in
fact, the leftmost path is computable). Hence we have an undecidable subsimilar
Π0

1 class.
For any set S of strings, we may define a closed set PS , where x ∈ PS if

and only if, for all n and all w ∈ S, w is not a factor of xdn. If the set PS is
nonempty, then S is said to be avoidable. For this section, we restrict ourselves
to Σ = {0, 1}

Lemma 1. Given any sequence x0, x1, . . . of elements of 2N, there is a nonempty
subshift containing no xi.

Proof. Define the sequence l0, l1, . . . by

ln = 3(2n(n+3)).

This will imply that ln+1 = 22n+4ln. Now let wn = xnd2ln for each n and define
subshift P to consist of all x which do not contain any wn as a factor. Clearly
xi /∈ P for all i. It remains to show that P is nonempty, that is, {wn : n ∈ N}
is avoidable.

It is important to notice that given any word w of length 2k, it has at most
k + 1 distinct factors of length k. Since there are 2k words of length k, for k
large enough so that 2k > k+ 1, there are words of length k that do not appear
as a factor of w. With this in mind, we construct recursively two sequences of
words < An >n∈N and < Bn >n∈N such that, for all n:

1. |An| = |Bn| = ln;

2. An 6= Bn;

3. An and Bn are not factors of wn; this is possible for n = 0 since |w0| = 6
so w0 has at most 4 distinct factors of length 3.

4. An+1 and Bn+1 are taken from {An, Bn}∗, have An as a prefix, and have
length ln+1, so each is a concatenation of m = 22n+4 = ln+1/ln copies of
An, Bn. This is possible since there are 2m−1 such words, but there are at
most ln+1 + 1 factors of length ln+1 in wn+1 and 2m−1 = ln+1 + 1 + 2. To
check this, note that ln+1 + 3 = 3(2n

2+3n) + 3 ≤ 2n
2+3n+2 ≤ 2m−1, since

m− 1 = 22n+4 − 1 ≥ 22n+3 ≥ n2 + 3n+ 2 for all n.

Now let x = limnAn. This exists since each An ≺ An+1. We claim that
x ∈ P . Suppose by way of contradiction that some wn is a factor of x. We
can view x as an infinite concatenation of blocks length ln, where each block
is either An or Bn. Since wn has length 2 ln, it must completely contain one
of the blocks, which would imply that either An or Bn is a factor of wn. This
contradiction shows that x ∈ P .
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We need to improve this lemma in two ways. First, we need an effective
version. Second, we may allow for only a subset of words wk of length 2lnk .

Proposition 2. P ⊆ 2N is a Π0
1 subshift if and only if there is a c.e. set S such

that P = PS, and similarly for P ⊆ 2Z.

Proof. First suppose that S is a c.e. set of strings with effective enumeration
v0, v1, . . . . Then PS = [T ] where a string w of length n is in T if and only if
none of v0, . . . , vn is a factor of w; this works equally well in 2N and in 2Z. Next
suppose that P ⊆ 2N is a subsimilar Π0

1 class, so that the set TP is a Π0
1 set and

let S = {0, 1}∗ − TP . If x /∈ P , then for some n, xdn ∈ S, so that x /∈ PS . On
the other hand, suppose that x /∈ PS and let x = xdn_w_y for some n < ω
and some w ∈ S. Then w_y /∈ P and hence, since P is subsimilar, x /∈ P . A
similar argument using the bi-tree TP works in for P ⊆ 2Z. Here we let S be the
set of odd length strings not in TP . If x /∈ P , then for some n, xd[−n, n] ∈ S,
so that x /∈ PS . If x /∈ PS , then for some w ∈ TP of length 2k+ 1, and for some
m, w = xd[m,m + 2k]. Then for y = σ−m−k(x), yd−k, k] = w, so that y /∈ P
and thus x /∈ P since P is subsimilar.

Proposition 3. There is a recursive sequence of natural numbers l0, l1, . . . such
that if for any subsequence < lnk >k∈N and any set S = {vk : k ∈ N} of words
such that |vk| = 2lnk , S is avoidable. Furthermore, if φ is a partial computable
function such that φ(nk) = vk, then there is a nonempty subsimilar Π0

1 class P
such that no element of P contains any factor vk.

