
CLAUDIO CEKRATO Decidability by Filtrations 
for Graded Normal Logics 
(Graded Modalities V) 

A b s t r a c t .  We prove decidability for all of the main graded normal logics, by a notion 

of filtration suitably conceived for this environment. 

1. I n t r o d u c t i o n  

Graded normal logics ( G N L s )  are the extensions of modal normal logics to a 
language with graded modalities. The interpretation in usual Kripke models 
of a formula <>hA (n < w), whose main operator is a graded possibility, is 
there are more than n accessible worlds where A is true. 

When graded modalities were introduced (in [7], independently rediscov- 
ering a former idea of [8]), the purpose was to offer axiomatizations for the 
graded versions of the normal modal logics, and then to show completeness, 
compactness and decidability theorems for the fifteen main G N L s  between 
K ° and $5 °. Completeness and compactness were fully proved in several 
steps ([8], [7], [5], [6], [2]), while the decidability had only partial answers in 
[7], [9], [1], [10], [11]. We prove decidability for all of the main G N L s  by a 
suitable version of the notion of filtration, completing the basic investigation 
of graded modalities. 

Usually, when talking about filtrations one has in mind to start from a 
given model, then to obtain a quotient model with respect to a certain kind 
of set of formulas, and finally to suitably arrange the accessibility relation 
([12], [13], [14], [3]). On the contrary, we reduce a model to a finite one 
by combining generated models with usual filtration techniques and with 
controls on the grades of modalities, respecting in a quite natural way the 
properties of the accessibility relation. 

Finally, as a corollary, since graded modalities really extend the usual 
ones, our notion of filtration can be used also for the usual normal modal 
logics (by restricting the attention to the formulas that contain as modal 
operators only n0 and <>0), avoiding the problems that usual filtrations offer 
to respect the properties of the accessibility relation ([3]). 
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2. U s u a l  f i l t r a t i o n s  fa i l  

Filtrations are used when, having in mind to prove the decidability of a 
modal  system S, one proves that  S has the finite model  proper ty  (f.m.p.), 
i.e. tha t  it is complete with respect to the class of its finite models. Then,  by 
soundness, this amounts to proving that  if a formula A is not an S- theorem 
then there exists a finite S-model  where A is not valid. By completeness, if 
a formula A is not an S-theorem then there exists an S-model  (in general 
not finite) where A is not valid; so, to have the f.m.p, we must  only prove 
tha t  if there exists an S-model  where A is not valid then there exists a finite 
S-model  where A is not valid. 

But actually, usual filtrations assure a stronger result: for any model  
9.t = (W, R, V) and for any finite set of formulas F, closed under  subformulas, 
there exists an equivalence relation _~ induced by r and a finite model  ~/* = 
(W*,R*, V*), where W* = W / -  = {[w]:  w E W ) ,  such that  P./ [=w B 
iff 92" ]=[w] B, for each w E W and B E F; as an immediate  corollary if 
F is the set of the subformulas of A, then A is valid in 9A iff A is valh~ ~.n 

9A*. But in [2] a peculiar model was exhibited for the symmetr ic  systems 
K B  °, K B D  °, K B T  ° that  validates the formula (A --+ <~!iB A O!2C) A (B 
O!IA A O!1C) A (C ~ O!IA A O!IB) h (A V B V C) while every finite model  of 
those systems does not validate it. So for such symmetric  systems the usual 
filtrations fail. To prove the f.m.p, we allow filtrations preserving the value 
of at least one formula in at least one world. 

In the usual filtrations ([12], [13], [14], [3]) we easily respect the  value 
of modal  formulas whose main operator is the possibility, by making two 
worlds accessible in the filtration just when plausible; the usual modalities 
do not count accessible worlds, so that  to have one accessible world or n 
accessible worlds is the same thing. On the contrary, graded modalities 
count accessible worlds, so we must use sharper controls when setting the 
accessibility relation. 

