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Abstract

Basic hybrid logic extends modal logic with the possibility of naming
worlds by means of a distinguished class of atoms (called nominals) and
the so-called satisfaction operator, that allows one to state that a given
formula holds at the world named a, for some nominal a. Hence, in par-
ticular, hybrid formulae include “equality” assertions, stating that two
nominals are distinct names for the same world. The treatment of such
nominal equalities in proof systems for hybrid logics may induce many
redundancies. This paper introduces an internalized tableau system for
basic hybrid logic, significantly reducing such redundancies. The calcu-
lus enjoys a strong termination property: tableau construction terminates
without relying on any specific rule application strategy, and no loop-
checking is needed. The treatment of nominal equalities specific of the
proposed calculus is briefly compared to other approaches. Its practical
advantages are demonstrated by empirical results obtained by use of im-
plemented systems. Finally, it is briefly shown how to extend the calculus
to include the global and converse modalities.

1 Introduction

The semantics of modal logics is given by means of Kripke structures, that are
essentially graphs whose vertices (“worlds” or “states”) are classical interpre-
tations. Their standard syntax, however, does not allow one to name vertices,
hence one can say that a formula is true at a given world only in the meta-
language. The peculiarity of hybrid logics is the extension of the standard modal
syntax by means of nominals and a satisfaction operator (@), which makes it
possible to express that a given formula holds at a given state in the object
language itself. Nominals are just a distinguished sort of propositional letters,
each of which is assumed to be true at exactly one world of the interpretation
(a nominal is essentially the name of a world). This more expressive syntax can



be useful, for instance, when modal logics are used to formalise semi-structured
databases, such as XML-documents. In [1], just one nominal, root, is added to
CPDL in order to study path constraints in semistructured databases, while [8]
and [19], for instance, use full hybrid languages in order to express this kind
of data. In fact, XML-documents describe tree-like structures, or, more gener-
ally, (finite) graphs, when references are present. In that framework, attributes
having ID type provide node identifiers, while some attributes are pointers to
nodes, by making reference to their identifiers; such attributes are said to have
the reference type IDREF (or IDREFS). One can observe that node identifiers
correspond to nominals.

The satisfaction operator of hybrid logics allows one to move from the current
state to a different, not necessarily accessible, one: a formula of the form @, F,
where a is a nominal and F any formula, means that F' holds at the world
named a. Hence, one can “jump” from the current state to a different one.
In particular, when F itself is a nominal b, @, F says that a and b name the
same world; for this reason a formula of the form @,b will be called a nominal
equality.

Besides @ (and the usual modal operators O and <), more expressive hybrid
languages may contain state variables and the binder (), that binds a variable
to the current world, the converse modal operators O~ and <, the universal
modalities A and its dual F, and the difference modality D, and its dual (see, for
instance, [3, 10]). The usual notation for the hybrid logic obtained by addition
of operators o1, ..., 0 to the basic propositional modal logic K is HL(o1, ..., 0).
The logic HL(]) is known to be undecidable [3, 2, 20], while any combination of
the remaining operators mentioned above (possibly all) keeps the logic decidable.

Several proof systems have been defined for hybrid logics (see, for instance,
[4, 9, 11, 12, 14, 15, 26]) and some provers have also been implemented, among
which [5, 18, 21, 22, 30]. Since nominals and the satisfaction operator are the
main peculiarities of hybrid languages, it is important to devise efficient ways
of treating them. Resolution based proof systems and provers [4, 5] handle
nominals by means of paramodulation, which can be computationally quite ex-
pensive. Also in the context of tableaux methods, where nominals and nominal
equalities have been treated in different ways, many redundancies can arise. In
fact, when handling a statement of the form @,b, any known property of a can
potentially be copied to b (and vice-versa).

This papers focuses on the treatment of nominal equalities in tableaux meth-
ods for the basic hybrid logic HL(@), only succinctly indicating how to extend
the approach to a more expressive language. Although minimal, the language
of HL(@) allows one to define many frame properties that are not definable in
modal logics, such as, for instance, irreflexivity, asymmetry and antisymmetry.
The interest of HL(Q) is also due to the fact that the satisfiability problem for a
fragment of HL(Q, ), where no (positive) occurrence of O dominates a binder,
can be reduced to HL(@) by means of a satisfiability preserving translation
[20, 31].

It is worth pointing out, moreover, that a desirable property of any mod-
ular proof system for hybrid logics is its termination on decidable sublogics,
hence also on formulae in HL(@). Therefore, an efficient treatment of nominal
equalities is of interest also for systems which can cope with more expressive
languages, even if preserving termination in the case of a richer logic may require
more costly mechanisms.



This paper describes a tableau system for HL(@), named H, where tableau
construction terminates with no need of loop-checks. Moreover, differently from
other terminating calculi for HL(@) [29, 31], but similarly to [12] and [26], termi-
nation in H does not rely on any specific (and sometimes complicated) tableau
construction procedure. In other terms, the calculus enjoys a strong termina-
tion property. The calculus, originally proposed in [16], has been independently
defined approximately at the same time as the calculi presented in [12]. The
interest in reconsidering H here is due to the fact that experimental results ob-
tained by means of a recent implementation have shown the efficiency of the
algorithm it embodies for the treatment of nominal equalities. In fact, as will
be illustrated later on, it reduces the redundancies that may be generated by
the “expansion” of nominals actually naming the same world. Being H well
suited to treat equalities, which are an essential feature of hybrid reasoning,
its current implementation is a promising kernel theorem prover, that can be
refined, optimised and extended to cope with other operators.

