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A minimal extension of a Π0
1 class P is a Π0

1 class Q such that P ⊂ Q, Q − P is infinite, and for any Π0
1 class

R, if P ⊂ R ⊂ Q, then either R −P is finite or Q−R is finite; Q is a nontrivial minimal extension of P if in
addition P and Q have the same Cantor-Bendixson derivative. We show that for any class P which has a single
limit point A, and that point of degree ≤ 0′, P admits a nontrivial minimal extension. We also show that as
long as P is infinite, then P does not admit any decidable nontrivial minimal extension Q.
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1 Introduction

The structure of the lattice EΠ of Π0
1 classes under inclusion has been studied in several recent papers. Here a

Π0
1 class is simply an effectively closed set of real numbers and, specifically, a Π0

1 class of sets is a subset of the
Cantor set {0, 1}N. A Π0

1 class may also be viewed as the set [T ] of infinite paths through a computable tree T .
An important theme has been to compare and contrast this lattice with the well-known lattice E of computably
enumerable sets. Key issues include the definability and complexity of various properties, automorphisms of the
lattice and orbits under automorphisms, and the analysis of certain substructures of the lattice.

Here is an example. Given two Π0
1 classes P ⊂ Q, the interval [P, Q] = {R : P ⊆ R ⊆ Q}, and in particular,

[∅, Q] is an initial segment of EΠ. A Π0
1 class P is said to be thin if [∅, Q] is a Boolean algebra. P is perfect if

every element of P is a limit point. Cholak, Coles, Downey and Herrmann [8] have shown that the family of all
perfect thin classes is in certain ways analogous to the hyper-hypersimple c. e. sets. That is, any two perfect thin
classes are automorphic in EΠ, the family of perfect thin classes is definable in EΠ and the degrees of perfect thin
classes are exactly the c. e. array noncomputable degrees. (Here the degree of P = [T ] is the degree of the set of
nodes of T which have an extension in P .)

An infinite Π0
1 class P is minimal if every Π0

1 subclass of P is either finite or cofinite in P . For any lattice L,
let L∗ be the quotient lattice of L modulo finite difference. Then P is minimal if and only if [0, P ]∗ is the
trivial Boolean algebra. Cenzer, Downey, Jockusch and Shore [2] first constructed a minimal thin class. Cenzer
and Nies [4] characterized the order types of the finite intervals of E∗

Π as finite distributive lattices with the dual
reduction property. In particular, this means that there are intervals (in fact, initial segments) of order type n
for any finite ordinal n. This contrasts with the classic result that finite intervals of E∗ are all Boolean algebras.
However, it is shown in [4] that for any decidable Π0

1 class P , if [0, P ]∗ is finite, then it must be a Boolean
algebra.

Recently, Lawton [10] introduced the notion of minor superclasses of Π0
1 classes, as an analogue of major

subsets of c. e. sets and gave a characterization of the Π0
1 classes which have strong minor superclasses.

The present paper continues the research into lattice of Π0
1 classes. We define some notions of a minimal

extension of a Π0
1 class analogous to the notion of a c. e. subset maximal in another c. e. set. We show the

existence of minimal extensions under certain conditions and also prove a splitting theorem for Π0
1 classes which

shows that decidable minimal extensions are in general not possible. The various notions of minimal extension
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are compared to Lawton’s notion of a minor superclass. An embedding of the lattice E of c. e. sets into the lattice
EΠ is presented and gives rise to natural examples of extensions of Π0

1 classes.
Some definitions are needed.
Let {0, 1}<ω be the set of binary strings, that is, functions from a finite initial segment of ω into {0, 1}. We

write σ � τ for σ ⊆ τ . For x ∈ {0, 1}N and n ∈ ω, let x�n = (x(0), x(1), . . . , x(n−1)). Let σ ≺ x if σ = x�n
for some n. We write |σ| for the length n of the string σ = (σ(0), σ(1), . . . , σ(|σ| − 1)).

A subset T of {0, 1}N is a tree if whenever τ ∈ T and σ � τ , then σ ∈ T . For any tree T , [T ] denotes the set
of infinite paths through T , that is, [T ] = {x ∈ {0, 1}N : (∀n) [x�n ∈ T ]}. The set of extendible nodes of T is
defined by Ext(T ) = {σ : (∃x ∈ [T ]) [σ ≺ x]}.

The usual product topology on the space {0, 1}N has a sub-basis of intervals I(σ) = {x : σ ≺ x}. With this
topology, the closed subsets of {0, 1}N are exactly those of the form [T ] for some tree T . The clopen subsets of
{0, 1}N are just the finite unions of intervals.

P ⊂ {0, 1}N is a Π0
1 class if P = [T ] for some computable tree T . It is easily seen that an equivalent

definition is obtained by requiring T to be primitive recursive, or only co-c. e., instead of computable. This leads
to an effective enumeration of the Π0

1 classes as {Pe}e∈ω, where Pe = [Te] and Te is the e’th primitive recursive
tree. See Cenzer and Remmel [6, 7] for details.

A Π0
1 class is called decidable if it has the form [T ] for some tree T such that Ext(T ) is computable.