Proof. For the first part, just let wk = vnk for nk in the subsequence and observe
that in the proof of Lemma 1, the construction goes through if there is no word
wn to avoid. The second part follows from Proposition 2.

Theorem 4. There is a nonempty subsimilar Π0
1 class P ⊆ 2N with no com-

putable element.

Proof. Let the sequence< ln > be given as in Lemma 1. Let Let φ0, φ1, ..., φe, . . .
be an enumeration of partial computable functions. Now define the partial re-
cursive function φ by

φ(k) =

{
φkd2lk, if φk(i) ↓ for all i < 2lk;
undefined, otherwise.

By Theorem 3, there is a nonempty subsimilar Π0
1 class P such that no element

of P has any word φ(k) as a factor. Now let y be any computable element of
2N. Then y = φk for some k such that φk is a total function. Thus φ(k) = φkdk
is defined and is not a factor of any x ∈ P and hence certainly φk /∈ P .

Thus far, we have constructed a nonempty Π0
1 subsimilar subclass of 2N that

has no computable elements. We would like to establish the same for the space
2Z. Some modifications to the above lemmas and theorems are needed to achieve
this.
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Lemma 5. For any set S of strings, S is avoidable in 2N if and only if S is
avoidable in 2Z.

Proof. Suppose first that S is avoidable in 2Z, so that some bi-infinite word
x ∈ 2Z avoids all w ∈ S. Then the word (x(0), x(1), . . . ) ∈ 2N also avoids S.
Next suppose that S is not avoidable in 2Z. Then PS is empty in 2Z, so that
by compactness, the bi-tree T of strings of odd length which do not contain
a factor from S is finite. Thus there exists n such that every string of length
2n+ 1 contains a factor from S and it follows that PS is empty in 2N.

Theorem 6. There is a nonempty subsimilar Π0
1 class PS ⊆ 2Z with no com-

putable element.

Proof. Have the sequence< mn = 6(2n(n+3) : n = 0 >. Let Let φ0, φ1, ..., φe, . . .
be an enumeration of partial computable functions whose domain is a subset of
Z. Now let

S = {wk = φkd[−mk/2,mk/2], if φk(i) ↓ for all −mk/2 < i < mk/2

Since the set, S, of φ(k)s is a computable enumerable set of forbidden words
whose elements have lengths which compose a subset of < mn >n∈ω, it fol-
lows that PS is a nonempty subsimilar Π0

1 class such that no element of P
has any word φ(k) as a factor. Then for any computable element φk of 2Z,
wk = φkd[−lk/2, lk/2] is defined and is not a factor of any x ∈ P , and hence
φk /∈ P .

3 Symbolic Dynamics for Functions on ΣN and
ΣZ

Fix a finite alphabet Σ = {0, 1, . . . , k}, let F : ΣN → ΣN be a computable
function and let a partition {U0, U1, . . . , Uk} of ΣN into clopen sets be given.
The itinerary of a point x ∈ ΣN is the sequence It(x) ∈ {0, 1, . . . , k}N where

It(x)(n) = i ←→ Fn(x) ∈ Ui.

Now let IT [F ] = {It(x) : x ∈ ΣN}. We observe that IT [F ] is a subshift. That
is, suppose y = It(x) ∈ IT [F ]. Then σ(y) = It(F (x)), so that σ(y) ∈ IT [F ] as
well. The function It is continuous and hence IT [F ] is a closed set, as seen by
the proof of the following lemma.

Lemma 7. The function from ΣN → {0, 1, . . . , k}N mapping x to It(x) is com-
putable.

Proof. Given clopen sets U0, . . . , Uk, there exists a finite j and a finite subset
W of {0, 1}j such that each Ui is a finite union of intervals J [w] for some set of
w ∈W . Thus one can determine from ydj the unique i for which y ∈ Ui. Given
x ∈ ΣN, let y = It(x). To compute y(n), it suffices to find the first j values of
Fn(x), which can be computed uniformly from x and n.
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Theorem 8. Let F : ΣN to ΣN be computable and let {U0, U1, . . . , Uk} be a
partition of ΣN into clopen sets. Then

(a) For any computable x ∈ ΣN, the itinerary It(x) is computable.