In [9] (as in [1], [10], [11])it was also suggested that  the explosion of copies 
of equivalent worlds could be controlled by fixing as an upper bound the 
max imum of the indexes of the graded modalities occurring in the formula, 
plus one; but  this control also fails for symmetr ic  systems: e.g., the formula 
F = ©!2(A A O!2(B A --A A O!IA A O!0B)) forces a K B  ° symmetr ic  model  
to have at least 4 worlds ( that  agree on the subformulas of F )  where B is 
true,  while the maximum of the indexes is 2 and the suggested upper bound 
of copies is 3. However, we use the indexes to establish a local control of 
the number  of copies, abandoning, as we have done for canonical models 
(see [2]), the a t tempt  to find an algorithmic global control tha t  works well 
in every case. 



Decidability by Filtrations... 63 

3. G e n e r a l  f i l t r a t i o n s  

First for sake of simplicity we rewrite formulas using only the graded possi- 
bilities, transforming when necessary each formula into an equivalent one in 
accordance with rn~B = -~<)n-~B and <~!~B = ©~_IB A -,OnB. 

Then we introduce some technical notations about particular sets of 
subformulas that will be useful when proving the f.m.p.: given a model 
92 = (W, R, V), when determining the value of a formula A in a world w we 
are not interested in the local value (i.e. in w) of occurrences of subformulas 
of A that are in the scope of modal operators (in fact, we must take care 
only of their values in the accessible worlds). So we consider the set of local 
subformulas of A, LS(A), defined as: 

A e LS(A); 

i f B  e LS(A) and B = CAD(CVD,  C---+D, C ~ D )  then C, D E LS(A); 

if B C LS(A) and B = -~C then C C LS(A). 

As an example, if A = C -~ -©3(D V E) then LS(A) = { C --, -,Oa(D V 
E),  C, -~O3(D V E), O3(D V E) } while (D V E), D, E f~ LS(A). 

Furthermore, denoted as P the set of the propositional symbols of the 
language, let: 

P(A) = P N LS(A) 
M(A) = { O,~B : OnB e LS(A) } 

I(A) = { B : ~,~B e LS(A) } 

Thus P(A) is the set of the atomic formulas in LS(A), M(A) is the set of 
the formulas of LS(A) whose main connectives are the modal operators, and 
I(d) ( =  {O~B: <>nBe M(A)) ) is the set of those formulas of LS(A) under 
the scope of a modal operator. 

In the above example P(d) = {C}, M(A) = { <53(D V E) } and I(d) = 
{D V E}. We remark that those sets have not to be disjoint: e.g. when 

A = CA 02C, LS(A) = {CA02C, C, ~2C}, P(d)= {C},M(A) = {02C}, 
I(A) = {C}. 

Clearly, every formula of LS(A) is a propositional combination of for- 
mulas of P(A) and M(A); the value of the formulas of P(A) is completely 
determined in w, while the value of the formulas of M(A) depends on the 
value of the formulas of I(A) in the accessible worlds. 

Finally, we extend the above notations to sets of formulas: let r be a set 
of formulas, we define LX(r) = U{ LS(A):  A E r } and in a similar way we 
define P(r), M(r) and I(r). 
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Now, after these technical premises, we are ready to prove the f.m.p, for 
GNLs; first we start  with K°: 

let 92 = (W, R, V / be a K°-model ,  v be a world and A be a formula; we 
construct  a finite submodel of 92, namely 92", such that  92 ]=v A iff 92* I=v A, 
i.e. the f.m.p, holds. We construct 92* in three steps: 

1) first we restrict the domain to those worlds so near to v to influence 
the value of modal  subformulas of formulas of v; namely, we recognize the 
maximal  number  of nested modalities in A, m, and restrict the domain to 
the worlds accessible from v at most in m steps; 

2) then we reduce the accessibility relation so that  every world has only a 
finite number  of accessible worlds; we respect only the value of some selected 
modal  subformulas of A: they obviously form a finite set of formulas and 
each of them requires a finite number  of accessible worlds; 

3) finally, we restrict the domain again to the worlds accessible in a finite 
number  of steps from v by the new relation; since every world has only a 
finite number  of accessible worlds (by 2) and we can reach worlds accessible 
from v at most in m steps (by 1), we obtain a finite model; moreover,  we 
take care of the value of some selected modal  subformulas of A so that  we 
easily prove 92* preserves the value of A in v, i.e. the f.m.p, is proved. 