The system H described in this work is an internalized calculus, i.e.it deals
only with object-language expressions. It is worth noticing that several calculi
for hybrid logics make use of prefized formulae of the form o : F, where o
is a symbol of the meta-language and F a formula (one of the two calculi in
[12], for instance). However, prefixes are useful either when they are complex
expressions encoding the relation between states, or when there is no internal
(object-language) mechanism to name worlds. The use of (simple) prefixes in the
case of hybrid logics seems a useless burden, since nominals and the satisfaction
operator can play the same role. In fact, prefixes may sometimes make things
more complicated (the reader may wish to compare the two calculi presented
in [12] and the respective completeness proofs). Beyond this fact, internalized
hybrid calculi have the advantage that the addition of pure axioms automatically
yields complete systems for the class of frames they define, although termination
may in some cases become a non trivial issue (see [13]).

This work is organized as follows. After recalling the syntax and semantics
of HL(@) (Section 2), the tableau system is presented in Section 3 and its fun-
damental properties are proved. In Section 4 the proposed approach to nominal
equalities is compared to others and the experimental results demonstrating its
advantages are briefly presented. Section 5 sketches how the calculus can be
extended so as to deal also with the global and converse modalities, though
needing loop-checks to ensure termination. Section 6 concludes this work.

2 Syntax and semantics of HL(@)

In this section we present the syntax and semantics of the “uni-modal” version
of HL(@), its extension to the multimodal case being straightforward.

Let NOM and PROP be disjoint sets of propositional letters. The elements
of NOM are called nominals and the elements of NOM UPROP atoms. We shall
use lowercase letters from the beginning of the alphabet, possibly with indexes,
as metavariables for nominals, and p, ¢, 7, possibly with indexes, for elements of
PROP. The set of formulae in HL(Q) is defined by the following grammar:

F:=1|pl|la|~F | FAF | FVF | OF | OF | @Q,F

where p € PROP and a € NOM. The notation T is a shorthand for —.L.



An interpretation M is a quadruple (W, R, N,I) where W is a non-empty
set (whose elements are the states of the interpretation), R C W x W (the
accessibility relation), N is a function NOM — W and I a function W — 2PROP,
We shall write wRw’ as a shorthand for (w,w’) € R.

If M = (W,R,N,I) is an interpretation, w € W and F a formula, the
relation M, w |= F' (M satisfies F' at w) is inductively defined as follows:

1. Myw = L.

2. MywEpifpe I(w), for p e PROP.

3. M,w Eaif N(a) =w, for a € NOM.

4. M,wE —F if M,w £ F.

5. MiwEFAGit MwlEF and M,wkE=G.

M,w | FV G if either M, w = F or M,w = G.

M, w = OF if for each w’ such that wRw', M,w' = F.

M, w = OF if there exists w’ such that wRw’ and M, w’ = F.

© »®» 3N @

M,wkEQF if MN(a) EF.

A formula F'is satisfiable if there exist an interpretation M and a state w of M,
such that M,w = F. Two formulae F' and G are logically equivalent (F = G)
iff for every interpretation M and state w of M, M,w [ F if and only if
M, w E G.

It is worth pointing out that, for any nominal ¢ and formula F":
-Q,F = Q,~F -OF =0-F -0F = O-F

This allows one to restrict attention to formulae in negation normal form (where
negation dominates only atoms), without loss of generality.

3 The tableau system H

The tableau system we are now going to present, and which will be called H,
“internalizes” prefixes, like in [9, 11, 13], (partially) in [31], one of the systems
in [14] and one of the calculi in [12]. Tableau nodes are in fact labelled by sets
of satisfaction statements, i.e. assertions of the form @, F'. In a formula of such
a form, F' is said to be labelled by a. If Q,F € S, where S is a tableau node, we
say that F' is true at a in S. A formula of the form @b, where b is a nominal,
is a relational formula.

In the sequel, sets of formulae will be written as comma separated sequences
of formulae. For the sake of simplicity, we assume that formulae are in negation
normal form (nnf). Furthermore, we present here just the uni-modal version of
the calculus; its extension to the multi-modal case (where different accessibility
relations may co-exist) is straightforward.

The initial tableau for a set S of formulae is a node labelled by S, = {Q,F |
F € S}, where a is a new nominal. S, is called the root set. Nominals occurring



in S, are called root nominals, and, if T is a tableau rooted at S, then the set
of its root nominals is denoted by C7r:

Cr = {t| t is a nominal occurring in S, }

The basic set of expansion rules is reported in Table 1, where S is a set of
formulae. They are essentially the same rules of other internalized calculi for
HL(@) [12, 9, 11, 31] modulo a reformulation of the calculi from the “nodes
as formulae” to the “nodes as sets” style. The boolean, modal and label rules
are called logical rules. All the logical rules are non-destructive, i.e.they do not
“consume” the expanded formula (they add formulae to the lower node, without
modifying or deleting any formula in the upper node). Obviously, some rule
must necessarily conserve its premise(s) to ensure completeness. In this work,
for the sake of simplicity, the logical rules are formulated so that every expanded
formula is kept in memory, with no further distinction. This choice allows for
a simple restriction to avoid trivial non-terminating tableau constructions: it
is established in fact that a formula is never added to a node where it already
occurs. Moreover, it is assumed that the ¢-rule, which generates a new nominal,
is never applied twice to the same premise on the same branch.