(b) The set IT [F ] of itineraries is a decidable, subsimilar Π0
1 class.

Proof. Part (a) follows from the well-known result that computable functions
map computable points to computable points and (b) follows from the fact that
the image of a decidable Π0

1 class under a computable function is a decidable
Π0

1 class. See [7, 8].

Next we prove the converse. Note that F 0(x) = x for all x ∈ ΣN and
therefore IT [F ] meets every Ui. Note that if Q is a subshift and Q does not
meet J [i], then Q ⊆ {0, 1, . . . , i− 1, i+ 1, . . . , k}N.

Theorem 9. Let Σ = {0, 1, . . . , k} be a finite alphabet and let Q ⊆ ΣN be a
decidable, subsimilar Π0

1 class which meets J [i] for all i. Then there exists a
partition {U0, . . . , Uk} and a computable F : ΣN → ΣN such that Q = IT [F ].
Similarly, there exists a partition {U0, . . . , Uk} and a computable F : ΣZ → ΣZ

such that Q = IT [F ].

Proof. We will use the partition given by Ui = J [i]. Since Q is decidable, we
can define a function G : ΣN → Q such that G(x) = x for all x ∈ Q. Let
Q = [T ] where T is a computable tree without dead ends. The approximating
function g for G is defined as follows. For any w ∈ {0, 1, . . . , k}n, find the
longest initial segment v such that v ∈ T and let g(v) be the lexicographically
least (or leftmost) extension of v which is in T ∩ {0, 1, . . . , k}n; this exists since
T has no dead ends. Now let F (x) = σ(G(x)). We claim that IT (F ) = Q.

For any x ∈ Q, we have F (x) = σ(x) and σ(x) ∈ Q, since Q is a subshift.
Hence Fn(x) = σn(x), so that Fn(x)(0) = x(n), so that Fn(x) belongs to the
set Ux(n). Thus the itinerary I(x) = x. This shows that Q ⊆ IT [F ].

Next consider any x ∈ ΣN. We will show by induction that Fn(x) =
σn(G(x)) for all n > 0. For n = 1, this is the definition. Then

Fn+1(x) = σ(G(Fn(x))) = σ(G(σn(G(x)))),

by induction. But G(x) ∈ Q, so that σn(G(x)) ∈ Q by subsimilarity and
therefore G(σn(G(x))) = σn(G(x)) and finally Fn+1(x) = σn+1(G(x)), as
desired. It follows that for n > 0, It(x)(n) = G(x)(n). But for n = 0,
the assumption that Q meets J [x(0)] implies that G(x)(0) = x(0) and hence
It(x)(0) = x(0) = G(x)(0) as well. Therefore It(x) ∈ Q as desired.

To extend this to functions on ΣZ, similarly let G(x) follow the central
segment of x until this goes out of T and continue the argument as above.

Next we consider the possible itineraries of F in ΣZ. Let X = ΣN or
X = ΣZ and let y ∈ ITZ(F ) if and only if there exists a bi-infinite sequence
(. . . , x−1, x0, x1, . . . ) ∈ XZ such that F (Fxi) = xi+1 and y(i) = xi(i) for all
i ∈ Z.
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Theorem 10. For any computable function F : X → X, ITZ(F ) is a decidable,
subsimilar Π0

1 class.

Proof. We give the argument for X = 2N and leave the case of 2Z to the reader.
Let f be a computable approximating function for F and define the computable
tree T to consist of all finite sequences (y(0), . . . , y(n− 1) such that there exists
w0, w1, . . . , wn−1, wn such that for i < n,

(i) f(wi) ≺ wi+1;

(ii) wi(0) = y(i).

Note that T is computable since there will be a bound on the length of the wi.
It follows from the definition of T that y ∈ [T ] if and only if, for each n, there
exists finite sequence (w−n, . . . , w−1, w0, w1, . . . , wn) such that f(wi) ≺ wi+1

and wi(0) = y(i) i ∈ {−n, . . . , n − 1}. Certainly ITZ(F ) ⊆ [T ]. The other
inclusion follows from the compactness of XZ. That is, fix y ∈ [T ] and let
Kn be the set of bi-infinite sequences (. . . , x−1, x0, x1, . . . ) ∈ XZ such that for
−n ≤ i < n, F (xi) = xi+1 and xi(0) = y(i). Then each Kn is closed and
nonempty, so that by compactness

⋂
nKn is also nonempty. Thus there exists

(. . . , x−1, x0, x1, . . . ) ∈ XZ which has itinerary y.

