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Abstract. We consider certain linear orders with a function on them,
and discuss for which types of functions the resulting structure is or is
not computably categorical. Particularly, we consider computable copies
of the rationals with a fixed-point free automorphism, and also ω with
a non-decreasing function.
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1. Introduction

We say that computable structures A1 and A2 have the same computable
isomorphism type if there is a computable isomorphism between them. Ex-
istence of an isomorphism between computable structures does not always
imply that there is a computable isomorphism between them.

Let A be a structure. If B is computable and is isomorphic to A then B is
called a computable presentation (or copy) of A. The number of computable
isomorphism types ofA, denoted by dim(A), is called the computable dimen-
sion of A. It is obvious that dim(A) = 1 if and only if any two computable
presentations of A are computably isomorphic. In case dim(A) = 1, then
we say that A is computably categorical.

One of the central topics in computable model theory is concerned with
the study of computable dimensions of structures and characterizations of
computable categoricity. Here we provide several examples. Goncharov
proved that for any n ∈ ω ∪ {ω} there exists a structure of computable
dimension n [4]. In [2] Cholak, Goncharov, Khoussainov and Shore gave an
example of a computably categorical structure A such that for each a ∈ A
the structure (A, a) has computable dimension n, where n ∈ ω. Goncharov
and Remmel proved that a Boolean algebra A is computably categorical if
and only if it has finitely many atoms [7, 3]; similarly a linearly ordered set
is computably categorical if and only if the set of successive pairs in the
order is finite [6, 3]. Calvert, Cenzer, Harizanov and Morozov [1] show that
an equivalence structure is computably categorical if and only if there is a
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bound b on the sizes of finite equivalence classes, and there is at most one
t ∈ {1, ..., b} ∪ {ω} with infinitely many classes of size t. In [5] Khoussainov
provided examples of structures of type (A, h) where h is a function from
A to A, of computable dimension n with n ∈ ω. In [8] Ventsov studied
computable dimensions of (L;≤, P ) where (L;≤) is a l.o. set and P is a unary
predicate. This paper is a continuation of the above work with an emphasis
to study computable dimensions of linearly ordered sets with distinguished
endomorphisms.

In this paper we are interested in structures of the type A = (A,<A

, hA) where (A,<A) is a linearly ordered set and hA is a function. We call
the structures A = (A,<A, hA) described linearly ordered (l.o.) sets with
distinguished function symbol. All structures we consider are countable.

A structure A is computable if its open diagram is a computable set. It
is clear that a linearly ordered set A = (A,<A, hA) with function hA is
computable if and only if A, <A, and hA are all computable. For infinite
computable structures we may always assume that they have domain ω.

In this paper we concentrate on two types of linearly ordered sets with
distinguished function symbol. The first will be the structures of the form
Q = (ω, <Q, hQ), where (ω, <Q) ∼= η is the order of rationals and hQ is a
fixed point free automorphism; these structures will be dealt with in the next
section. The second will be structures (ω;≤, h), where (ω,≤) is the standard
copy of ω and h : ω → ω is non-decreasing. We note that the successivity
relation in the standard copy is decidable. The last section will study these
structures. Both sections will investigate computable categoricity.

2. Rationals with distinguished automorphism

Let Q = (ω, <Q, hQ) be a computable structure where (ω, <Q) has order
type η and hQ is an automorphism with no fixed points. That is, hQ : ω → ω
is bijective, and for all x, y ∈ ω, x <Q y ⇐⇒ hQ(x) <Q hQ(y), and x 6=
hQ(x). From now on in this section, whenever we write Q = (ω, <Q, hQ),
we mean such a structure.

For an element q ∈ ω, consider the sequence q, hQ(q), (hQ)−1(q), hQ(hQ(q)),
(hQ)−1((hQ)−1(q)), .... We call the sequence the orbit of q in Q. Note that
since hQ is computable and an automorphism, (hQ)−1 is also computable,
so the orbit of q is computably enumerable. We say that an element x ∈ ω
is covered by the orbit of q if there exist n, m ∈ Z such that (hQ)n(q) ≤Q
x ≤Q (hQ)m(q). Let CQ be the relation {(x, y) | y is covered by x}. The
following lemma is easy to check.

Lemma 2.1. The relation CQ is a c.e. equivalence relation. Moreover for all
x1, y1, x2, y2 ∈ ω if x1 ≤Q x2 and (x1, y1), (x2, y2) ∈ CQ and (x1, x2) 6∈ CQ
then y1 <Q y2.

Proof. Dovetailing the enumerations of the orbits of each q ∈ ω, along with
comparing each x ∈ ω with each member of each orbit under <Q, we see
that CQ is certainly computably enumerable.
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It is reflexive since for any x ∈ ω, (hQ)0(x) = x = (hQ)0(x). It is sym-
metric, since if (hQ)n(x) ≤Q y ≤Q (hQ)m(x) then (hQ)−m(y) ≤Q x ≤Q
(hQ)−n(y). It is transitive, since if (hQ)n(x) ≤Q y ≤Q (hQ)m(x) and
(hQ)l(y) ≤Q z ≤Q (hQ)k(y), then (hQ)n+l(x) ≤Q z ≤Q (hQ)k+m(x).