An element x of a Π0
1 class P is said to be isolated if there is some σ such that P ∩ I(σ) = {x}. The

Cantor-Bendixson derivative D(P ) is the set of nonisolated points of P .
For Π0

1 classes P ⊆ Q, [P, Q] denotes the lattice of Π0
1 classes R such that P ⊆ R ⊆ Q, and [P, Q]∗

denotes the quotient lattice of [P, Q] modulo finite difference. We also write A =∗ B to mean that the symmetric
difference of two sets A and B is finite.

It was observed by Herrmann that the EΠ has the dual reduction property, that is, for any two Π0
1 classes P

and Q, there exist Π0
1 classes P1 ⊇ P and Q1 ⊇ Q such that P1 ∪ Q1 = {0, 1}N and P1 ∩ Q1 = P ∩ Q.

It follows that the lattices [P, Q] and [P, Q]∗ also have the dual reduction property for any P, Q. The following
result from [4] will be needed later.

Theorem 1.1 For any finite lattice L with the dual reduction property, there is a Π0
1 class P such that L is

isomorphic to [0, P ]∗.

For more on Π0
1 classes and the dual concept of c. e. ideals of computable Boolean algebras, see the survey

papers by Cenzer [1] and Cenzer and Remmel [6].
Here is an outline of the paper.
In Section 2, we define notions of minimal and r-minimal extensions and minor superclass as natural analogues

of classical notions from the lattice of c. e. sets. Some simple implications are shown between these notions. In
Section 3, a natural embedding of lattice E of c. e. sets into the lattice EΠ of Π0

1 classes is defined. This produces
examples of extensions of Π0

1 classes and refines the connections between our notions. In Section 4, we show
that if the Π0

1 class P has a single limit point A, and A ≤T 0′, then P admits a non-trivial minimal extension. In
Section 5, we prove a Π0

1 class version of the Splitting Theorem of Owings and use it to show that no infinite Π0
1

class P can have a decidable non-trivial minimal extension Q.

2 Minimal extensions

In this section, we define various notions of minimal extension and relate them to each other and to Lawton’s
notion of a minor superclass. These concepts are all analogues of notions from the lattice of c. e. sets, or rather
dual analogues.

Recall that a c. e. set A is said to be maximal if there is no c. e. set B such that A ⊂ B and both B − A and
ω −B are infinite. The analogue for Π0

1 classes is a minimal Π0
1 class, where P is minimal if there is no Π0

1 class
Q ⊂ P such that both Q and P − Q are infinite. A minimal class can be pictured as consisting of a single limit
point together with a sequence of isolated points which converge to the limit. The role of minimal Π0

1 classes in
the lattice EΠ of Π0

1 classes has been studied in several recent papers [3, 4, 5].
For two c.e. sets A ⊂ C, C is said to be a maximal extension of A if there is no intermediate c. e. set B such

that A ⊂ B ⊂ C and both C − B and B − A are infinite. There are several variations of the dual notion of
minimal extension for Π0

1 classes. Examples will be given below.
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Definition 2.1 Q is said to be a minimal extension of P if P ⊂ Q, Q − P is infinite, and for any Π0
1 class R,

if P ⊂ R ⊂ Q, then either R − P is finite or Q − R is finite.

Note that Q is a minimal extension of P if and only if [P, Q]∗ = {P, Q}.
Now every Π0

1 class has a trivial minimal extension obtained by adding a copy of a minimal class M to some
interval disjoint from P . We can exclude this possibility by not allowing any new limit points in Q.

Definition 2.2 A minimal extension Q of P is non-trivial if D(Q) = D(P ); otherwise Q is a trivial minimal
extension.

It is easy to see that for any minimal extension Q of P , D(Q)−D(P ) can contain at most one point. That is,
if A and B are both in D(Q)−D(P ), then there are disjoint clopen sets U and V such that A ∈ U , B ⊂ V and
P ∩ (U ∪ V ) ⊂ {A}. It follows that Q − U and Q − V are distinct sets in [P, Q]∗.

A non-trivial minimal extension might still arise from P by adding a minimal class M with the limit point
already in P .

Definition 2.3 Q is a good minimal extension of P if Q is a minimal extension of P and there is no minimal
Π0

1 class M such that Q = P ∪ M .

There are good minimal extensions which are non-trivial. That is, the linear ordering with 3 elements is a
lattice with the dual reduction property and hence there exists a Π0

1 class P such that [0, P ]∗ has 3 elements, ∅,
P and some minimal class P1 ⊂ P . Then P is a minimal extension of P1 and there can be no Π0

1 class M such
that P = P1 ∪ M , since M would be in [0, P ]∗ but incomparable with P1.

We need to consider the notion of a complement for a Π0
1 class.

Definition 2.4
1. Π0

1 classes P and Q in [0, R] are complements in R if P ∪ Q = R and P ∩ Q = ∅; P is complemented in
R if it has a Π0

1 complement in R.

2. Π0
1 classes P and Q in [0, R] are almost complements in R if P ∪ Q = R and P ∩ Q is finite; P is almost

complemented in R if it has a Π0
1 almost complement.

The notion of an almost complement was introduced by Lawton in [10]. Note that this is equivalent to having
P ∪ Q =∗ R and P ∩ Q finite, since every element of the difference R − (P ∪ Q) is computable and can be
put into Q.

Proposition 2.5 Let Q be a minimal extension of P .

1. Q is a trivial minimal extension of P if and only if P is complemented in Q, that is, if and only if Q − P
is a Π0

1 class.