Theorem 11. Let Σ = {0, 1, . . . , k} be a finite alphabet and let Q ⊆ ΣZ be a
decidable, subsimilar Π0

1 class which meets J [i] for all i. Then there exists a
partition {U0, . . . , Uk} and a computable F : ΣZ → ΣZ such that Q = ITZ [F ].

Proof. The proof is a slight modification of theproof of Theorem 9. We define
G : ΣZ → Q such that G(x) is the nearest element in Q to x. That is, the
approximating function g maps xd[−n, n] to xd[−n, n] as long as xd[−n, n] ∈ TQ
and when n is the least such that xd[−n−1, n+1] /∈ TQ, g([−n−k−1, n+k+1])
is the lexicographically least extension of xd[−n, n] which is in TQ. Then we
let F (x) = σ(G(x)). Once again for x ∈ Q, we have F (x) = σ(x), so that
(. . . , σ−1(x), x, σ(x), σ2(x), . . . ) has itinerary x and therefore Q ⊆ ITZ(F ). On
the other hand, F (x) ∈ Q for all x, so that for any bi-infinite sequence z =
(. . . , x−1, x0, x1, . . . ) with F (xi)xi+1 for all i ∈ Z, we must have each xi ∈ Q
and therefore the itinerary of z is x0 ∈ Q. Thus ITZ(F ) ⊆ Q as well.

The function given in Theorem 11 above is in general not one-to-one or onto,
and we don’t know if a one-to-one and/or onto function can be given.

4 Unimodal Maps

In this section, we consider symbolic dynamics for mappings on the unit interval,
which is much more complicated. We recall some definitions and facts of [21].

Definition 12. A function F : [0, 1] → [0, 1] is a unimodal map with critical
point c if
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1. F (c) is the unique absolute maximum of F ;

2. F is strictly increasing over the interval [0, c) and is strictly decreasing
over (c, 1].

3. F(0)=0=F(1).

The value of the critical point is not essential for this discussion, so for
simplicity c is taken to be 1

2 . Given any x ∈ [0, 1] the itinerary of x under F ,
I(x), is defined as follows:

I(x)i =

 1 F i(x) > 1
2 ,

C F i(x) = 1
2 ,

0 F i(x) < 1
2

Hence the space of itineraries, IT [F ], of the elements of the interval [0, 1] is
a symbolic subspace of X = {0, 1, C}ω. In contrast to the symbolic dynamics
of ΣN, the function taking x to It(x) need not be continuous and the set of
itineraries need not be a closed set. We are interested in the subset of itineraries
in 2N, that is,

I[F ] = IT [F ] ∩ 2N.

The most important itinerary of a unimodal map F is its kneading sequence,
KS(F ), which is I(F ( 1

2 )). There is a connection between the kneading sequence
and the set I[F ] by way of the following well-known linear ordering on {0, 1, C}∗.
Here C represents the critical point 1

2 .
A word w ∈ {0, 1, C}∗ is said to be even (respectively, odd) if it has an even

(odd) number of ones. The ordering is defined as follows.

• 0 < C < 1

• For any w1 and w2,

(i) If w1 � w2, then w1 ≤ w2 and vice versa.

(ii) Otherwise, let u be the largest common prefix of w1 and w2 and let
|u| = m. If u is even, then w1 < w2 if and only if w1(m) < w2(m)
and if u is odd, then w1 < w2 if and only if w1(m) > w2(m).

This ordering can be extended to {0, 1, C}N just using clause (ii). For finite
words, this is clearly a computable linear ordering.

A finite word w is called shift-maximal if σi(w) ≤ w for all i with 1 ≤ i ≤
|w| − 1. Similarly an infinite word x is shift-maximal iff σi(x) ≤ x for all i.