1) We define the degree of modal  complexity of formulas, O, as: 

O(P) = 0 
= o ( c )  + 

O(C A D ) = O ( C V  D)=O(C--+ D)=O(C ~ D) = max.{O(C),cg(D)} 
o( c) = o ( c )  

and 

O(r) = max.{ O(C) : C e I"} 

where F is a finite set of formulas (we really consider only subsets of the 
set of the subformulas of A, that  are finite). Obviously, we have 0(F)  = 
O(LS(r))=O(M(r)). 

Now we set: 

w/ 
LS~ 

. , ,  

W~+~ 
L S,~ + I 

= {v}, LSo = LS(A), Po = P(A), M0 = M ( A ) ,  I0 = I (A) ;  
= {w W:vRw}, 

= LS(Io), P1 = P(I0) ,  M1 = M(Io), I1  = I(10); 

= {w E W : there exists w' C W~ such that  wIRw}, 
= LS(In), P~+, = P(I~), Mn+l = M(I~), I,~+1 = I ( I~) ;  
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Since 0(LS(r ) )  = 0 (M(r ) )  = 0 ( I ( r ) )  + 1 = 0 (LS( I ( r ) )  ) + 1 (by defini- 
tion) the  degree of LSi decreases by  1 at each step; so after m = O(LS(A)) 
steps O(LS,~) = 0 so that  Mm = Im = 0 and LS,~ = Prn: here we stop the 
definition of the  W[. 

The restriction of the model  92 to the union of the W[ (i < m) is a 
(not still necessarily finite) submodel  that  respects the value of A in v. 
In fact,  let W '  = [_J{W[ : i <_ m} and 9.1' = 921w, = (W',  R',  Y'),  where 
R' = RIw, = R f3 (W' x W') and Y'  = Ylw, (i.e. V' is a valuation on W'  
such tha t  V'(w, P) = V(w, P) for every w E W'  and P • P, while the value 
for the  other  formulas is defined in the usual way).  Then 

a) 

b) 

c) 

in every world of 92~ the values of atomic formulas are the same as in 

92; 

for every w E U{W[ : i < m} the accessible worlds are exactly the 
same as in 92; 

each w E W'  could belong to more than one W -~ ,,  so that  we define 

p(w) = {i  < m :  e w ' } .  

Every  w E W '  preserves the values (in 92') of the formulas of LSj, Pj, Mj 
for each j E p(w), and in particular v satisfies A(e ns0); in fact: 

(o) 

(oo) 

ooo) 

in every world of W I the values of the formulas of Pj are the same as 

in 92 (by a); 

since LSm = Pm, in every world of W~ the values of the formulas of 
LSm are the same as in 92 (by o); 

for each i < m, if for every world of W[+ 1 the values of the formtflas 
of LSi+I(D Ii) are the same as in 92, then for every world of W[ the 
values of the formulas of Mi are the same as in 92 (in fact, when i < m, 
the accessible worlds are exactly the same as in 92, by b), so that  also 
the values of the formulas of LS~ are the same as in 92. 

So, using (o), start ing from W~m (by oo), in m steps (by ooo) we prove the 
thesis. 