2. Q is a good minimal extension of P if and only if P is not almost complemented in Q.

P r o o f.
1. If R = Q−P is a Π0

1 class, then R is infinite and hence must contain a limit point which will be in D(Q)−P .
Thus Q is a trivial minimal extension. Suppose now that Q is a trivial extension and let A ∈ D(Q) − P . Since
A /∈ P , there is a clopen set V such that A ∈ V and V ∩ P = ∅. Then Q ∩ V = R is infinite and R ∩ P = ∅,
so that P ∪ R =∗ Q by minimality. Let F be the finite set Q−R. Then F ⊂ Q−P and A /∈ F , so each element
of F is isolated in Q and therefore computable. Thus F is a Π0

1 class and P has complement R ∪ F .
2. Suppose that P is almost complemented in Q by the Π0

1 class M , so that P ∪ M = Q and M ∩ P is finite.
It is clear that M must be minimal, so that Q is not a good minimal extension. Next suppose that Q = P ∪ M
with M minimal. Then M −P is infinite since Q is a proper extension of P and therefore M ∩ P must be finite.
Hence M is an almost complement of P in Q.

This has an immediate corollary.

Corollary 2.6 Any good minimal extension is non-trivial. �
There is a stronger possible notion of minimal extension.

Definition 2.7 Q is a proper minimal extension of P if, for any R ⊂ Q, either Q − R is finite or R − P is
finite; equivalently, [0, Q]∗ = [0, P ]∗ ∪ {Q}.

Equivalently, Q is a proper minimal extension of P if [0, Q]∗ = [0, P ]∗ ∪ {Q}. In [4] Π0
1 classes P were

constructed, for each finite n, such that [0, P ]∗ is isomorphic to ({0, 1, . . . , n}, <). Thus there is a chain of Π0
1
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classes P0 = ∅ ⊂ P1 ⊂ · · · ⊂ Pn = P such that [0, P ]∗ = {P0, . . . , Pn} and hence Pk+1 is a proper minimal
extension of Pk for all k < n.

It is clear that any proper minimal extension is good, since if Q = P ∪ M , then M is also a subclass of Q but
not a subclass of P .

Not every good minimal extension is proper. To see this, let L = {0, a, b, c, 1}where 0 is the least element, 1 is
the greatest element, b∧c = a and b∨c = 1 and let P = P1 be a Π0

1 class such that [0, P ]∗ = {0, Pa, Pb, Pc, P1}
is isomorphic to L. Then P1 is a good minimal extension of Pb but is not proper since [0, Pa]∗ = {0, Pa, Pb} and
[0, P1]∗ has two additional subclasses, P1 and also Pc.

An infinite c. e. set A is said to be r-maximal if the complement is not split into two infinite sets by any
computable set. Note that any maximal set is r-maximal but there is an example of an r-maximal set which is
not maximal (see Soare [11, p. 191]). Also, an arbitrary set C is said to be r-cohesive if there is no computable
set R such that both C ∩ R and C − R are infinite.

There are two possible analogues of r-maximality for Π0
1 classes. To say that there is no clopen set V such

that both P ∩ V and P −V are infinite is equivalent to saying that P has a unique limit point. We will say that P
is r-minimal if there do not exist infinite Π0

1 subclasses R1 and R2 such that R1 ∪ R2 = P and R1 ∩ R2 is finite.
Thus for example, {0ω} ∪ {0n1ω : n ∈ N } is not r-cohesive as demonstrated by R1 = {0ω} ∪ {02n1ω : n ∈ N }
and R2 = {0ω} ∪ {02n+11ω : n ∈ N }. It is clear that any minimal Π0

1 class is also r-minimal.

Definition 2.8 Q is an r-minimal extension of P if there are no infinite Π0
1 classes R1 and R2 such that

P ⊂ Ri ⊂ Q for i = 1, 2 and R1 ∪ R2 = Q and (R1 ∩ R2) − P is finite.

Equivalently, Q is an r-minimal extension of P if [P, Q]∗ has no pair of complements (other than P and Q).
It is clear that any minimal extension is also r-minimal. The reverse implication does not hold, since Pn is an
r-minimal extension of P0 for any chain P0 ⊂ P1 ⊂ · · · ⊂ Pn of minimal extensions.

A c. e. set A is hypersimple if the family of c. e. supersets of A is complemented (this is not the original
definition, but is equivalent). A Π0

1 class P is said to be thin if [0, P ] (the lattice of Π0
1 subclasses of P ) is

complemented, that is, whenever Q ⊂ P , there exists a complement R such that Q ∩ R = ∅ and Q ∪ R = P .
Thin classes have been studied in [2, 8]. In particular, we note that a minimal Π0

1 class is thin if and only if the
unique element of D(P ) is not computable. We will also say that P is almost thin if [0, P ]∗ is complemented.
For example, if P is a minimal Π0

1 class with the limit point computable, then P is almost thin but not thin.

Definition 2.9

1. Q is a thin extension of P if [P, Q] is a Boolean algebra, that is, whenever P ⊂ R ⊂ Q, there exists a
complement S such that R ∩ S = P and R ∪ S = Q.

2. Q is an almost thin extension of P if [P, Q]∗ is a Boolean algebra, that is, whenever P ⊂ R ⊂ Q, there
exists a complement S such that R ∩ S =∗ P and R ∪ S = Q.

Proposition 2.10 If Q is an almost thin, r-minimal extension of P , then Q is a minimal extension of P .