Obviously, from a practical point of view, not every formula has to be kept
in memory, and tableau nodes can be structured in such a way that membership
tests are in fact very light. Details can be found in [18].

The definitions of open/closed tableaux and complete branches are standard:
a tableau node S is closed if it contains L (see the Closure Rules of Table 1).
Closed nodes are not expandable. A tableau branch is open if all its nodes
are open (otherwise it is closed) and it is complete if no rule can be applied to
expand it further. A tableau is closed if all its branches are closed, otherwise it
is open.

In order to introduce the last rule of the system, treating nominal equalities,
the following definitions are needed.

Definition 1. If a nominal b is introduced in a branch © by application of the
O-rule to a premise of the form Q,OF, then a <o b (and we say that b is a
child of a, and a is the father of b). The notation children(a,®) will be used to
denote the set of nominals b such that a <g b.

The relation <J(§ is the transitive closure of <o. If a <J(§ b we say that b is
a descendant of a and a an ancestor of b in the branch ©.

The system H treats nominal equalities (formulae of the form @,b, where
b is a nominal) by means of a destructive rule, i.e.a rule with “side effects”,
the substitution rule (Swb). It is applicable only if a # b and is formulated as
follows:
Q@,b,S
S#[a + b]

where S#[a + b] is obtained from S by:

(Sub)

1. deleting every formula containing a descendant of a;
2. replacing every occurrence of a with b.

When the substitution rule is applied, a is said to be replaced in the branch and
the descendants of a are called deleted in the branch. Let’s point out that root



Boolean Rules

@Q.(FAG),S
@, F,@,G, Q,(FAG),S

@, (FVG),S
Q. F, @, (FVG),S  @,G,@,(FVG),S

(V)

Label Rule

Q,Q,F, S
QyF,@,Q, F, S

Modal rules

@,0F, @, b, S @,OF, S

(@) (©)
Q,F,Q,0F,Q,$b, S @,0b, @ F,Q,OF, S
where b is a new nominal
(not applicable if F' is a nominal)

Closure rules

Qup, Qa—p, S Q,—a, S

n 10 — &)

Table 1: Basic expansion rules

nominals are never deleted (they cannot be children of any nominal), although
obviously they may be replaced.
Note that, without nominal deletion in the substitution rule, i.e.by use of

the simpler rule:
@b, S

S g O

tableau construction might not terminate. This is shown in Figure 1, where
an infinite tableau is built by use of the simpler substitution rule Sub* (and
a particular rule application order, which delays substitutions: after the first
application of the O-rule, the rules are applied in the order O, &, A, Sub*).t In
the figure, the applied rules and the expanded formulae are shown on the right
of inference lines, and the newly added formulae (if any) are displayed as the
first ones in each node. The initial set is {@,O(a A T),@,00(a A T)}; the
subformula ¢(a A T) cannot be replaced by ©a because of the restriction on the
application of the <-rule.

What happens there is that each of the nominals by, b1, bo, ..., before being
replaced by a, generates a child, that begins to live its own life. In particular,
it is “adopted” by a, and therefore inherits its boxed formula &(a A T).

IThe rules used in this example, in particular Sub*, are essentially (reformulations of) the
rules of the system defined in [31].



@aO(aAT), @O0 T)

(©:@g0(anT))
Qg Obg, @y, (anT),

@ O(aNT), @Q,OC(aAT)
(O : @, Obo, @0 (a A T))

Qp, O(aAT), @by, Qpy(aAT),

@, 0(aAT), @O00(aAT)
(O @, O(a A T))

@p, Ob1, @y, (aANT), @y O(aAT),

@, Obo, Qpy(aAT), @QO(aAT), QOC(aAT)
(A @py(anT))

@b0a7 @bOT,
Qg Ob1, @, (a A T), @y O(a A T), @uSbo,

Qp(aAT), QeC(aNT), @Q,OC(aAT)
(Sub™ : @Qpya)

Q. T, @gOb1, Qp (aNT),@O(aAT),

Q,Ca, Q,(aAT), @Q,O00(aAT)
(O: @ Ob1,@,00(a A T))

@b1<>(a N T)7
@uT, @u0by, @y, (aAT),@uO(anT),

Q. Ca, Qu(aNT), @Q,O00(aANT)
(©:@,O(anT))

@b1<>bz, @b2 (a/\T),
@b1<>(a/\T), @, T, @, by, @bl(a/\T),@aO(a/\T),

QaCa, Qu(aNT), Q,O0(aAT)
1@, (aNT))

>

Qp,a, @, T, @, Obo, @1;2((1/\—|—)7
@blO(a/\T), Q,T,
@a<>b17 @bl(a/\T),

@, C(aAT), Qa, Qu(aNT), @Q,O0(aAT)
(Sub® : @y, a)

@, T, @uOba, @py(aAT),@u0(anT),

Q,0a, Qu(aNT), @Q,O00(aAT)
(O: Q0be,@,OC(a A T))

Figure 1: An infinite tableau in H without nominal deletion



QO(aNT), Q,O00(aAT)

(©:@C(anT))
@a<>b0, @bo (a/\ T),
Q. O(aNT), @Q,OC(aAT)