It is well-known that the kneading sequence KS(F ) for a unimodal map F
is shift-maximal [21].

Given a shift-maximal x ∈ {0, 1, C}N, y ∈ 2N is said to be admissible with
respect to x if σi(y) ≤ x for all i. Let Adm(x) be the set of all admissible
sequences with respect to x.

Theorem 13. For any computable shift-maximal sequence x ∈ {0, 1, C}N, Adm(x)
is a decidable, subsimilar Π0

1 class.
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Proof. It is immediate from the definition that Adm(x) is a subshift. For the
effectiveness, we have Adm(x) = [T ], where w ∈ T ⇐⇒ (∀i < |w|)σiw ≤ xd|w|.
[T ] is decidable since, for any w ∈ T , either w_0 or w_1 in T .

Theorem 14. Given any decidable, subsimilar Π0
1 subclass Q of the cantor

space, there exists a shift maximal sequence, x ∈ 2ω, such that Q ⊆ Adm(x).

Proof. Let T be a computable tree without dead ends such that Q = [T ] and
such that w ∈ T implies σ(w) ∈ T . Let x(0) = 1, since clearly (1) is shift-
maximal. Suppose we have defined the shift-maximal word s = xdn ∈ T such
that for all w ∈ T∩{0, 1}≤n, w ≤ xdn. Let w ∈ T be the maximal word of length
n+ 1. We claim that s ≺ w. To see this, let w = v_i for v ∈ T and suppose by
way of contradiction that s 6= v. Since T has no dead ends, s_j ∈ T for some
j. Since s is shift-maximal, v < s, so that w = v_i < s_j, contradicting the
assumption that w is maximal in T . Now let x(n) = w(n) so that xdn+ 1 = w.
To see that w is shift-maximal, let u = σi(w) for some i. Then u ∈ T since Q
is subsimilar and thus u ≤ w by maximality of w in T≤n+1. Proceeding in this
fashion, we construct x ∈ T such that xdn is shift-maximal for all n, and hence
x is shift-maximal. Also x is maximal in Q, so that, for any y ∈ Q, y ≤ x.

It is not the case that every decidable, subsimilar Π0
1 class Q equals Adm(x)

for the maximal element x of Q. For example, if x = 10ω, then Adm(x) = 2N.
However, for S = {111} and Q = PS , we have x ∈ Q and thus x is the maximal
element of Q, but certainly Q 6= Adm(x) = 2N.

We return to the analysis of unimodal maps. The connection between the
kneading sequence and the itineraries is given by the following [10]. For a
continuous function F , let Adm(F ) denote Adm(KS(F )).

Proposition 15. For any unimodal map F : [0, 1] → [0, 1] with kneading se-
quence KS(F ), the set Adm(F ) is the closure of the set I[F ] of itineraries of F
in 2N.

Next we consider computable unimodal maps.

Theorem 16. For any computable unimodal map F : [0, 1] → [0, 1] and any
computable real x ∈ [0, 1], I(x) is a computable sequence. In particular, the
kneading sequence KS(F ) is computable.

Proof. Note that, for any computable x, L(x) = {n : Fn(x) < 1
2} and R(x) =

{n : Fn(x) > 1
2 are both c. e. sets. Suppose first that Fn(x) 6= 1

2 for any
n. Then L(x) and R(x) are complements and hence both sets are computable.
Then I(x)(n) = 0 ⇐⇒ n ∈ L(x), so that I(x) is computable.

For the other case, we first consider the kneading sequence. If Fn( 1
2 ) = 1

2
for some n, then KS(F ) is periodic and certainly computable. Thus KS(F )
is computable in any case. Now for arbitrary x ∈ [0, 1] such that Fn(x) = 1

2
for some n, then I(x) = I(x)dn+ 1_KS(F ) and is therefore computable since
KS(F ) is computable.

We have the following corollary to Theorems 13 and 16.
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Corollary 17. For any computable unimodal map F : [0, 1] → [0, 1], Adm(F )
is a decidable, subsimilar Π0

1 class.

The remaining goal is to find a converse to this result, that is, given a
decidable subsimilar Π0

1 class, to find a computable unimodal map F with
Adm(F ) = Q. We will make some progress in this direction.