P r o o f. Suppose that Q is an almost thin, but not minimal extension of P and let R ⊂ Q with R − P and
Q − R both infinite. Since [P, Q]∗ is complemented, there exists R2 so that R ∪ R2 = Q and R ∩ R2 =∗ P .
Clearly R2 must be infinite, so that Q is not an r-minimal extension of P .

Given c. e. sets A ⊂ B, A is a major subset of B if B − A is infinite and, for every c. e. set W , if B ⊆∗ W ,
then A ⊆∗ W . (The condition B ⊆ W is equivalent here.) If A is infinite, then A is a major subset of B if and
only if, for any computable set R, R ⊂ B implies that R−A is finite. Lachlan proved that every noncomputable
c. e. set has a major c. e. subset. (See Soare [11, pp. 190ff] for details.)

This leads naturally to the following (slightly extended) notions of Lawton [10].

Definition 2.11

1. Q is a minor superclass of P if P ⊂ Q, Q− P is infinite and, for every Π0
1 R, if R ∩ P = ∅, then R ∩ Q

is finite.

2. Q is a strong minor superclass of P if P ⊂ Q, Q − P is infinite and, for every Π0
1 R, if R ∩ P is finite,

then R ∩ Q is finite.
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It is clear that no clopen set can have a minor superclass and Lawton shows that every non-clopen Π0
1 class

has a minor superclass. More interestingly, she shows that P has a strong minor superclass if and only if P is not
almost complemented.

There exist strong minor superclasses which are not minimal extensions. For example, let P0 ⊂ P1 ⊂ P2 be
given by Theorem 1.1 such that, modulo finite difference, [0, P1] = {0, P0, P1, P2}. Then P2 is a strong minor
superclass of P0 but is clearly not a minimal extension.

Proposition 2.12
1. If Q is a good minimal extension of P , then Q is a strong minor superclass of P .

2. If Q is a non-trivial minimal extension of P , then Q is a minor superclass of P .

P r o o f.
1. Suppose that Q is a minimal extension of P but is not a strong minor superclass of P . Then there is some

Π0
1 class R such that R ∩ Q is infinite but R ∩ P is finite. We may assume that R ⊂ Q by taking R ∩ Q if

necessary. Since Q is a minimal extension, it follows that Q = P ∪ R. R must be minimal, since P ∪ R0 ⊆ Q
for all R0 ⊂ R. Thus Q is not a good extension of P .

2. Suppose that Q is a minimal extension of P but is not a strong minor superclass of P . Then there is
some infinite Π0

1 class R ⊂ Q such that R ∩ P = ∅. It follows that R has a limit point B /∈ P and thus
D(Q) − D(P ) �= ∅.

3 An embedding of E into EΠ

In this section we present a natural embedding of the lattice E of c. e. sets into the lattice EΠ of Π0
1 classes and

use this to give some examples of minimal classes and minimal extensions which are not proper. For any c. e. set
A ⊂ ω, let PA = {0ω} ∪ {0n1ω : n /∈ A}. Then PA is always a Π0

1 class and clearly for two c. e. sets A, B, we
have that A ⊂ B if and only if PB ⊂ PA. Hence there is a natural (reverse) embedding of E into EΠ. We state
this formally.

Theorem 3.1 The mapping taking the c. e. set A to the Π0
1 class PA is a (reverse) lattice embedding of E

into EΠ. �
If A is a maximal c. e. set, then PA is a natural candidate to be a minimal Π0

1 class and this will follow from
the next proposition. Recall that for c. e. sets A, B, A is maximal in B if for any c. e. set D with A ⊂ D ⊂ B,
either D − A is finite or B − D is finite.

Proposition 3.2 Let A, B be c. e. sets such that A is maximal in B. Then PA is a minimal extension of PB .

P r o o f. Suppose that PB ⊂ Q ⊂ PA and let C = {n : 0n1ω /∈ Q}. Then C is a c. e. set and A ⊂ C ⊂ B.
Thus either C −A is finite, in which case PA −Q is finite, or B−C is finite, in which case Q−PB is finite.

Notice that in general PA is a decidable Π0
1 class if and only if A is computable and, of course, if A is maximal

in B, then A cannot be computable.
It is an easy application of the existence of a maximal c. e. set that for every infinite c. e. set B, there exists

a c. e. set A such that A is maximal in B. Of course PA and PB have the same unique limit point 0ω. Thus we
have the following

Corollary 3.3 For every infinite c. e. set B, the Π0
1 class PB has a minimal extension. �

Proposition 3.4 There is an r-minimal Π0
1 class which is not minimal.

P r o o f. Let A be a c. e. set which is r-maximal but not maximal and let B ⊃ A be a coinfinite c. e. set
such that B − A is infinite. Then PA is not minimal, since it has a proper Π0

1 subclass PB . Suppose that
Q1 ∪ Q2 = P and Q1 ∩ Q2 is finite and let R = {n : 0n1ω ∈ Q1}. Then R is clearly co-c. e. and, modulo
finite, ω − R = {n : n /∈ A or 0n1ω ∈ Q2} is also co-c. e.. Thus R is computable and clearly ω − A is split by
R into two infinite subsets.

Lachlan proved that every noncomputable c. e. set has a major c. e. subset. We apply this to derive the existence
of strong minor superclasses for classes of the form PA.
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Proposition 3.5 For every noncomputable c. e. set A, the Π0
1 class PA has a strong minor superclass.