(0 @uOby, @OO(a A T))
@b, O(a A T), @uObo, @yy(aAT),
QO(aNT), Q,O0(aAT)

(©: @, O(aNT))
@y, Ob1, @y (aAT),
QpC(aAT), @by, Qpy(aAT), QO(aAT), @QOC(aAT)

(AN @py(anT))
@b0a7 @b0T7
@by b1, @y, (a A T), @ O(anT), @uobo,
Qp(aNT), QeC(aAT), Q,OC(aAT)

(Sub : @Qyya)
Q. T, @QO(anT),
@, Ca, Qu(aAT), @QOC(aAT)

Figure 2: A finite tableau with nominal deletion

Figure 2 shows that the same initial set of formulae and the same rule appli-
cation order produce a finite tableau when nominals are deleted by the substi-
tution rule. The first (and unique) application of the substitution rule deletes
b1, since it is a child of by. None of the formulae in the leaf S can be expanded
because @,<(a A T) has been already expanded in the branch; @,a, @, T and
a<a do not fire any rule (the latter formula is relational); applying the O-rule
to @,00(a A T) and @, a would produce a formula already in the node; and
the same would happen by expanding @Q,(a A T).

It is worth pointing out that a mechanism similar to substitution with nom-
inal deletion (called merging and pruning) is used in a tableau algorithm for a
rich description logic (with transitive and inverse roles, role hierarchies, quali-
fied number restrictions and nominals) [24]. Termination is however guaranteed
only when following a particular rule application strategy — beyond needing cy-
cle detection, since such a logic enjoys neither the finite model property nor the
tree model model one.

3.1 Termination

In this subsection we prove that tableau construction always terminates, inde-
pendently of the rule application strategy.

The key result that ensures termination is a kind of “subformula property”
enjoyed by the calculus. In order to state it, we define the set containing every
formula that can be obtained from a subformula of some formula in the initial
set, by replacing nominals with other nominals still occurring in the initial set:
when T is a tableau rooted at S,

Sg={F | F=G[by— c1,....,bn — ¢] for some subformula G of some
A€ Sy, and ¢, ...,cp € Or}

where by, - - - , b, are nominals occurring in G. Note that, obviously, every nomi-
nal ¢ occurring in a formula of S§ occurs in the initial set (i.e.c € Cr). Moreover,



S is finite and closed with respect to subformulae.
The key property of the system, that will be extensively used in the sequel,
is the following:

Lemma 1 (Quasi-subformula property). If T is a tableau rooted at Sy, and
Q. F is a formula occurring in some node of T, then either Q,F' is relational
or F'e Sg.

Therefore any tableau contains a finite number of non-relational formulae
labelled by the same nominal. Le. for every nominal a, the set

{Q.F | Q. F occurs in some node of T and Q. F is not relational}
is finite.

The result can easily be proved by induction on tableaux. The following
properties are direct consequences of Lemma 1:

1. If @Q,b occurs in a node of T, then b € Cp. Therefore, in the applications
of the substitution rule, nominals are always replaced by root nominals.

2. A nominal b ¢ Cr may occur in a tableau node only in relational formulae,
i.e.in the form @,Ob, or as the label of a formula @Q,F (where F' € S
does not contain b).

Next, we have to prove that the number of nominals occurring in a tableau
branch is finite. First of all we note that, in a tableau branch ©, a nominal
a cannot generate more children than the number of (non relational) formulae
of the form @,OF that occur in ©, and they are finite (Lemma 1). As a
consequence:

Corollary 1. For every branch © and nominal a, children(a,®) is finite.

Thanks to nominal deletion in the substitution rule, the following result
holds:

Lemma 2. If ¢ and d are nominals, d ¢ Cp, and @Q.>d occurs in some node
of a tableau branch ©, then d is a child of ¢ in ©.

Proof. The result is proved by induction on the number of nodes between the
root of ©® and the node where @Q.<Od occurs for the first time. The base of the
induction is vacuously true, since every nominal occurring in the initial formula
belongs to Cr.
The only non-trivial case in the induction step is when the substitution rule
is applied:
@b, S

S#[a + b]

Let @Q.0d = @, <d' [a +— b] be a formula occurring in S#[a + b] and not in
S. Hence, either ¢/ = a or d’ = a (or both). If d’ = a, then Q. d = @, Oala —
b] = @Q.Ob; since @,b occurs in a tableau node, by Lemma 1, b € Cr and there
is nothing to prove.

So we are left with the case where ¢/ = a and d’ # a, i.e.Q.Od = Q,Od[a —
b] = @, d, with d € Cp. By the induction hypothesis, since @,0d € S, d is
a child of a in O, thus it is deleted by the substitution rule and @.<&d cannot
occur in S¥[a + b]. O

(Sub)



The property stated in Lemma 2 ensures that nominals that do not occur in
the initial formula can only inherit formulae from their fathers. Ile. it cannot
happen that a formula of the form @,F (for b ¢ Cr) appears in a tableau
because it is obtained by application of the O-rule from some @Q,0F and @,<b
where a is not the father of b.

Note that Lemma 2 would hold also if only the children of a replaced nominal,
rather than its complete descent, were deleted, and this would suffice to make
the whole termination argument work. However, as we will argue in Section
4, deleting all the descendants of a replaced nominal has a positive practical
impact.