2) Now we determine a suitable restriction of the accessibility relation R / 
tha t  respects the values of some selected modal  subformulas of A in every 
world; we show every world has only a finite number  of accessible worlds 

with respect  to this restricted relation and every intermediate relation be- 

tween this restriction and _R ~ also respects the value of some selected modal  
subformulas of A in every world. 
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As to notation, given two relations X and Y, X is a restriction of Y 
means that  X is defined on a subset of the domain of Y, and tha t  X and 
Y are the same on such set; on the contrary, X is a reduction of Y means 
only that  X is a subrelation of Y. That  distinction will be really meaningful 
when considering the properties of the accessibi~ty for the other  GNLs: 
in fact,  restrictions remain reflexive, symmetric,  transitive, euclidean, while 
reductions in general do not. 

Given w E W' (say w E W[), we select U{Mj : j c p(w)} as the set of 
formulas whose values are to be respected in w: so let 

I(w) = U{ Ij : j e p(w) } 

M+(w) = { C  e U { M j : j E p ( w ) } : V ( w , C ) =  I }  
M - ( w )  = U{ Mj : j e p(w) } \ M+(w) 

= { e w ' :  c W'+l. 

To respect the value of the formulas of U{Mj : j C p(w)} suffices restricting 
the accessibility relation in a way such that:  

d) the values of the formulas of I(w) are respected in all of the w -  
accessible worlds; 

e) for every w r E M+(w) there are more than n w-accessible worlds where 
B is true; 

f) for every w I E M - ( w )  there are not more than n w-accessible worlds 
where B is true. 

Recalling usual filtrations, we parti t ion R~(w) according to the values of the 
formulas in I(w), i.e. two worlds are equivalent (= )  iff they agree on the 
values of all of the formulas of I(w). Since I(w) is really a subset of the set 
of subformulas of A (by definition), a finite number  of classes Co, . . . ,Ch is 
induced by - .  

Let us consider one g E {go, . . .  ,Ch}; it may happen g is infinite, so that  
we need to reduce g in a reasonable way. 

To respect the values of the formulas of M - ( w )  we must  only avoid 
adding any new accessible world to g. 

As to formulas of M+(w), a reduction of g could affect only the values 
in w of tbrmulas O~B of M+(w) such that  B is true in (every world of) g; 
in any case, we are sure to respect the value of ©nB by making accessible at 
least n + 1 worlds of C. So let 

g(w,C) = max{n+  1: ©~B E ~ /+(w) ,  
V ' ( w ' , B ) = l  f o r w ' e C }  ( w h e n M + ( w ) ¢ 0 )  

= 0 (when M+(w) = 9) 
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tha t  is the number  of worlds of C that  are enough to respect in any case the 
values in w of all of the formulas of M+(w). 

So, to respect both  M-(w)  and M+(w), we need 

r(w, C) = min{g(w, C), card(C)} 

worlds of C. In fact, since we have not added any new accessible world 
we respect M - ( w ) ;  fur thermore,  let ~ B  E M+(w), let Cio, . . . ,Cim be 
the  classes of R ( w ) / -  where B is true; since 9.1' satisfies OnB in w (by 
hypothesis) ,  then n < card(Cio) + ... + card(Ci.~). Two cases can occur: 
(a) card(Cih) ~ g(w, Cih), which implies r(w, Cih) = card(eih), for every 
h _~ m,  so tha t  n < card(Cio) + . . . +  card(Ci~) = r(w,Cio) + . . . +  r(w, Ci~); 
(b) g(w,Cik) ~_ card(Cik), which implies r(w,G,) = g(w,C~k), for some 
k < m,  so tha t  (by the definition of g(w,Cik)) n < g(w,Cik) = r(w, Ci,) ~ 
r(w,Cio) + ' ' '  + r(w,Ci~). In any case, we have enough accessible worlds to 
respect ~nB E M+(w). 

This proof works also when R'(w) = 0 and when I(w) = 0: in these cases 
r(w,C)=o. 