P r o o f. Let B be a major subset of A; we claim that PB is a strong minor superclass of PA. Suppose therefore
that that R is a Π0

1 class with R ∩ PA finite and let W = {n : 0n1ω /∈ R}. Then W is a c. e. set and W ∪ A is
cofinite, that is, if n /∈ W ∪ A, then 0n1ω ∈ R ∩ PA. Since B is a major subset of A, W ∪ B is also cofinite.
Now if 0n1ω ∈ R ∩ PB , then n /∈ W ∪ B, so that R ∩ B is also finite.

We will see in Section 5 that there can be no decidable proper minimal extensions.
The existence of maximal c. e. sets can be applied more generally.

Theorem 3.6 Any non-complemented Π0
1 class P has a non-trivial minimal extension. Furthermore, if P

contains no computable boundary points, then P has a good minimal extension.

P r o o f. Let M = {m0, m1, . . . } be a maximal c. e. set and let Ms = {m0, . . . , ms}. Let P = [T ] and
define the computable set S = {σ : σ /∈ T &σ�|σ|−1 ∈ T }. S is infinite since P is not complemented. Observe
that any two elements of S are incompatible. Let S = {σ0, σ1, . . . }. Now define the minimal extension Q of P
by Q = P ∪ {σ�

i 0ω : i /∈ M}. Q is a Π0
1 class since it is the set of infinite paths through the tree TQ, where

σ ∈ TQ if either σ ∈ T or σ = σ�
i 0s (with i and s unique) such that i /∈ Ms. Suppose that P ⊂ R ⊂ Q and let

A = {i : σ�
i 0ω /∈ R}. Then M ⊂ A so that either A =∗ M or A =∗ ω. In the first case, R =∗ Q and in the

second case R =∗ P . Thus Q is a minimal extension. For any element B = σ�
i 0ω ∈ Q − P , B is the unique

element of Q ∩ I(σ) and is therefore not a limit point of Q. Hence A is a nontrivial minimal extension.
Note that Q−P has a limit point (being an infinite set) which is not in Q−P since Q is a nontrivial minimal

extension. Furthermore this limit point must be unique, by the same argument as given above that D(Q)−D(P )
contains at most one point. Let A be the unique limit point of Q − P and suppose that Q is not a good minimal
extension. Then there is a minimal Π0

1 class R such that P ∪ R = Q and P ∩ R is finite. Since A ∈ R ∩ P ,
it follows that A is computable and in fact that Q ∪ {A} is Π0

1 class which can be obtained from R by removing
finitely many isolated points.

It follows that P has a non-trivial minimal extension if and only if P is not complemented. Finally, we consider
proper minimal extensions.

Proposition 3.7 If Q is a proper minimal extension of P , then P has exactly one limit point.

P r o o f. If P has no limit points, then P is finite, so that Q is minimal and is not a proper minimal extension
of P . If P has two limit points, say A and B, let U be a clopen set with A ∈ U and B /∈ U and let Q1 = Q − U
and Q2 = Q ∩ U . Q1 /∈ [0, P ]∗, since A /∈ Q1 and A is a limit point of P and likewise Q2 /∈ [0, P ]∗ since
B /∈ Q2. Similarly, Q1 �=∗ Q2. Thus [0, Q]∗ contains at least two Π0

1 classes not in [0, P ]∗ whereas there is only
one new class (Q) if Q is a proper extension.

4 Nontrivial minimal extensions of Π0
1 classes

In this section, we demonstrate the existence of nontrivial minimal extensions of certain Π0
1 classes.

We need to use the limit lemma, that any function f that is computable in 0
′

has a uniformly computable
approximation {fs}s∈ω such that lims→∞ fs(x) = f(x) (see Soare [11, p. 57]).

Theorem 4.1 Each Π0
1 class P with a single limit point A with A ≤ 0′, admits a nontrivial minimal extension.

P r o o f. Let S be a computable tree such that P = [S] and let D(P ) = {A}. Let As be the uniformly
computable approximation given by the Limit Lemma. Since A ∈ P = [S], we may assume that As�s ∈ S
for all s. If it is not, simply find the longest initial segment α of As�s which is in S and replace As�s with any
extension τ of α which is in S and has length s. For any fixed n, there exists an m such that A�n ≺ As�s for all
s ≥ m and it follows that the modified version of As also extends A�n for all s ≥ m, so that we still get A as the
limit of the sequence As.
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The minimal extension Q of the class P is obtained by adding to P an infinite sequence Bn of new isolated
paths which satisfy the following requirement:

R0,n For each n, A�n ≺ Bn.

This immediately ensures that Q can have no new limit paths, so that Q will be a nontrivial minimal extension of
P if we can show that it is a minimal extension.

To ensure that Q is in fact a minimal extension, we need to satisfy the additional requirement:

Re+1,n For all m ≥ n ≥ e, if Bn ∈ Pe, then Bm ∈ Pe.

Given this requirement, there are two possibilities for a class Pe such that P ⊆ Pe ⊆ Q. First, we may have
Bn /∈ Pe for all n ≥ e, so that Pe −P ⊂ {B0, . . . , Be−1} and is finite. Second, we may have Bn ∈ Pe for some
n ≥ e, so that by the requirement, {Bn, Bn+1, . . . } ⊂ Pe which means that Q − Pe ⊂ {B0, . . . , Bn−1} and is
finite.