Let us now define the mazimal modal degree of a nominal in a branch © as
follows: if degree(F') is the modal degree of F', then

Deg(a, ©) = max{degree(F) | Q,F occurs in O}

It is worth pointing out that Deg(a, ®) € IN, because the set of formulae labelled
by a in © is finite, by Lemma 1. From Lemma 2, it is easily proved that, for
any tableau branch © and any chain of nominals ap <¢ a1 <o a2 <o ..., the
maximal modal degree of a; is strictly decreasing. This is what is stated by next
Lemma, whose proof is again an induction on tableaux.

Lemma 3. Let T be a tableau and © a branch inT. Ifa <o b, then Deg(b,©) <
Deg(a,©).

From this property it follows that:

Corollary 2. In any tableau branch ©, every chain of nominals ag <o a1 <e
as <@ ... s finite.

An immediate consequence of Corollaries 1 and 2 (and the fact that Cr is
finite) is:

Corollary 3. The number of nominals that occur in a tableau branch © is
finite. In particular, the relation <o arranges the set of nominals occurring in
© in a finite set of finite trees.

Therefore, in any tableau the number of relational formulae labelled by the
same nominal a, i.e.formulae of the form @Q,<b, is finite. From this fact and
Lemma 1, it follows that:

Corollary 4. For every tableau branch © and nominal a, the set
{F | Q.F occurs in O}
is finite.

We have now all we need to prove that the system enjoys the strong termi-
nation property:

Theorem 1 (Termination). Every tableau is finite.

Proof. By Corollaries 3 and 4, if a tableau has an infinite branch ©, then (by
the condition stating that a formula is never added to a node where it already
occurs and the fact that no rule, but for substitution, consumes or modifies
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its premise) there is at least a formula @, F that is either deleted or modified
by application of the substitution rule, and then reintroduced in ©. If Q,F is
deleted, it is because a is deleted and the same nominal cannot be used again
in the branch. If it is modified, i.e.it becomes (Q,F)[b — ¢| for some b and
¢, then every occurrence of b is replaced in the same node, therefore, again, a
formula containing b cannot be reintroduced by any expansion rule. Therefore,
no formula can be either deleted or modified in a branch, and reintroduced later
on, so every tableau branch is finite. O

Let us now consider a possible extension of the system to HL(Q, |), obtained
by adding the following rule:

Q, |l z.A,S
Q,Alx — a],Q, | x.A, S

(applicable only if A[z — a] ¢ S). Now, obviously, Lemma 1 fails. This
corresponds to the fact that the binder “enables us to create a name for the
here-and-now” [2]. Therefore, with unrestricted use of the binder, an infinite
number of “subformulae” of a given formula F' can appear in a tableau branch,
each using different nominals to instantiate state variables, even though F' refers
to the corresponding states only implicitly.

It is worth pointing out that our termination proof fails also if the following
rule for the universal modality is added to the system:

Q,AF, S

Q.F,Q,AF,S
where ¢ occurs in {Q,AF}US

In fact, in this case, Lemma 3 fails.

3.2 Soundness and Completeness

Soundness can easily be proved in the standard way, by showing that each rule
preserves satisfiability. In particular, the soundness of the substitution rule
is due to the following form of the substitution theorem: if F is a formula,
M = (W,R,N,I) an interpretation and w € W, then for all nominals a, b such
that N(a) = N(b), M,w = F if and only if M,w = Fla — b].

The completeness proof also follows the usual technique of showing that:

Lemma 4. If © is a complete and open branch of a tableau rooted at Sy, then
So s satisfiable.

Proof. Standard completeness proofs work by observing that the union of all the
node labels in O is downward saturated, and then showing that any such set has
a model. In our case, the guideline is the same, but deletion and replacement of
nominals raise some difficulties, that are overcome by exploiting the fact that
O is finite. So we first consider the set labelling the last node of ©, that is
shown to be downward saturated and, consequently, satisfiable. Then we show
that satisfiability propagates upward to the root node, provided that nominals
that are deleted in ©, and every formula containing them, are ignored. This is
sufficient because nominals occurring in the initial set are never deleted.

11



In what follows, we say that a formula F' occurs in © (and © contains F') to
mean that F' occurs in some node of ©.

Since O is finite by Theorem 1, © = Sy, Sy, ..., S for some k. If © is open
and complete, then Sy is downward saturated, i.e.:

1. Sk does not contain any formula of the form @,—a, and it does not contain
two formulae of the form @Q,p and @Q,—p for some atom p.

2. f @Q,(F AG) € Sg, then Q,F,Q,G € Sy.
3. If @Q,(F V Q) € Sk, then either @, F € S, or @,G € S.

4. If @,OF € Sy (for F that is not a nominal), then there is a nominal b
with @,Ob, @y F € Sp.

5. If @, 0b,@,0F € Sy, then @y F' € 5.
6. If Q,Q,F" € S, then Q,F € 5.

7. If @Q,b € S then a = b, otherwise the substitution rule would be applicable
to expand O.

We define the interpretation M’ = (W, R, N’ I) as follows:

W ={a| a occurs in Sy };

R ={(a,b) | @,0b € Si};

for every nominal a occurring in Si, N'(a) = q;
I(a) = {p | Qap € Si}.

Exploiting the fact that Sy is downward saturated, it can easily be proved by
induction on F that if @, F € S, then M', N'(a) = F.