So we reduce the accessibility relation R ~, stating that  the number  of the 
w-accessible worlds is r(w,C) for each class C; a simple way to do this is to 
well-order each class C and to make accessible the first r(w,C) worlds; in 
any case, by changing the ordering we change the relation, so that ,  really, 
we have a family of restrictions. Namely, given a well-order for each class 
C, let S be the reduction of R ~ defined as: 

~ s . ~  i~ ~ < ~(w, c) ,  for each w E W', C ~ R ' ( ~ ) / - ,  and ~ E C. 

Since we have a finite number  of equivalence classes and we allow only a 
finite number  of worlds in each class to be accessible, as a result only a finite 
number  of worlds are accessible (by S) from any w. 

So let ~ = (Wd, Relwd, Vlwd) be a model such that  

i) { w ' E W ' : w S w ' , w • W d }  C_WdC_W' 

ii) S C_ Re C R' 

iii) v • Wd. 

Every w E Wd satisfies in ~ the same formulas of LSj (and Pj, Mj) as it 
does in 92, for each j E p(w), and in particular v satisfies A ( •  LSo); in fact: 

(o) in every world of Wd the values of the formulas of Pj are the same as 
in 92~ (since the evaluation is still V); 
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(oo) 

ooo) 

since LSm = P,~ , in every world of W~ NWd the values of the  formulas 
of LSm are the same as in 91~ (by o); 

for each i < m, if for every world of W~[+ 1 N Wd the values of the 
formulas of LSI+I(~_/4) are the same as in 91' then for every world of 
W[ Cl Wd the values of the formulas of Mi are the same as in 911 (in 
fact, such a world w satisfies the proper ty  d - -  since Ii C_ LSi+I, by 
the inductive hypothesis - -  the property e - -  since there are enough 
accessible worlds, because Wd contains all of the worlds accessible by  
S, by iii, and Re ~_ S , by ii - -  and the proper ty  f, too - -  since we 
added no new accessible world, because Re C_ R ~, by ii), so tha t  also 
the values of the formulas of LSi are the same as in 91~. 

So, using (o), starting from W~ n Wd (by oo), in m steps (by ooo) we prove 
the thesis. 

3) Now we 

W,7+1 
o o .  

set: 

= {v}, 
= {w ~ W' :vSw}, 

= { w E W  t :  there exists w ~ E W *  such that  wlSw}, 

= {w E W t : there exists w ~ E W * _  1 such that  w~Sw}, 

and 

w *  = 

W* is finite: in fact, each world has only a finite number  of S-accessible 
worlds (by definition of S) and we construct W* start ing from only one 
world and considering only S-accessible worlds at each step; since we stop 
the construction after a finite number  of steps, W* is finite. 

Let 91" = (W*, SIw. , VIw.}: by construction, 91" respects all of the con- 
ditions i, ii and iii, so that  every w E W* satisfies in 91" the same formulas 
of LSj (and Pj, Mj) as it does in 91, for each j E p(w), and in part icular  
v satisfies A(C LSo). So P.t* is a finite model that  satisfies A in at least a 
world; the f.m.p, for K ° is proved. 

Now we prove the f.m.p, for all of the GNLs using the proof  used for 
K ° with suitable modifications for each system; in fact we must  take care 
the model  we construct is also a model of the system. 

When  constructing the finite model 91" for K °, we have reduced the 
relation R to R ~ and R ~ to S: but  R ~ is really a restriction of R, and so 
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it  main ta ins  a~ the  usual  propert ies of R (but,  possibly, seriality: this fact 
will oblige to do specific considerations for those systems in which seriality 
is involved)~ while S is a reduct ion of R ', so tha t  it can lose some of those 
propert ies .  