The construction of the tree T is in stages s, using a priority argument. We will define a computable sequence
of threshold numbers n(s). At each stage s, we also define the tree T s = T ∩ {0, 1}n(s), and for i < s, the
s-approximation βs

i of Bi, chosen so that βs
i /∈ S. T will be a computable tree since for σ ∈ {0, 1}s, we have

that σ ∈ T if and oly if σ ∈ T s. The new isolated paths Bi will be defined by Bi = lims→∞ βs
i .

Requirement R0,i requires attention at stage s + 1 when βs
i does not extend As+1�i.

Before describing the actions to be taken for this requirement we note that since P = [S] has only one limit
path, every node σ ∈ S has an extension which is not in S. The action for this and the other requirements all
require defining nodes αs and γs as follows. Let αs be the shortest and then lexicographically least extension
of As+1�n(s)�(1 − As+1(n(s))) which is not in S and let γs be the shortest and then lexicographically least
extension of As+1�(n(s) + 1) which is not in S. We will define n(s + 1) to be the maximum of {|αs|, |γs|}.

The action to be taken when R0,i requires attention is the following. We need to redefine βi and also define βs

for the first time. Define βs+1
i to have length n(s + 1) and extend αs by a string of 0’s and similarly define βs+1

s

to have length n(s + 1) and extend γs by a string of 0’s. For each j < s different from i, let βs+1
j have length

n(s + 1) and extend βs
j by a string of 0’s. The tree T s+1 contains all nodes from S of length n(s + 1) as well as

the nodes βs+1
k for all k ≤ s.

Requirement Re+1,n requires attention at stage s + 1 when there exists m ≤ s such that m > n and such that

(i) As+1�i ≺ βs
m

�0,

(ii) βs
m

�0 /∈ Te and βs
n

�0 ∈ Te, and

(iii) for all d < e, if βs
n

�0 /∈ Td, then βs
m

�0 /∈ Td.

Conditions (i) and (iii) ensure that action taken on requirement Re+1,n will respect higher priority require-
ments.

The action to be taken when Re+1,n requires attention as above is the following. We let βs+1
m be the sequence

of length n(s + 1) which extends βs
n

�0 by a string of 0’s, we let βs+1
n be the sequence of length n(s + 1) which

extends αs by a string of 0’s and we let βs+1
s be the sequence of length n(s + 1) which extends γs by a string of

0’s. For each k < s different from m and n, let βs+1
k have length n(s + 1) and extend βs

k by a string of 0’s. The
tree T s+1 is defined as above to contain all nodes from S of length n(s + 1) as well as the nodes βs+1

k for all
k ≤ s.

Here are the details of the construction.

S t a g e 0 . Let n(0) = 0 and let T 0 = {∅}.

Note that at Stage 1, we have T 1 = {∅, (0), (1)} and β1
0 = (1 − A1(0)).

S t a g e s + 1 . Find the least n ≤ s such that some requirement Re,n needs attention and take action on Re,n

as described above, where e is the least possible. If no requirement needs attention, let n(s + 1) = |αs|, let
βs+1

s = αs and for each j < s, let βs+1
j have length n(s + 1) and extend βs

j by a string of 0’s. The tree T s+1 is
defined as usual.

It is clear from the construction that for each s, βs
0 , β

s
1 , . . . , βs

s and As�n(s) are all distinct nodes of length
n(s) in T s.
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We have to show that each requirement is eventually satisfied and that for each s, lims→∞ βs
i = B exists and

belongs to Q = [T ].
A key concept in showing this convergence is the notion of the e-state of a finite or infinite path. An infinite

path B has e-state (c0, c1, . . . ) where ce = 1 if B ∈ Pe and ce = 0 otherwise. For the finite path βs
i , we define

the e-state to be (c0, c1, . . . , ci) where ce = 1 if and only if β ∈ Te. In either definition, the e-states are ordered
lexicographically, so that (c0, . . . , ci) is lower than (c′0, . . . , c′i) if ce < c′e where e is the least such that they are
different.

An important observation is that whenever we take action on any requirement Re+1,n at stage s + 1 > i, we
lower the e-state of βn, that is, the e-state of βs+1

n is lower than the e-state of βs
n. The action taken changes ce

itself from 1 to 0 and, for any d < e, cd can only decrease because of clause (iii) in the definition of requiring
attention. On the other hand, if we do not take action on Re+1,n at stage s + 1, then the e-state of βn cannot
increase, since in that case βs+1

n is an extension of βs
n.

Claim 1 Each requirement only requires attention at a finite number of stages.

P r o o f. Suppose by induction that all higher priority requirements than 〈e, n〉 require attention at only a finite
number of stages. Let s0 be large enough so that no higher priority requirements ever need attention after stage
s0, and also such that A�n = A�nt for all t ≥ s0. There are two cases.

If e = 0 and R0,n ever requires attention at some stage t > s0, then we take action and get At�n ≺ βt
n. It

follows from the construction that action taken on any requirement of lower priority will preserve At�n ≺ βt
n.

For the second case, suppose that Re+1,n requires attention at some stage t > s0. Then we take action to get
βt

n /∈ Te and action taken later on any lower priority requirements can never put βn ∈ Te at a later stage.

This demonstrates the following claim.

Claim 2 For each n, the e-state of βt
n converges to a limit (cn,0, cn,1, . . . , cn,n). �

Claim 3 For each n, the sequence βs
n converges to an infinite path Bn ∈ Q.