Next, we define an equivalence relation on nominals (with respect to the
branch O) as follows: a ~ b if @,b occurs in ©. The relation ~ is the reflexive,
symmetric and transitive closure of ~.

Since N’ is undefined for nominals that do not occur in S, we can safely
extend it to interpret all the nominals occurring in ©. Let w* be any fixed
element of W. Then N is the extension of N’ such that for all nominals ¢
occurring in ©:

N'(c) ifce W, i.e.coccurs in Sy
N(e)=4{ N'(d) ifforsomede W, c~d

w* otherwise

It is clear that if @,b occurs in O, then N(a) = N(b).

If M = (W,R,N,I), obviously, it still holds that for every @Q,F € Si, M
satisfies F' at N(a).

We now prove that the satisfaction property propagates upwards, restricting
our attention to nominals that are not deleted in ©. Let us say that M is a
©-model of a node S of © if for every formula Q,F € S that contains only
nominals that are never deleted in ©, M, N(a) = F. Then we show that, for
every 1t =0,....k — 1:

(o) if M is a ©-model of S;;1, then M is a ©-model of S;.

12



When i = 0 this is what we want, because the initial formula of the tableau
contains only nominals in Cr that are never deleted.

In order to prove (o), the cases where S;; is obtained from S; by applying
a logical rule are trivial, since S; C S;;41. So the only non-trivial case is the
substitution rule, where:

S; = Qub, S’
Si+1 = S/#[a — b]

By the induction hypothesis, for every formula @Q.F € S;;1 = S#[a + b
containing only nominals that are never deleted in the branch, M, N(c) E F.
Note that all the descendants of a are deleted in ©. Since N(a) = N(b), by
definition, M, N(a) = b.

Let now @Q.F be a formula in §" = S;\ {@Q,b}, containing only nominals that
are never deleted in the branch. Then also (Q.F)[a — b] contains only nominals
that are never deleted in ©; in fact, the only nominal possibly occurring in
(Q.F)[a — b] and not in Q.F is b, and b € Cr (Lemma 1), so it cannot be
deleted. Hence, by the induction hypothesis M, N(c[a — b]) E Fla — b,
where cla — b] = b if ¢ = a, and c[a — b] = ¢ otherwise. By the substitution
theorem, since N(a) = N(b), M, N(c[a — b)) = F. If c[a — b] = ¢, we are done.
Otherwise, if c¢[a — b] = b then ¢ = a, so N(c[a — b]) = N(b) = N(a) = N(c).
Hence, also in this case M, N(c) = F. O

Completeness follows directly from Lemma 4.

Theorem 2 (Completeness). If S is unsatisfiable, then every complete tableau
for S is closed.

4 Comparison with other approaches

Some early attempts to obtain terminating calculi for decidable hybrid logics
are [29, 31]. In both papers, however, the termination arguments rely on spe-
cific (and sometimes complicated) tableau construction procedures. As already
remarked in Section 3, our approach to nominal equalities is closed to [31]. In
fact, both calculi use forms of substitution, but the substitution rule in [31] does
not delete formulae (.e.it corresponds to the rule called Sub* in Section 3), and
the infinite tableau of Figure 1 is a counter-example to the strong termination
property when such a rule is used.

The tableau calculus proposed for first-order HL(@,V,3) in [11] (an extension
of [9], which treats only the propositional case) has quite “natural” rules for
treating nominal equalities (reflexivity, a rule which “passes” formulae from a
nominal to an equal one and a rule that makes worlds, equal to a state seen
by a given one, also visible by it). However, such a treatment of equalities,
although very intuitive and natural, leads to a non terminating calculus even
for the propositional (decidable) fragment HL(@). As a matter of fact, devising
a strongly terminating (and complete) calculus for propositional HL(@) is not
straightforward.

Later on, [14] presents a calculus deciding satisfiability for HL(Q, A, E),
i.e.hybrid logic with the global modalities, by use of a loop-checking mechanism
during tableau construction. While loop-checking is necessary in order to treat
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the global and converse modalities, it can be avoided when the logic is restricted
to HL(@). And in fact, [12] presents (propositional) calculi in two different styles
(prefixed and “internalized”) which — like H — enjoy the strong termination
property in the case of HL(@), with no need for loop-checks. Note that the
prefixed calculus in [12] extends also, in a modular way, to HL(@, A, E, 0, O7),
i.e.hybrid logic with the global and converse modalities; the internalized one,
as originally proposed, only deals with HL(@), but in [13] it is extended to the
global and converse modalities.?

As a matter of fact, the internalized calculus proposed in [12] is very similar
to H, the two systems differing only in the way how nominal equalities are
treated. Still another approach to equality, highly declarative, is represented by
[27].

The central point of this section is the comparison of the different treatments
of equalities in H and the internalized calculus in [12], that will be called P. In
[18] a still more thorough comparison between P and H, taking into account
also implementation issues, can be found.

Beyond the fact that the calculus P is formulated in the “nodes as formulae”
style (since rules never modify existing formulae) and other minor differences,
the essential difference between H and P consists in the expansion rules for
equalities. In P, such formulae are expanded by means of the two premises rule
fd QF @b

e e (Id
QyF

The rule is applicable only if @, F' is not an accessibility formula, i.e.a relational
formula derived by an application of the <-rule.

The two rules for the treatment of equalities are apparently very different,
Id being declaratively more elegant and simple than Sub. However, they bear
strong similarities, that can also be recognized by inspection of the respective
termination and completeness proofs for H and P. Such proofs rely in fact on
the same key properties of Sub and Id.