Suppose x1, y1, x2, y2 ∈ ω, x1 ≤Q x2, (x1, y1), (x2, y2) ∈ CQ, and y2 ≤Q
y1. Then since (x1, y1), (x2, y2) ∈ CQ, there exist n1,m1, n2,m2 ∈ Z such
that (hQ)n1(x1) ≤Q y1 ≤Q (hQ)m1(x1) and (hQ)n2(x2) ≤Q y2 ≤Q (hQ)m2(x2).
So since y2 ≤Q y1, we have (hQ)n2(x2) ≤Q (hQ)m1(x1). Thus since hQ is an
automorphism and x1 ≤Q x2, we have (hQ)n2−m1(x2) ≤Q x1 ≤Q (hQ)0(x2),
so (x1, x2) ∈ CQ. �

Also note that for all x ∈ ω we have (x, hQ(x)) ∈ CQ. Consider the factor
set ω/CQ. By the lemma above the relation <Q induces a strict linear order
on ω/CQ. We denote it by <CQ .

The following is also an easy lemma.

Lemma 2.2. The relation ≤CQ=<Q ∪CQ is a c.e. pre-linear order on ω.
That is, ≤CQ satisfies the following:

(1) ≤CQ is computably enumerable;
(2) ≤CQ is reflexive;
(3) ≤CQ is transitive;
(4) for all x, y ∈ ω at least one of x ≤CQ y or y ≤CQ x holds.

Lemma 2.3. If the equivalence relation CQ of the computable structure
Q = (ω, <Q, hQ) has a finite index then Q is computably categorical.

Proof. Note that the hypothesis of the lemma is equivalent to saying that the
linearly ordered set (ω/CQ, <CQ) is finite, say of size k. Let A = (ω, <A, hA)
be isomorphic to Q. Let q1 <Q ... <Q qk be representatives of the k distinct
CQ-equivalence classes inQ. Let a1 <A ... <A ak be their images under some
isomorphism A ∼= Q. We use this finite information to build a computable
isomorphism f : Q → A using a standard back-and-forth argument. Recall
that both structures have domain ω, so as we build f by stages we may
speak of the least number not yet in the domain/range of f . At each stage
s we will ensure that fs is a partial isomorphism on its domain. That is,
if x, z ∈ dom(fs) and n, m ∈ Z, we will have (hQ)n(x) ≤Q (hQ)m(z) ⇐⇒
(hA)n(fs(x)) ≤A (hA)m(fs(z)). Similarly for x, z ∈ rng(fs) we will have
(hA)n(x) ≤A (hA)m(z) ⇐⇒ (hQ)n(f−1

s (x)) ≤Q (hQ)m(f−1
s (z)).

Stage 0: Let f0(qi) = ai for i = 1, ..., k.
Stage s + 1 = 2l + 1: Let x be least such that x 6∈ dom(fs). Enumerate

the orbits of q1, ..., qk until we find i such that x is covered by qi. Since h has
no fixed points, either hQ(qi) <Q qi or qi <Q hQ(qi). Assume w.l.o.g. that
qi <Q hQ(qi), so that hQ is strictly increasing on [qi]. Let {x1, x2, ..., xd} =
dom(fs)∩ [qi]. For each xj we can compute nj ∈ Z such that (hQ)nj (xj) ≤Q
x <Q (hQ)nj+1(xj).

If x = (hQ)nj (xj) for some j, then define fs+1(x) = (hA)nj (fs(xj)). Note
that if xj , xk ∈ dom(fs) and (hQ)nj (xj) = (hQ)nk(xk), then by induction
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hypothesis (hA)nj (fs(xj)) = (hA)nk(fs(xk)), so that fs+1(x) is well defined.
Also note that (hA)nj (fs(xj)) 6∈ rng(fs) since if there were p ∈ dom(fs) such
that fs(p) = (hA)nj (fs(xj)) then by induction hypothesis p = (hQ)nj (xj),
a contradiction since (hQ)nj (xj) = x 6∈ dom(fs). Thus fs+1 defined in this
way is injective.

Otherwise, we have (hQ)nj (xj) <Q x <Q (hQ)nj+1(xj) for all 1 ≤ j ≤ d.
Let (hQ)nk(xk) be Q-maximal such that (hQ)nk(xk) <Q x. Let (hQ)nl(xl)
be Q-minimal such that x <Q (hQ)nl(xl). Then since (hQ)nk(xk) <Q

(hQ)nl(xl), by induction hypothesis we have (hA)nk(fs(xk)) <A (hA)nl(fs(xl)).
Choose the least y such that (hA)nk(fs(xk)) <A y <A (hA)nl(fs(xl)), and
define fs+1(x) = y. This clearly makes fs+1 well defined and injective on its
domain. It remains to check that fs+1 still satisfies the induction hypoth-
esis. First note that for any xj and any n ∈ Z, if (hQ)n(xj) <Q x then by
definition of nj and k, (hQ)n(xj) ≤Q (hQ)nj (xj) ≤Q (hQ)nk(xk) <Q x. By
induction hypothesis, (hA)n(fs(xj)) ≤A (hA)nk(fs(xk)), and by definition
of fs+1(x), (hA)nk(fs(xk)) <A fs+1(x). Thus for any xj ∈ domfs ∩ [qi] and
any n, m ∈ Z we have:

(hQ)n(xj) ≤Q(hQ)m(x)

⇒ (hQ)n−m(xj) ≤Q x

⇒ (hA)n−m(fs+1(xj)) ≤A fs+1(x) (by the above argument)

⇒ (hA)n(fs+1(xj) ≤A (hA)m(fs+1(x))

A similar argument shows that

(hQ)n(x) ≤Q (hQ)m(xj) ⇒ (hA)n(fs+1(x)) ≤A (hA)m(fs+1(xj)).