P r o o f. By the previous claims, we may take s large enough so that the e-stage of βn has converged and so
that for all e ≤ n, Re+1,n no longer requires attention. Then after stage s, any action taken only extends βs

n by a
string of 0’s. Thus Bn = βs

n
�0ω and Bn ∈ Q.

Now we can determine the structure of our Π0
1 class Q = [T ].

Claim 4 Q = P ∪ {Bn : n < ω}.

P r o o f. Consider an arbitrary path B ∈ Q. For each s, B�n(s) ∈ T s, and is thus either in S or equal to
some βs

i . If the former happens infinitely often, then B ∈ P , thus we may assume without loss of generality that
B�n(s) = βs

i(s) for some sequence i(s). Now if there is a fixed i such that i(s) = i for infinitely many s, then
B = Bi, as desired. Otherwise, there must be infinitely many stages s + 1 such that i = i(s + 1) �= j = i(s).
However, this means that βs

j ≺ βs+1
i , which can only happen when we act on some requirement Re+1,i with

e ≤ i < j. But this makes i(s + 1) < i(s), which, by assumption, can only happen finitely often.

Next we check that the Bi will approach A in the limit.

Claim 5 Requirement R0,n is satisfied for all n, that is, A�n ≺ Bn.

P r o o f. By Claim 3, Bn = βs
n

�0ω, where s is large enough so that R0,n never requires attention after stage
s and, by the argument in Claim 2, large enough so that As�n = A�n. It follows that A�n = As�n ≺ Bn.

We now consider a stronger notion of convergence of the e-states, necessary to obtain the minimality condition.
That is, we prove that for each e, limn cn,e exists.

Claim 6 For each e, there exists k = k(e) such that for any n ≥ k, Bn ∈ Pe if and only if Bk ∈ Pe.

P r o o f. The sequence k(e) is defined inductively, beginning with the definition of k(0).
C a s e I . For all k, Bk /∈ P0. Then let k(0) = 0.

C a s e II . There exists k such that Bk ∈ P0. Then let k(0) be the least such k and let n > k. Let s be large
enough such that neither R1,k nor any requirements of higher priority ever require attention after stage s and such
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that the 0-states of both Bn and Bk have converged by stage s. By the argument in Claim 3, we may assume that,
for all i ≤ n, Bi = βs

i
�0ω and that for all t > s, βs

i ≺ βt
i . Suppose by way of contradiction that Bn /∈ Pe. Then

for some t > s, βt
n /∈ Te, whereas of course βs

n ∈ Te. According to the construction, requirement R1,k would
need attention at stage t + 1, a contradiction.

Here is the definition of k(e + 1):
C a s e I . For all k ≥ k(e), Bk /∈ Pe+1. Then let k(e + 1) = k(e).
C a s e II . For some k ≥ k(e), Bk ∈ Pe+1. Then let k(e + 1) be the least such k and let n > k. As above,

let s be large enough such that the (e + 1)-states of Bk and Bn have converged, such that neither Re+1,k nor
any requirements of higher priority ever require attention after stage s, and such that, for all t > s, βs

i ≺ βt
i for

i ≤ n. By induction on e, we know that Bn and Bk have the same e-state and therefore for all t > s and all
d ≤ e, βt

n ∈ Td if and only if βt
k ∈ Td. Suppose by way of contradiction that Bn /∈ Pe. Then for some t > s,

βt
n /∈ Te, whereas of course βs

n ∈ Te. According to the construction, requirement Re+1,k would need attention
at stage t + 1, a contradiction.

Finally, we can demonstrate that Q is a minimal extension of P .

Claim 7 For any e, if P ⊂ Pe ⊂ Q, then either Pe − P is finite or Q − Pe is finite.

P r o o f. Suppose that Pe −P is infinite and let k(e) be given by Claim 6 so that for m > n ≥ k(e), Bm ∈ Pe

if and only if Bn ∈ Pe. Then there is some n ≥ k(e) such that Bn ∈ Pe and therefore Bm ∈ Pe for all m ≥ n.
Thus Q − Pe is finite as desired.

Claim 8 D(P ) = D(Q).

P r o o f. Let C �= A be an element of Q and let U be a clopen set such that C ∈ U and A /∈ U . Since A is the
unique limit point of P , it follows that U ∩ P is finite. Since A = limn Bn, it follows that only finitely many of
the Bn can belong to U . Thus U ∩ Q is also finite and C /∈ D(Q).

This completes the proof of Theorem 4.1.

5 The splitting property

In this section, we establish an analogue of the Owings Splitting Theorem for c. e. sets and use it to show that
there are no decidable (nontrivial) minimal extensions.

The original Splitting Theorem of Friedberg-Muchnik states that any nonrecursive c. e. set B can be split into
disjoint nonrecursive c. e. sets A0 and A1. The Owings Splitting Theorem states that whenever C ⊂ B are two
c. e. sets such that B − C is not co-c. e., then B can be split into disjoint c. e. sets A0 and A1 such that Ai −C is
not co-c. e. for i = 0, 1. (We omit some of the further properties of Ai.) It follows from this result that for any
c. e. set A, if the lattice S(A)∗ of c. e. supersets of A (modulo finite) is not a Boolean algebra, then it must be
infinite. Thus in particular S(A)∗ may not be a chain of 3 sets.