First of all, both rules are ‘directional”: @b is not the same as @Qya. And in
both Id and Sub, the nominal b occurring in the premise @,b is a root nominal,
therefore only root nominals can “inherit” formulae from other (equal) ones, in
both calculi.

Secondly, forbidding the application of the Id rule to accessibility formulae
(which is essential to ensure termination) means that the nominal b inherits
all formulae true at a in the branch, except for those representing outcoming
links to its children. The substitution rule directly replaces (instead of copying)
a with b, but, again, its children are not “adopted” by b. They are deleted,
together with all their descendants. So, in simple words we can say that the
main difference between the two systems is that P is more tolerant than H: even
when the descendants of a nominal are of no use any longer (and in fact P’s
completeness proof does not exploit them), they are left alive, since they are
not harmful, either. H, on the contrary, is radical and bloody: when a nominal
becomes useless, it is killed with all its descent.

Nominal deletion in H avoids the employment of resources to expand formu-
lae labelled by “useless” nominals. It is worth pointing out that, in P, it can

2Also the systems proposed in [29] and [14] use the explicit formulation style of modal
rules, by use of prefixes.
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be proved that whenever @Q,b, @Q,c, @ga occur in a branch for some nominals
a,b,c¢,d (i.e.a,b and c are right nominals), then also @Qpa, Q.b, Q,c and Q.a oc-
cur in the branch, so that the Id rule copies formulae from any of the three
nominals a, b, ¢ to all the others.

Thus, abstract considerations lead to the hypothesis that H, though theoret-
ically more complex than P, has a practical advantage, allowing a more efficient
management of equalities. In order to check such an hypothesis, we have im-
plemented both calculi: the system Pilate (“What crime has he committed?”)
implements P, while Herod is the implementation of the slaughter of the inno-
cents represented by H. The two systems are implemented in Objective Caml
[28] and are available at Herod web page®. Their implementations are described
in [18], where also a first evaluation of the performances of Pilate and Herod
is is carried out, on the base of a set of formulae generated by a naive random
generator.

Here, new experimental results are briefly described, obtained by running the
two provers on a set of 1600 sets of formulae, randomly generated by hGen [6],
and approximately equally partitioned into satisfiable and unsatisfiable. The
sets of formulae used for the benchmarks and the parameters used for their
generation can be found at Herod web page. The experiments were run on an
Intel Pentium 4 3GHz, with 3Gb RAM, running under Linux, and the provers
were given one minute timeout.

The new experiments confirm what already described in [18]: considering
the 1274 tests that both Pilate and Herod solved in the allowed time, Pilate is
in the average more than 50 times slower than Herod, and the median run time
of Pilate is more than 5 times Herod’s one. Moreover, Pilate runs out of time
almost 50% more often than Herod.

Maybe more interesting is the comparison between the two systems on a set
of hand-written formulae (already reported in [18]), which involve many <’s and
equalities, where the differences in treating equalities should be pushed to the
limit. The formulae we have used have the form:

@QIO"(@alag VANPTRWAN @anan+1 AN QF)

where &7 is a sequence of n ¢’s, dominating n nominal equalities, and F' is a
(non trivially) unsatisfiable formula. The size of such formulae is taken to be
n. Pilate can only solve problems up to size 100 in the allowed time of one
minute, and its execution time increases exponentially. On the contrary, Herod
can solve problems up to the maximal tested size (600), and its running times
seem to increase linearly.

The empirical results shown above reflect what one could have expected,
i.e.that Pilate consumes, in general, more resources than Herod. It is important
to point out, moreover, that the different performances are effectively due to
the different treatment of equalities. This fact is witnessed by testing the two
systems on modal formulae (with no nominals): run on a set of 400 modal
formulae randomly generated by hGen, the two provers had the same cases of
timeouts and the same average and median execution times. The same results,
showing that that all the difference between the systems is due to their treatment
of @, are obtained when running the two provers on the hand-tailored collection

3Herod web page: http://cialdea.dia.uniroma3.it/herod/
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of modal formulae proposed in [7], where in fact Pilate and Herod show the
same behaviour.

Although Herod is only at its first stage of development, it has been com-
pared with other more mature provers for hybrid logic, based on tableau calculi:
HTab [22], which implements the prefixed calculus presented in [12], and
Spartacus [21], based on the calculi presented in
[25] and previous works by the same authors. Both provers can be considered
to be much more mature than Herod, since they implement many important
optimization strategies, such as, for instance, backjumping. And in fact, the
relative performances of the three provers, Herod, HTab and Spartacus, run on
the set of hand-tailored collection of modal formulae presented in [7] (with no
nominals), show that Herod is far beyond the other two provers.

In order to compare the provers on their treatment of equalities, they have
been run on the same sets of formulae used for the comparison with Pilate.
Although the number of Herod’s failures is the highest one, its median run time
is better than HTab’s and Spartacus’s. Moreover, the average execution times
on the problems solved by both Herod and HTab are in favour of Herod. Finally,
in the average, the execution times of Herod and Spartacus, on the problems
solved by both provers, are comparable.