Again similarly we have:

(hA)n(fs+1(xj)) ≤A (hA)m(fs+1(x))

⇒ (hA)n−m(fs+1(xj)) ≤A fs+1(x)

⇒ (hQ)n−m(xj) ≤Q fs+1(x)

⇒ (hQ)n(xj) ≤Q (hQ)m(x),

where the second implication follows since x < (hQ)n−m(xj) implies
fs+1(x) ≤A (hA)n−m(fs+1(xj)).
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Now for x̂ ∈ domfs such that x̂ 6∈ [qi], then x̂ ∈ [qî] for some î 6= i. But
then as we have seen, we have defined fs(x̂) ∈ [aî]. Thus

(hQ)n(x̂) ≤Q (hQ)m(xj)

⇐⇒ qî <Q qi

⇐⇒ aî ≤
A ai

⇐⇒ (hA)n(fs(x̂)) ≤A (hA)m(fs+1(xj))

Similarly,(hQ)n(xj) ≤Q (hQ)m(x̂) ⇐⇒ (hA)n(fs+1(xj)) ≤A (hA)m(fs(x̂)).
Thus we have maintained that for any x, z ∈ domfs+1, and any m,n ∈ Z,

(hQ)n(x) ≤ (hQ)m(z) ⇐⇒ (hA)n(fs+1(x)) ≤A (hA)m(fs+1(z)).
Stage s+1 = 2l+2: As above with dom(fs) replaced by rng(fs), q1, ..., qk

replaced by a1, ..., ak, and fs replaced by f−1
s .

Let f = ∪sfs. Then f is total and onto since f(x) and f−1(x) are defined
by stage 2x + 2. The fact that f is an isomorphism follows from the fact
that at each stage it was a partial isomorphism. �

Now our goal is to show the converse of the lemma above.

Definition 2.4. A computably enumerable pre-linear order is a structure of
the form (ω, R), where R satisfies the following properties:

(1) R is computably enumerable;
(2) R is reflexive;
(3) R is transitive;
(4) for all x, y ∈ ω either (x, y) ∈ R or (y, x) ∈ R.

By Lemma 2.2, if Q = (ω, <Q, hQ) is a computable structure of the
type we have been discussing, then the structure (ω,≤CQ) is a computably
enumerable pre-linear order.

For a c.e. pre-linear order (ω, R), define ≡R to be {(x, y) | (x, y) ∈
R and (y, x) ∈ R}. Clearly, ≡R is a c.e. equivalence relation. Moreover,
R induces a linear order (ω/≡R, <R), where <R is induced by R on the
equivalence classes of the relation ≡R.

We say that two pre-linearly ordered c.e. structures (ω, R) and (ω, S) are
computably isomorphic if there exists a computable function f : ω → ω that
induces an isomorphism between the linearly ordered sets (ω/≡R, <R) and
(ω/≡S , <S). Note that f need not be a bijective function on ω. We also
note that each pre-linearly ordered set (ω, R) is computably isomorphic to
(ω, R′) such that each equivalence class ≡R′ of R′ is an infinite set.

A c.e. presentation of a linearly ordered set L = (L,<L) is a pre-linearly
ordered c.e. structure (ω, R) such that L is isomorphic to (ω/≡R, <R).

Theorem 2.5. A linearly ordered set L is finite if and only if all c.e. pre-
sentations of L are computably isomorphic.

Proof. Suppose L = (L,<L) is finite, of size k, and that (ω, R) and (ω, S) are
c.e. presentations of L. Let r1, ..., rk, s1, ..., sk ∈ ω be such that [r1] <R ... <R
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[rk] and [s1] <S ... <S [sk]. We define a computable function f : ω → ω
as follows. For each x ∈ ω there exists some 1 ≤ i ≤ k such that x ∈ [ri].
Since R is c.e. and (ω/≡R, <R) is finite, we can compute i. Set f(x) = si.
Certainly f induces an isomorphism (ω/≡R, <R) ∼= (ω/≡S , <S).

Now suppose L is infinite and assume by the remark above that each
equivalence class of R is also infinite. We will use a priority argument to
show that there exist two c.e. presentations of L that are not computably
isomorphic. Let (ω, R) be a c.e. presentation of L. We will build another
c.e. presentation of L, (ω, S), that is not computably isomorphic to (ω, R).
The strategy to avoid a particular possible computable isomorphism will
be to choose elements that appear to be in different R-equivalence classes,
and place them into different S-equivalence classes. If the isomorphism says
they are different, we will make S collapse them together. The R order
might then also collapse them. But after finitely many tries, the R order
can no longer follow the collapse, since the order must have infinitely many
equivalence classes. With priority, the lower priority requirements should
try to act elsewhere, to ensure that the order we build is a c.e. presentation
of L.