W h e n  cons t ruc t ing  the finite model  92* for any system S among K T  °, 
K 4  °, KT4  ° , K T 5  °, K B  °, K B T  °, K B 4  ° , K5 °, K45°~ the simplest way to 
avoid those problems is to consider the  suitable (reflexive, symmetr ic ,  transi- 
t ive, euclidean) closure of the  relation S, S, with  respect to  the  propert ies of 

the  accessibility of S-models ,  and to set 92* = ( W * , S I w .  , V I w . ) :  clearly 92* 

respects the  conditions i and iii; fur thermore,  S _C/g~ so tha t  S C_ ~1; since 
//~ (as R) satisfies the  properties of the accessibility of S-models ,  it coincides 
wi th  its closure: thus  S _C ~1 = R~; moreover S c_ S,  so tha t  92* respects 
also the  condit ion ii: 92* is a finite model  of the system tha t  satisfies A in at 
least one world; the  f .m .p ,  for K T  °, K 4  °, KT4  ° ($4°) ,  K T 5  ° ($5°) ,  K B  °, 
K B T  °, K B 4  °, K5 °, K 4 5  ° is proved. 

As to systems in which the axiom schema D ° is involved, bo th  R ~ and 
S are, in general,  not  serial. One could try to extend S to a serial relation, 
by making  accessible f rom any world w at least one world accessible by R~; 
bu t  this a t t e m p t  fails for any w with R~(w) = ~; since R is serial, such a w 
mus t  belong only to the  last level of W '  (whose accessible worlds were cut) ,  
i.e. w E W '  \ U{W[  : i < m}.  Fur thermore ,  the a t t emp t  to obta in  a serial 
accessibility by making  any world accessible f rom itself fails for every world 
w tha t  mus t  respect  the values of the formulas in M - ( w ) ;  in any case, for 
every w e W '  \ U{W[ : i < m} ,  M - ( w )  = 0. In conclusion, those two ideas 
fail - -  bu t  on different worlds, so tha t  we can apply one where the other  
fails, and  obta in  a finite serial model.  

First  we prove the  f .m.p ,  for the minimal  seriM system KD°:  

for any w E W '  such tha t  R'(w) ~ ~ let Xw be a world of R'(w);  so let: 

T = S u { : e W' and R'(w) # }, 
Wg  : {v}, 

. . .  

W.'~+ 1 = {w E W'  : there exists w' E Wn n such tha t  w ' T w }  

and 

w "  = 

W ~1 is finite: in fact, each world has only a finite number  of T-accessible 
worlds ( the S-accessible worlds plus one, by definition) and we construct  
W "  s ta r t ing  f rom only one world and considering only T-accessible worlds 
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each step; since we stop the construction after a finite number  of steps, W" 
is finite. 

Let 92" = (W ' ,  TIw,, , VIw,,): 92" clearly respects the conditions i and iii; 
furthermore, by the definition of x~, 92.1" respects also the condition ii, so 
that  every w E W"  satisfies in 92" the same formulas of LA d (and Pj, Mj) as 
it does in 92, for each j E p(w), and in particular v satisfies A(E LSo). 92" is 
serial except for those w E W" such that  R'(w) = O. So let: 

Q = TIw,, w { (w, w): w E W" and R'(w) = 0 } 

and 

92* = ( W ' , Q , V I w , , ) ;  

Q is serial; furthermore, R'(w) is empty only for any w E W"M [ W' \ [_J{W[ : 
i < m} ], i.e. worlds affecting only the values of formulas in Pro; so every 
w E W" satisfies in 92* the same formulas of LSj (and Pd, Mj) as it does in 
92, for each j E p(w), and in particular v satisfies A(E LSo). Thus 92* is a 
finite serial model that  satisfies A in at least one world; the f .m.p, for K D  ° 
is proved. 