The following result plays the role of the Owings Splitting Theorem for the lattice EΠ. (There is a stronger
version due to R. Weber [12].)

Theorem 5.1 (Splitting Theorem for decidable Π0
1 classes) Let P be a decidable Π0

1 class and let P0 ∈ [0, P ]
be non-complemented. Then there exists P1 ∈ [P0, P ] such that P − P1 and P1 − P0 are both infinite, and
furthermore P1 is non-complemented.

P r o o f. Let P = [T ], P0 = [T0] for some computable tree T with no dead ends, such that P0 has no
complements in [0, P ]. This implies that P − P0 is infinite. Let S = {τ ∈ T − T0 : τ�(|τ | − 1) ∈ T0}.
Then S is a computable set and we note that any two distinct elements of S must be incompatible. It is clear that
P−P0 = {x ∈ P : (∃σ ∈ S)σ ≺ x}. If S were finite, then this would be a Π0

1 definition of P−P0, contradicting
the assumption that P0 is not complemented in [0, P ]. Hence S must be an infinite set; let S = {σn : n ∈ ω}.

Since T has no dead ends, I(σn) ∩ (P − P0) is nonempty for each n. Now let

P1 = P − ⋃
n∈ω I(σ2n) and P2 = P − ⋃

n∈ω I(σ2n+1).
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Then P1 and P2 are Π0
1 classes and it is clear that P1 ∩ P2 = P0 while P1 ∪ P2 = P . P1 − P0 is infinite since

it contains an element of I(σ2n+1) for each n and P − P1 is infinite since it contains an element of I(σ2n) for
each n. Similarly both P −P2 and P2−P0 are infinite. Now if P1 had complement Q1 so that P1 ∪ Q1 = P and
P1 ∩ Q1 = ∅, and P2 had complement Q2, then P0 = P1 ∩ P2 would have complement Q1 ∪ Q2. It follows
that at least one of the two sets P1 and P2 has no complement in [0, P ].

This has a number of consequences for the lattice EΠ.

Theorem 5.2 Let P be an infinite Π0
1 class. Then P does not admit a decidable non-trivial minimal extension.

P r o o f. Suppose that Q is a decidable Π0
1 class and is a minimal extension of the Π0

1 class P . Consider the
following two cases:

C a s e I . Suppose that P is complemented in [P, Q]. Then there is a Π0
1 class R such that P ∪ R = Q and

P ∩ R = ∅. It follows that R is a minimal Π0
1 class and Q is a trivial minimal extension of P .

C a s e II . Suppose that P is not complemented in Q. Then by the Splitting Theorem 5.1 there exists a Π0
1

class P1 with P ⊂ P1 ⊂ Q with P −P and Q−P1 both infinite, so that Q is not a minimal extension of P .

Theorem 5.3 If P is a decidable Π0
1 class and P is not thin, then [0, P ]∗ is infinite.

P r o o f. Let P be a decidable class with a proper subclass P0 which is not complemented. By the Splitting
Theorem 5.1, there is a subclass P1 with P0 ⊂ P1 ⊂ P with P1 also not complemented. Applying the theorem
again, we get P2 between P1 and P and by repeating the process, we get P0 ⊂ P1 ⊂ P2 ⊂ · · · ⊂ P , with each
inclusion proper.

We note that this theorem was shown by Cenzer and Nies in [4] using a direct proof. We have seen that the
point 0ω is the unique limit point of infinitely many different Π0

1 classes. However, it follows from Theorem 5.3
that they cannot be decidable.

Proposition 5.4 If P is a decidable, minimal Π0
1 class and D(P ) = {A}, then A is not computable.

P r o o f. Let D(P ) = {A}. It was shown in [2] that P is thin if and only if A is noncomputable. Thus if A is
computable, then P is not thin, so that P is not minimal by Theorem 5.3.

The family of decidable Π0
1 classes may be also be viewed as a lattice, since the union and intersection of

decidable classes is decidable (although of course a Π0
1 subclass of a decidable class is not necessarily decidable).

Theorem 5.3 shows that the structure of the lattice of decidable Π0
1 classes behaves more like E . This raises the

natural conjecture that this structure is elementarily equivalent or perhaps isomorphic to E .
Theorem 5.3 has an interesting corollary as follows. Recall that a nontrivial minimal extension Q of a class P

may be obtained by adjoining a minimal class M whose limit point is already in P . If P itself is minimal, then P
and M are two distinct minimal classes with the same limit point. This cannot be done with decidable minimal
classes by the following

Corollary 5.5 Let P1 and P2 be any two decidable minimal classes. If D(P1) = D(P2), then P1 =∗ P2.

P r o o f. Suppose that P1 and P2 are decidable minimal Π0
1 classes, that D(P1) = D(P2) = {A}, and that,

by way of contradiction, P1 �=∗ P2. It follows that P1 ∪ P2 is a minimal extension of P1 and is decidable.
Furthermore, D(P1 ∪ P2) = D(P1) ∪ D(P2) = {A}, so that P1 ∪ P2 is a nontrivial minimal extension. This
contradicts Theorem 5.2.

This corollary implies that, modulo finite, there is at most one decidable minimal Π0
1 class P with limit point

A for any A. We conclude with the following question.

Problem 5.6 If there is a minimal Π0
1 class with limit point A, then is there always a decidable minimal Π0

1

class with limit point A ?
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