We now give the formal construction of (ω, S). We assume that (ω, R) is
revealed to us stage by stage in a way such that at each stage s, (s,Rs) is a
finite pre-linear order, Rs+1 ⊃ Rs, and R = ∪s∈ωRs. We will enumerate S
stage by stage, to ensure it is computably enumerable. We also build a map
f : ω → ω that induces an isomorphism (ω/≡S , <S) → (ω/≡R, <R) using
stage by stage approximations. At each stage s, we will have domfs an initial
segment of ω, and have domfs+1 ⊃ domfs. We will have Ss ⊆ (domfs)2

be reflexive, transitive, and for all x, y ∈ domfs have either (x, y) ∈ Ss

or (y, x) ∈ Ss, so that S will be a c.e. pre-linear order. At each stage s,
we will define fs such that fs induces an isomorphism (domfs/≡Ss , <Ss) ∼=
(domfs/≡Rs , <Rs). We will ensure that for each y ∈ ω, lims fs(y) exists, so
that f will induce an isomorphism (ω/≡S , <S) ∼= (ω/≡R, <R). We will also
meet for each e ∈ ω the requirement:

Qe : ϕe does not induce an isomorphism (ω/≡R, <R) ∼= (ω/≡S , <S)

To meet requirement Qe, we will at each stage s ≥ e have defined xe
0,s ≤Ss

xe
1,s. The goal will be that for each e ∈ ω and i ∈ {0, 1}, xe

i = lims xe
i,s exist,

and if ϕe(xi
e) ↓ for i = 0, 1 then if ϕe(xe

0) ≡R ϕe(xe
1) then xe

0 <S xe
1, and if

ϕe(xe
0) <R ϕe(xe

1) then xe
0 ≡S xe

1, so that ϕe does not induce an isomorphism
(ω/≡S ,≤S) ∼= (ω/≡R,≤R).

Since we are building S to be a pre-linear order, we will often say “insert
z into S between x and y” as shorthand for “for all w such that w ≤Ss

x, enumerate (w, z) ∈ Ss+1, and for all w such that w ≥Ss y, enumerate
(z, w) ∈ Ss+1.” We will also use “x ∈ Rs” as shorthand for (x, x) ∈ Rs.
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Stage 0: Let x0
0 = 0 and x0

1 = 1. Speed up the enumeration of R so that
in R0 there exist u <R0 v. Enumerate (0, 1) ∈ S0, and define f0(0) = u and
f0(1) = v.

Stage s + 1:
Begin with f̃ = fs. As we go through stage s + 1 we will make (finitely

many) changes to f̃ . We will let fs+1 be the final version of f̃ at the end of
the stage.

Step 1: Begin by letting s̃ = s. Choose the least e ∈ ω such that (1) or
(2) hold.

(1) (∃l < e)(∃i, j ∈ {0, 1})[f̃(xe
i,s) ≡Rs̃ f̃(xl

j,s)]

(2) f̃(xe
0,s) ≡Rs̃ f̃(xe

1,s) ∧ ¬(ϕe,s̃(xe
0,s) ↓<Rs̃ ϕe,s̃(xe

i,s) ↓)

For n < e, set xn
i,s+1 = xn

i,s. For each e ≤ n ≤ s, in turn, do as follows.
Speeding up the enumeration of R to a stage s′ ≥ s̃ if necessary, find the
least 〈u, v〉 ∈ ω such that u <Rs′ v and there is no xl

j,s+1 with l < e and
u ≤Rs′ f̃(xl

j,s+1) ≤Rs′ v. If u ∈ rngf̃ , set xn
0,s+1 = f̃−1(u), otherwise

choose the least w 6∈ domf̃ , set xn
0,s+1 = w, enumerate (a,w) ∈ Ss+1 for

all a ∈ domf̃ such that f̃(a) ≤Rs′ v, enumerate (w, b) ∈ Ss+1 for all b ∈
domf̃ such that v ≤Rs′ f̃(v), and define f̃(w) = u. Similarly, if v ∈ rngf̃ ,
set xn

1,s+1 = f̃−1(v), otherwise choose the least w 6∈ f̃ , set xn
1,s+1 = w,

enumerate (a,w) ∈ Ss+1 for all a ∈ domf̃ such that f̃(a) ≤Rs′ u, enumerate
(w, b) ∈ Ss+1 for all b ∈ domf̃ such that u ≤Rs′ f̃(b), and define f̃(w) = v.
(Here we are using the assumption that each equivalence class is infinite.)
If in speeding up the enumeration of R we caused f̃(xl

i,s+1) ≡Rs′ f̃(xl′
i′,s+1)

for some l, l′ < n, then go back to the beginning of step 1 and repeat with
s̃ = s′. This process must halt since L is infinite. In step 2, when we refer
to Rs+1, we really mean the final Rs′ at the end of step 1.

Step 2: For each u ∈ Rs+1 − rngf̃ , in turn, compute y0, y1 ∈ rngf̃ such
that y0 <Rs+1 u <Rs+1 y1 and there is no z ∈ rngf̃ with y0 <Rs+1 z <Rs+1 y1.
Choose the least w 6∈ domf̃ , insert w into S between f̃−1(y0) and f̃−1(y1),
and define f̃(w) = u.

Step 3: Let e be least such that ϕe(xe
0,s+1) ↓<Rs+1 ϕe(xe

1,s+1) ↓. Enu-
merate (y, xe

0,s+1) ∈ Ss+1 and re-define f̃(y) = f̃(xe
0,s+1) for all xe

0,s+1 ≤Ss+1

y ≤Ss+1 xe
1,s+1. For each u ∈ Rs+1 − rngf̃ , in turn, compute y0, y1 ∈ rngf̃

such that y0 <Rs+1 u <Rs+1 y1 and there is no z ∈ rngf̃ with y0 <Rs+1

u <Rs+1 y1. Choose the least w 6∈ domf̃ , insert w into S between f̃−1(y0)
and f̃−1(y1), and define f̃(w) = u.