The efficiency of Herod’s treatment of equalities is even more apparent when
comparing the three systems on the set of hand-written formulae earlier defined,
up to size 600. The interest of such tests relies on the fact that they are meant
not so much to compare the provers in themselves, rather their different treat-
ments of nominal equalities. Herod’s run time grows up to 0.11 seconds, while
HTab reaches 0.28 seconds and Spartacus 0.24. This result suggests that, al-
though an important refinement and optimisation work still has to be done,
Herod’s approach to nominal equalities deserves some interest.

5 An extension of H

Like it has been done for P [13], H can be extended to deal with the global
modalities A and F and the converse modalities O~ and ¢~ provided that loop-
checks are performed so as to ensure termination. We recall that the semantics
of the global and converse modalities is defined as follows:

e M,wE AF if M,w' | F for each v’ € W;
e MywEO Fif M,w' = F for each w’ € W such that w’ Rw.

The operator F is the dual of A and O~ is the dual of O~

The rules for these additional operators are given in Table 2.

It is worth pointing out that there is no restriction on the applicability of
the &~ -rule; in fact, it is necessary to expand formulae of the form @, b in
order to obtain possible premises for the O and O~ -rules, of the form @Q,<a.

The blocking mechanism is similar to that already used in tableaux for de-
scription logics [23], then adapted to hybrid logic by [12]. We borrow here the
same terminology used in the latter. In the present context, however, since the
substitution rule is destructive and tableaux are to be formulated in the “nodes
as sets” style, the basic notions are somewhat different.

Definition 2. Let T be a tableau, © a branch of T and S a node of ©. Then:
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Converse rules

@,07 F,@y<Ca, S Q, O F, S

07) o7)

QyF,@,07 F,@,<a, S @pCa, QpF, QO F, S
where b is a new nominal

Global Rules

Q,AF,S A @.EF,S
Q.F,Q,AF,S ) Q,F,Q.,FEF,S
where ¢ occurs in the premise where b is a new nominal

Table 2: Rules for the converse and global modalities

1. A formula occurring in a tableau T is called native (in T ) iff it is in the
language of the root set, i.e. it does not contain any non-root nominal.

2. If a is a nominal occurring in S then Formsg(a) contains all the native
formulae labelled by a in S':

Formsg(a) ={F | Q,F occurs in S and F is native in T}

3. Two nominals a and b are said to be twins in S if Formsg(a) = Formsg(b).
4. =% denotes the reflexive and transitive closure of <e.

5. If a is a nominal occurring in S, a is blocked in S if there is a pair of
distinct twins b,c € S such that b,c <§ a.

In other terms, a and b are twins in a tableau node S if they label exactly
the same set of native formulae, and a nominal a is blocked if either a is a twin
of one of its ancestors, or it is a descendant of two distinct twin nominals.

Termination is ensured by the following blocking condition:

The rules <, O~ and E are only allowed to be applied to a formula @, F
of a tableau node S if a is not blocked in S.

Although the only significant difference with respect to the internalized cal-
culus proposed in [13] is the substitution rule, the termination and completeness
proofs of the extended calculus presented in this work conceal many subtleties.
Details can be found in [17].

We conclude this section with some observations on the loop checking mech-
anism. First of all, blocking is dynamic, i.e. a nominal ¢ may be blocked in
a node S and then un-blocked below S. In fact, S might contain two distinct
twins b, c <§ a, which later on are distinguished by the addition of some new
formula to one of them.

In the presence of the global and converse modalities, moreover, the weaker
restriction where a nominal a is blocked if it has a twin ancestor would not be
enough to ensure termination. In fact, let C' be a generation chain in a tableau
branch ©:

C =ag <o a1 <o as...
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It can happen that, for any finite initial segment
ag < a1 <@ a2 <@ ... <@ a

of C, ay has no twins, although there might be distinct twins among ayg, ..., ax_1-
In such cases, with the weaker restriction every ay can generate ax41. This is
exactly what happens, for instance, when a tableau for @, AOGO™p is built:
for any ¢ > 0, the two nominals a; and a;;1; of the generation chain become
twins only after that a;11 generates its child, which passes p back to a;+1 by
application of the O~ rule.

6 Concluding remarks

This paper describes an internalized tableau system for hybrid logic with the
satisfaction operator, named H, that can be used to decide validity/satisfiability
of formulae in HL(Q@), and proves its essential properties. Any tableau in H
is finite, independently of any rule application strategy (in other terms, the
calculus enjoys strong termination), and finiteness does not depend on loop-
checks. Loop checking becomes however necessary when extending the system
to treat the global and converse modalities, like briefly sketched above.

The focus of this work being the treatment of nominal equalities, the system
is compared with a calculus introduced in [12], which treats formulae of the form
@b in a different way. Both theoretical considerations, as well as experimental
results briefly described in Section 4, show that H embodies a treatment of
equalities that avoids the employment of resources to expand formulae labelled
by “useless” nominals, thereby significantly reducing redundancies introduced
by equalities.

The experimental results obtained are encouraging, and it it seems worth-
while to go on and refine the implementation of the system, i.e. Herod, both by
some routine work that still can be done, as well as by studying and experiment-
ing more effective rule application strategies and the implementation of basic
optimization techniques. Moreover, its extension to handle a more expressive
language have to be implemented.

A subject of future work is the study of extensions able to to cope with
the transitive closure of accessibility relations (similarly to propositional dy-
namic logic) and some restricted use of the binder (still allowing for terminating
tableaux), Here, as far as we know, really new ideas and techniques are needed.
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