For the rest of the section, we confine the discussion of unimodal maps to
the quadratic maps Fµ(x) = µx(1 − x). These form a so-called full family, so
that, by [10], we have

Proposition 18. For any µ0 < µ1 and for every shift-maximal y ∈ {0, 1, C}N,
there exists a parameter µ ∈ [µ0, µ1] such that KS(Fµ) = y.

For µ > 3, the unimodal map Fµ = µx(1− x) has Fµ( 1
2 ) > 1

2 , so that there
exist points x0 ∈ (0, 1

2 ) and x1 ∈ ( 1
2 , 1) such that Fµ(x0) = 1

2 = Fµ(x1) and
therefore 0C ≺ I(x0) and 1C ≺ I(x1). In general, Fµ may have kth order
inverses of 1

2 for all k.
For the surjective quadratic map G(x) = 4x(1 − x), it is clear that G has

2k k-th order inverses of 1
2 for all k and hence for any w ∈ 0, 1∗, there exists x

such that wC ≺ I(x); we will say that this x is the coordinate of the path wC.
For this map, we have the following.

Lemma 19. Let F (x) = 4x(1 − x) and let I(x) be the itinerary of x under
F . Then I is one-to-one, I[F ] = 2N, and the inverse of I, restricted to 2N, is
computable.

For the surjective quadratic map F = F4, we say that wC is a legal inverse
path (l.i.p.) if the coordinate r ∈ [0, 1] of the path is the greatest numerical
value of any point on the path, that is, if Fn(r) < r for n ≤ |w|. Metropolis et
al [21] provides the following crucial fact.

Proposition 20. There is a one-to-one correspondence between the set of pe-
riodic kneading sequences of the full family of the quadratic maps and the the
set of legal inverse paths of F4. In particular, (wC)ω is a periodic kneading
sequence for some µ if and only if wC is a legal inverse path for F4. Moreover,
if xw is the coordinate of wC and µw has kneading sequence (wC)ω, then in
general xv < xw if and only if µv < µw.

Consequently if < wnC > is a sequence of l.i.p.’s such that the corresponding
sequence < xwn >n<ω converges, then the sequence < µwn >n<ω also converges.

We next give a condition for a finite word w ∈ {0, 1}∗ which will imply that
wC is shift-maximal if w is shift-maximal. Suppose that w is shift-maximal but
wC is not shift-maximal. Then some σi(wc) > wc; let σi(wc) = uC and let
v = wdi, so that w = vu. Then wC < uC. But we know that u < w, which
implies that uC < wC unless u is a prefix of w. With this in mind, we say
that for finite words u and w, u 6= w is a proper prefix-suffix (in short PS) of
w, if there exists words t and v such that w = uv and w = tu. Call a PS u
of w trivial if |u| = 1; in this case wC will be shift-maximal. Note that given
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any shift-maximal sequence x ∈ 2N, xdn is a shift-maximal word for all n, but
it might have PS factors. Call x ∈ 2N strongly shift-maximal if there is an
increasing function f : N→ N such that, for all n, xdf(n) has at most a trivial
proper PS. For example, fix any m and let

x = 10m110m1110m . . .

Then for each n, 10m11 . . . 0m1nC is shift-maximal.
The argument above has proved the following.

Lemma 21. If the finite word w has at most a trivial proper PS and is shift-
maximal, then wC is shift-maximal.

Theorem 22. Given any (computable) strong shift-maximal sequence x ∈ 2N,
there is a (computable) unimodal map F with kneading sequence x.

Proof. Let x ∈ 2N be a strong shift-maximal sequence. Then by Lemma 21, we
can find a subsequence < wn >n<ω of the initial segments of x such that wnC
is shift-maximal word for each n. It follows from Proposition 18 that each wnC
is a legal inverse path and hence there exist µn such that Fµn has kneading
sequence (wnC)ω. Since limnwnC = x, it follows from Proposition 20 that
limnµn = µ exists and that KS(Fµ) = x.

If x is computable, then we can compute the sequence wn (since testing to
see if wnC is shift-maximal is computable) and then compute µn from wn. By
Proposition 18, we may assume that µn+2 is between µn and µn+1, so that the
limite µ is also computable.
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