Let fs+1 = f̃ .
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Lemma 2.6. For each e ∈ ω, i ∈ {0, 1}, xe
i = lims xe

i,s exists, and f(xe
i ) =

lims fs(xe
i ) exists.

Proof. By induction. Suppose the lemma holds for all l < e. Let s0 be
the stage by which xl

j,s = xl
j and fs(xl

j) = f(xl
j) for all s ≥ s0 and l < e.

Let 〈u, v〉 be least such that u <R v and there is no xl
j with l < n and

u ≤R f(xl
j) <R v. Such a pair must exist since L is infinite. Let s1 be the

stage by which (u, v) ∈ Rs1 . If xe
i,s were re-defined at any stage s2 > s1,

then they would be set such that fs2(x
e
0,s2

) = u and fs2(x
e
1,s2

) = v. Then by
induction hypothesis we would never re-define xe

i,s. If at some stage s3 > s2

we found that ϕe,s3(x
e
0,s2

) ↓<Rs3
ϕe,s3(x

e
0,s2

) ↓ then we would have defined
fs3(x

e
1) = fs3(x

e
1), and those would be the final values of xe

i . �

Lemma 2.7. For each x ∈ ω, f(x) = lims fs(x) exists.

Proof. The only time fs(x) is re-defined is in step 3 of the construction. If
that happens, we also set x ≡Ss xe

i,s for some e ∈ ω, i ∈ {0, 1}. Then since
fs is induces an isomorphism at every stage of the construction, and since
lims fs(xe

i,s) exists, we must have f(x) = f(xe
i ). �

This completes the proof of Theorem 2.5. �

Lemma 2.8. Let (ω, R) be a c.e. pre-linearly ordered set. There exists a
computable structure Q = (ω, <Q, hQ) such that (ω,≤CQ) is computably
isomorphic to (ω, R).

Proof. Note that if we take a computable copy of the rationals with addition,
then taking h(x) = x + 1 covers all elements. We name this structure Q+1.
Since (ω, R) is a c.e. pre-linearly ordered set, we may assume it is revealed
to us in such a way that at stage s, for any n, m ≤ s, either (n, m) ∈ Rs or
(m, n) ∈ Rs. Recall that since R is a c.e. pre-linearly ordered set, if at stage
s we believe that n <Rs m, then we might find out at a later stage t that
n ≡Rt m. We will construct a computable structure Q = (ω, <Q, hQ) by
stages. At each stage s, we will decide where a bunch of numbers will sit in
the <Q ordering, and by the next stage at the latest, we will define hQ and
(hQ)−1 on them. When we enumerate numbers, we will give them labels. As
we proceed through the construction, the labels of the numbers will change
(though of course their position in the ordering and the values of hQ on
them will not). For each equivalence class in R, we want to build a copy of
Q+1. As we find out that members we thought were not R-equivalent turn
out to be R-equivalent after all, we must link the copies we are building.
We will define a computable function f : ω → ω stage by stage.

If n ≤ s is such that there is no m < n with m ≤Rs n, then we ensure that
n has an “active label group” at stage s. An active label group will be a
set of numbers in ω with labels 〈n, k

2s 〉 with the following properties. There
will exist mn,s ≤ Mn,s ∈ Z such that for all mns ≤ k < Mn,s + 2s, there
are numbers with label 〈n, k

2s 〉 such that 〈n, l
2s 〉 <Q 〈n, k

2s 〉 ⇐⇒ l < k, and
hQ(〈n, k

2s 〉) = 〈n, k
2s + 1〉 for mn ≤ k < Mn.
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Stage 0: Give 0 the label 〈0, 0〉. Set f(0) = 0.
Stage s+1:
Step 1: If there exist n, p ≤ s such that n <Rs p but n ≡Rs+1 p, then we

must join the n and p label groups. We set h(〈n,
Mn,s+k

2s 〉) = 〈p,
mp,s+k

2s 〉. If
n < p then we give all the numbers with p-labels new n-labels by setting
〈p,

mp,s+k
2s 〉 = 〈n,

Mp,s+k
2s + 1〉. If p < n then we give all the numbers with

n-labels new p-labels by setting 〈n,
Mn,s+k

2s 〉 = 〈p,
mp,s+k

2s − 1〉.
Step 2: If s+1 ≡Rs+1 n for some n ≤ s, then assume n is the least such. In

that case there is an active n-label group. Set f(s+1) = 〈n, 0〉. If s+1 6≡Rs+1

n for any n ≤ s, then we introduce a new s+1-label group. We take the next
2s many numbers in ω that have not yet been used, and give them labels
〈s + 1, k

2s 〉 where 0 ≤ k < 2s. We declare 〈s + 1, i〉 <Q 〈s + 1, j〉 ⇐⇒ i < j,
〈n, i〉 <Q 〈s + 1, j〉 if n <Rs+1 s + 1, and 〈s + 1, i〉 <Q 〈n, j〉 if s + 1 <Rs+1 n.
We let f(s + 1) = 〈s + 1, 0〉.

Step 3: We extend each active n-label group. That is, for each active
n-label group, we let mn,s+1 = 2mn,s−1 and Mn,s+1 = 2Mn,s +1. For those
k with mn,s+1 ≤ k < Mn,s+1 + 2s+1 and no number with label 〈n, k

2s+1 〉, we
insert new numbers with labels 〈n, k

2s+1 〉. We declare 〈n, i〉 <Q 〈n, j〉 ⇐⇒
i < j. For the new numbers with labels 〈n, k

2s+1 〉 and mn,s+1 ≤ k < Mn,s+1,
we set h(〈n, i〉) = 〈n, i + 1〉.