As to the other serial systems, KD4 °, KD5 °, KD45  °, K B D  °, we suit- 
ably modify the construction of both 92" and 92* in a way similar to that  
done for non-serial systems. Namely, for any system fl among K D 4  °, KD5  °, 
K D 4 5  °, K B D  °, we consider the suitable (symmetric, transitive, euclidean) 
closure of T,  T,  with respect to the properties of the accessibiSty of S-models  

other than seriality, and set 92"= ( W ' , T I w , , V 1 w , , } :  92" clearly respects 
[ g 

the conditions i and iii; furthermore, reasoning as for non-serial systems, 92" 
respects also the condition ii: thus every w E W" satisfies in 92" the same 
formulas of LSj (and Pj, Mj) as it does in 92, ibr each j E p(w), and in 
particular v satisfies A(E LSo). As for K D  °, 92" is serial except for those 
w E W" such that  R'(w) = 0. So let: 

Q = TIw,, u { (w,w) :  w E W" and R'(w) = O} 

and 

92* = (W' ,Q,VIw, , ) ;  

Q is serial and also symmetric, transitive, euclidean as T is (depending on the 
system S); fur thermore , / / ' (w)  is empty only for any w E W"N [ W ' \  U{W[:  
i < m}],  i.e. worlds affecting only the values of formulas in Pm; SO every 
w E W" satisfies in 92* the same formulas of LSj (and Pj, Mj) as it does in 
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92, for each j • p(w), and in particular v satisfies A ( •  LSo). Thus 9.1" is a 
finite S -mode l  tha t  satisfies A in at least one world; the f.m.p, for K D 4  °, 
K D 5  °, K D 4 5  °, K B D  ° is proved. 

Finally we remark  that  we have always supposed every G N L  S complete 
with respect to the class of S-models:  in fact completeness was proved, by 
general canonical models, in [2] - -  but the proof of the existence of the 
general canonical model for K D 4  (and so the proof of completeness) was 
unintentionally omit ted by the author; that  canonical model is easily seen 
to be definable along the same lines as for K or for K D  or for K4,  and does 
not give rise to any technical trouble; so completeness holds, and genera] 
filtrations give rise to the f .m.p. 

4. T h e  d e c i d a b i l i t y  o f  G N L s  

In general, the finite model  property  is not sufficient to assure we have found 
a recursively enumerable (r.e.) class of models: in fact, in [15] was exhibited 
a r .e . -axiomatized modal  system ( that  is a recursively axiomatized one, by 
[4]) whose class of finite models is not r.e. However, when the system has also 
only a finite number  of axiom schemata  we can establish in a finite number  
of steps if a finite mode] is a system model, and so the class of finite models 
of the system is r.e. 

In our case, as shown in [1], since GNLs  are only a syntactical extension 
of the usual normal  logics (NLs) ,  the models of GNLs  are the same of the 
corresponding NLs: e.g. to establish a model is a K4° -mode l  we must  only 
prove it is a transit ive model, that  is a K4-model ;  so we do not need to test 
all the schemata  tunA ~ rn0rn~A but only the usual n0A ~ rn0E30A. Since 
the  N L s  corresponding to the main G N L s  have a finite number  of axiom 
schemata  ([3]) the classes of finite GNLs-models are r.e. 

Fur thermore ,  G N L s  are recursively axiomatized ([7], [5], [6], [2]), so tha t  
we have bo th  a r.e. set of theorems and a r.e. set of non-theorems:  G N L s  
are decidable. 

5. C o n c l u s i o n s  a n d  a c k n o w l e d g e m e n t s  

We have proved the decidability of the main GNLs  between K ° and $5 ° by 
general filtrations. The use of filtrations for graded modalities was suggested 
in [9] and developed in [1], [10], [11]. Unfortunately symmetr ic  systems in- 
hibit any a t t empt  to globally control models (see [2]), so that  old canonical 
models do not exist and the usual filtrations fail. In [2] the author  introduced 
general canonicM models and proved completeness for the GNLs;  now we 
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have introduced a genera] filtration method for G N L s  that  works well in ev- 
ery case, and we have proved both the finite model property and decidability 
for the GNLs.  

Finally, I would like to acknowledge my grati tude to Prof. M. Fattorosi- 
Barnaba for the encouraging conversations we had along all the developing 
of  the theory of graded modaIities, and especially about the topic of the 
present work. 

I also thank the referees for the fruitful and perspicuous suggestions that  
made this work better. 
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