In each R-equivalence class, there is a least number. Suppose x is the
least number in an R-equivalence class. Then at stage x of the construction,
we create (either via step 1 or step 2) an active x-label group. Since x is
least in its R-equivalence class, its label group will never be deactivated by
step 1 at any later stage. Through the Step 3s of successive stages, there
will be a copy of Q+1 built with x-labels.

Suppose x ≤R y. Then at step 2 of stage s = max{x, y} of the construc-
tion, we ensure that f(x) ≤Q f(y). If at that stage x ≡Rs y, then we in fact
ensured f(x) ≡CQ f(y). If at that stage x <Rs y, then we had f(x) and f(y)
in distinct label groups. These label groups could only be linked by step 1
at a later stage if we found that x ≡R y. If we never saw x ≡R y, then the
label groups would never be linked, and so they would give rise to distinct
copies of Q+1. Thus f induces a computable isomorphism from (ω, R) to
(ω,≤CQ).

�

Lemma 2.9. Assume Q = (ω, <Q, hQ) is such that (ω/CQ, <CQ) is not a
finite linear order. Then Q is not computably categorical.

Proof. Consider (ω,≤CQ). It is a c.e. pre-linear order. Let (ω, R) be a c.e.
pre-linear order isomorphic but not computably isomorphic to (ω,≤CQ).
Such (ω, R) exists by Theorem 2.5. By Lemma 2.8, there exists A = (ω, <A

, hA) such that (ω, R) and (ω, CA) are computably isomorphic. It is clear
that Q and A are isomorphic. If they were computably isomorphic then
the c.e. pre-linear orders (ω,≤CQ) and (ω,≤CA) would also be computably
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isomorphic. But this would imply that (ω,≤CQ), and (ω, R) are computably
isomorphic, a contradiction. �

Theorem 2.10. Let Q = (ω, <Q, hQ) be a computable structure such that
(ω, <Q) ∼= η and hQ is an automorphism without fixed points. Then Q is
computably categorical if and only if (ω,≤CQ) is a finite linear order.

Proof. By Lemma 2.3 and Lemma 2.9. �

3. Natural numbers with distinguished endomorphisms

Now we consider (ω,≤, h), where h is a non-decreasing function.
We first recall that (ω,≤) is not computably categorical. The main differ-

ence between (ω,≤) and other computable copies that are isomorphic to it
is that in the standard copy the successivity relation is decidable, but this is
not true for arbitrary copies. Recall that to show (ω,≤) is not computably
categorical, we build stage by stage a computable copy where we occasion-
ally insert an extra point to kill an isomorphism. So long as we don’t insert
infinitely many points below a fixed one, we end up building a copy of ω.

Now consider the case of (ω,≤, h), where h is a monotonic function.
Notice that if h is just the identity, then we are in the case of (ω,≤),
and (ω,≤, h) is not computably categorical. On the other hand, if for
all x ∈ ω, h(x) = x + 1, and A ∼= (ω,≤) then mapping f(0) = 0A and
f(x+1) = hA(f(x)) gives a computable isomorphism, so in this case (ω,≤, h)
is computably categorical.

In the second example, every number in ω was linked to 0 via h. We
define the trace of x in (ω,≤, h) to be the set {hn(x) | n ∈ ω}. The next
theorem shows that if the trace of any member of (ω,≤, h) is infinite, then
(ω,≤, h) is computably categorical.

Theorem 3.1. If there exists x ∈ ω such that (∀n ∈ ω)[hn+1(x) > hn(x)],
then (ω,≤, h) is computably categorical.

Proof. Suppose A ∼= (ω,≤, h), and suppose f : (ω,≤, h) → A is an iso-
morphism. We show how to compute f given f(x), where x is such that
(∀n ∈ ω)[hn+1(x) > hn(x)]. To compute f(y) for arbitrary y ∈ ω, first
compute n such that hn(x) > y. We then compute hn(f(x)). Then search
until we find z0 <A z1 <A ... <A zy <A ... <A zhn(x) = hn(f(x)). Since
A ∼= (ω,≤, h), we will know that our approximation to A is correct up to
hn(x), so we know that f(y) = zy. �

Consider (ω,≤, h). If the trace of f on 0 is not infinite, then its trace
defines a “clump” that begins with 0 and ends with hn(0) where hn(0) =
hn+1(0). More precisely, we define the clumps of (ω,≤, h) as follows. Let
C0 = {x | (∃n)[x ≤ hn(0)]}. If max{Ci} < ∞, we let Ci+1 = {x | x >
max{Ci}&(∃n)[x ≤ hn(max{Ci}+ 1)]}.

We now describe computable categoricity of (ω,≤, h) in terms of its
clumps. Theorem 3.1 shows that if (ω,≤, h) has an infinite clump, then
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it is computably categorical. In the next theorem, we see that if the size
of the clumps is bounded by a constant, then (ω,≤, h) is not computably
categorical. (Actually, the next theorem shows more, since bounded trace
does not imply bounded clumps, though the converse is obviously true).
We thank Jim Geelen for pointing out that the combinatorial fact we need
comes from Higman’s Lemma.

Theorem 3.2. If there exists b ∈ ω such that for all x ∈ ω, hb+1(x) = hb(x),
then (ω,≤, h) is not computably categorical.

Proof. Let A = (ω,≤, h) be given with such a bound b on the trace, and let
C0, C1, . . . be as defined above. We first prove the following claim.

Claim 3.3. There exists some N ∈ ω such that (∀i > N)(∃j > i)[Ci ↪→ Cj ].

Proof. To any finite clump C, we can associate a finite tree T , with labels
the members of C, as follows. Since C is a finite clump, it has a unique fixed
point with respect to h. We let this fixed point label the root of the tree T ,
and call this level 0 of T . In general, if x is the label of a node at level n of T ,
then we let the node with label x have children with labels y, y +1,...,y +m,
listed in increasing order from left to right, where h−1(x) = {y, ..., y+m} (we
know that h−1(x) consists of consecutive numbers since h is non-decreasing).
Also since h is non-decreasing, if x < z then all children of x are less than
all children of z. Furthermore, all labels on level n + 1 of T are less than
all labels on level n. It is now easy to see that if we define an embedding
of finite trees T ↪→ T ′ to be a map that sends the root to the root, maps
children of a node to children of the image of the node, and preserves left-
to-right ordering of nodes, then an embedding of finite clumps corresponds
exactly to an embedding of the corresponding finite trees, and conversely.
Our sequence of clumps C0, C1, ... can thus be viewed as a sequence of trees
T0, T1, ..., where the bound b on the trace of the function h translates into a
bound b on the height of each tree in the sequence. The claim now follows
from b applications of Higman’s Lemma. �

Hence we may assume without loss of generality that every clump in A
can be embedded into some future clump. Note that if a clump Ci ↪→ Cj ,
and if we have built a computable copy of Ci, then we can extend this to
a computable copy of Cj by adding new numbers and defining h and < on
them (without changing any decisions already made for numbers in the copy
of Ci).

We will construct B = (ω,≤B, hB) which is isomorphic to A but not
computably isomorphic to it. At stage s, we will have a finite structure Bs,
and a computable partial isomorphism fs mapping an initial segment of A
to Bs. We let CBi,s denote the image of Ci under fs. The construction will
ensure that fs and f−1

s are only redefined finitely often on any fixed value,
so that f = lims fs exists and is an isomorphism. We will also meet the
following requirements for each e:
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Re : ϕe is not an isomorphism from B to A.

We will meet this requirement by inserting clumps into B whenever ϕe

threatens to define the unwanted isomorphism.
At stage s = 0, just let B0 = C0, and f0 : C0 → CB0,0 be the identity. At

stage s + 1, look for the least e such that ϕe is an isomorphism taking Bs to
A as far as a clump CBn,s that is free for Re. If no such e exists, let fs+1 and
Bs+1 extend the partial isomorphism fs to the next clump of A. Otherwise,
begin to define Bs+1 as follows. The initial segment of Bs+1 agrees with
Bs on all clumps CBl,s with l < n. Now insert into Bs+1 another copy of
Cn immediately preceding CBn,s. Then we have a partial isomorphism fs+1

mapping the first n clumps of A to Bs+1 which disagrees with ϕe. We now
ensure that Bs+1 is isomorphic to an initial segment of A. Let m ≥ n be such
that Bs = CB0,s < ... < CBn,s < ... < CBm,s. Let tn−1 = n. For n ≤ l ≤ m, do
as follows. Look for the first clump Ctl after Ctl−1

such that Cl embeds into
Ctl , and insert the segment Ctl−1+1, . . . , Ctl−1 into Bs+1 between CBtl−1,s+1 and
CBl,s. Expand CBl,s to a copy of Ctl . This will extend fs+1 so that the domain
includes C0, C1, . . . , Ctm . Declare all these clumps CB0,s+1,...,CBtm,s+1 to not be
free for any Ri with i > e. The structure B is the limit of the structures Bs. B
is computable since the ordering ≤B and the function hB are defined on new
elements as soon as they come into B and never change. The isomorphism
f : A → B is the limit of the sequence {fs : s < ω}. Each requirement Re

only causes a finite shift in Bs, and only causes finitely many clumps to not
be free for lower priority requirements. Thus each requirement is eventually
satisfied, either because ϕe never defines an isomorphism as far as the first
clump that is free for Re, or because we inserted some clump to defeat a
possible isomorphism at a stage where Re had obtained the highest priority.
Our marking of clumps as “not free” for lower priority requirements once
some requirement has caused them to shift ensures that each clump of B
can be shifted only finitely often once it has been introduced, and hence the
map f is indeed an isomorphism. �

Now we look at the case where there is no infinite trace, but there is also
no bound on the length of traces.

Theorem 3.4. There exists a structure (ω,≤, h) where the traces are all
finite but the structure is computably categorical.

In order to prove the above theorem, we will make use of special clumps
that cannot be embedded into one another. Since these will also be useful
in later theorems, we define them now.

Definition 3.5. For each i ∈ ω let Di = (Di,≤, h) be a structure with
domain Di = {x0, x1, ..., xi+1}, xj < xj+1 for 0 ≤ j ≤ i, h(x0) = x2,
h(xj) = h(xj+1) for 1 ≤ j ≤ i, and h(xi+1) = xi+1.

Note that for i 6= j, Di 6↪→ Dj .
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Proof of Theorem 3.4. Define h : ω → ω such that (ω,≤, h) is isomorphic
to the order D0 < D1 < .... Now suppose A ∼= (ω,≤, h). To define the
computable isomorphism, just enumerate the approximation to A. Since the
Di cannot embed into one another, we know that once something isomorphic
to Di shows up in A, it must be mapped to Di in (ω,≤, h). A clump in A
can be identified as a sequence a0 < a1 < · · · < ai such that hA(a0) = a2,
hA(aj) = aj+1 for j < i and hA(ai) = ai. Given a ∈ A, simply wait for a
clump of size i containing a and then map a into Di. �

Theorem 3.6. Let X = {i | (∀j > i)Ci 6↪→ Cj}. If X is not h-immune then
the order is computably categorical.

Proof. Suppose X is not hyperimmune. Then there exists a computable
function g that majorizes the principal function of X. That is, among
C0, ..., Cg(n) there are at least n-many clumps that cannot be embedded into
any later clumps. Thus given an approximation of A ∼= (ω,≤, h), we may
define a computable isomorphism as follows. To define the isomorphism on
the initial segment C0 < ... < Cn of (ω,≤, h), run the approximation of A
until we see an initial segment isomorphic to C0 < ... < Cg(n). Then since
this initial segment contains n-many clumps that cannot embed into future
clumps, it must be correct on at least the first n clumps. So we can define
the isomorphism accordingly. �

However, the converse is not true.

Theorem 3.7. There exists a structure (ω,≤, h) with X hyperimmune and
(ω,≤, h) computably categorical.

Proof. We will build (ω,≤, h) using the special clumps Di from Definition
3.5. The idea will be that as we see possible computable copies that appear
to be isomorphic to the (ω,≤, h) that we are building, we use the fact that
the special clumps cannot embed into one another to force a unique (com-
putable) isomorphism. To meet the hyperimmunity requirement, we ensure
that non-repeated special clumps occur sparsely.

We build the structure by stage by stage revealing a longer initial segment
of it, always adding entire clumps, and only to the end. That is, if at stage
s we have As = C0 < ... < Cn then at stage s + 1 we will extend this by
adding clumps after Cn to obtain As+1 = C0 < ... < Cn < Cn+1 < ... < Cn+m.
Let requirement Re work for building a computable isomorphism between
A and the structure being built by Ψe, if it is isomorphic to A. Each Re

requirement will hold two special clumps. The two special clumps may not
be repeated. When Ψe looks the same as A up to the second special clump,
we make this the first special clump, choose a new second special clump,
and allow the original first special clump to be repeated. We extend the
definition of the isomorphism up to the new first special clump. This will
have to be correct, since in order to change the initial segment that Ψe has
revealed and still be isomorphic to A, there must be a place to absorb the
first special clump. We will not provide such a place if Ψe has changed.
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To make X h-immune: When ϕe(e) ↓, ensure that there are at most e
special clumps less than ϕe(e). We do this by extending the initial segment
of A by repeating all but e of the clumps that are less than ϕe(e). This will
injure requirements Ri for i < e

2 , and we will have to completely restart our
definition of the isomorphism for those Ri. However, each Ri will be injured
at most 2i-times, after which, if Ψi

∼= A, then it’s computable isomorphism
will be total.

Stage 0: Let A0 = D0 < D1. Set c0(0, 0) = 0 and c0(0, 1) = 1.
Odd stage s: Suppose As = C0 < .... < Cn. If ϕe,s+1(e) ↓, then for each

i < ϕe(e) such that i 6= cs(j, k) for any j < e
2 , add a copy of Ci to As+1.

For each such i, declare fi injured. Also, plunk down new, unused special
clumps, and define cs+1(j, k) for e

2 ≤ j ≤ s + 1. Set cs+1(j, k) = cs(j, k) for
j < e

2 .
Even stage s: Suppose an initial segment of Ψe appears to be isomorphic

to our initial segment of As up to cs(e, 1). Then extend the definition of fe

to map the initial segment of As up to cs(e, 1) to the corresponding initial
segment of Ψe. Let cs+1(e, 0) = cs(e, 1). Suppose As = C0 < ... < Cn. Let
j be least such that Dj 6= Ci for i ≤ n. Let As+1 = As < Dj , and let
cs+1(e, 1) = n + 1.

Lemma 3.8. X is hyperimmune.

Proof. We must show that for every computable function g, there exist infin-
itely many n ∈ ω such that g(n) ≥ pX(n). If g is computable, then there ex-
ist infinitely many n such that ϕn = g. By construction, ϕn(n) ≥ pX(n). �

Lemma 3.9. If Ψe
∼= A then fe is a total computable function and fe :

A ∼= Ψe.

Proof. Suppose that for all n ≤ 2e, ϕn(n) ↓⇒ ϕn,s(n) ↓. Then ct(e, i) will
only be redefined at odd stages after stage s. Let t0 > s. Since Ψe

∼= A,
there must have been a stage t1 ≥ t0 where Ψe appeared isomorphic to A
up to Cct0 (e,1). At that moment we would have defined fe up to Cct0 (e,1), and
set ct1(e, 0) = ct0(e, 1). Since Ψe

∼= A, there must have been a stage t2 ≥ t1
where Ψe appeared isomorphic to A up to Cct1 (e,1). This isomorphism must
have extended the isomorphism that was observed at stage t0, because there
would be nowhere to absorb Cct1 (e,0). �

This completes the proof of Theorem 3.7.
�
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