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Abstract. We prove the canonical models introduced in [D] do not exist for some graded 
normal logics with symmetric models, namely KB ~ K B D  ~ K B T  ~ so that we define a new kind of 
canonical models, the general ones, and show they exist and work well in every case. 

1. Introduction 

Graded modalities investigate combinatorial properties of Kripke models: 
graded possibility operators 0 i(i~N) and their dual ones, graded necessity 
operators [2i = 7 0i ~ (i E N), were introduced in [FD],  using natural num- 
bers as grades so to capture models' features expressible with reference to finite 
cardinalities. 

Using no ta t ion  from [FD],  let Tw(e ) = {w'e W: wRw' and V(w', e) = 1}, 
(W, R, V) being a Kripke model and e a well formed formula, so that the 
"meaning" of the graded possibility operators are explicated by 

g(w, 0, ~) -- 1 iff l Tw (a)t > i (i e N). 

Thus, as in [FD],  we can 
a) easily obtain, by duality, suitable "meanings" for the graded necessity 

operators []~; 
b) introduce new useful operators 0 [~(ieN), whose "meaning" is 

g(w, ~ !i~) = 1 iff [rw(c~)l = i ( ieN);  

c) observe that graded modalities extend standard ones, i.e. 0 o and Z]o 
have the same "meanings" of 0 and [] respectively. 

In fact the study of Kripke models involving the graded modalities has been 
developed in a way closely resembling the classical one, and the research has 
been so far focused on complete axiomatizations of the graded versions of 
normal  logics (GNLs): in EFD], [D], [FC] K ~ K4 ~ KT ~ KT4 ~ KT5 ~ were 
introduced and shown complete with respect to the relevant class of Kripke 
models (we denote by S ~ the graded version of a normal  modal  logic S). 

In this paper we show that the canonical models, introduced in I-D] as tools 
to derive more easily completeness theorems for GNLs, cannot make this job 
for systems like KB ~ KBD ~, KBT ~ because they do not exist at all. 

So we introduce a new kind of canonical model for a GNL, that exists and 
works well in every case and allows to complete the program to prove 
completeness for all the relevant GNLs. 
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2. A critical model of KB ~ K B D  ~ K B T  ~ 

Now we introduce a model 91 of KB ~ K B D  ~ K B T  ~ which shall play 
a central role to introduce the new kind of canonical models. 

We build 91 by dividing its worlds into three disjoint classes, called a-, b-, 
c-class respectively, each being the set of worlds in which only the proposition- 
al variable A, B, C are respectively true. 

Furthermore, each world of 91 has only a finite number of accessible worlds, 
and we shall prove that, assuming the "old" strong canonical models of KB ~ 
K B D  ~ K B T  ~ exist, they must have a finite submodel equivalent to 91, i.e. such 
to validate the same set of sentences which 92[ validates. On the other hand we 
shall prove also that 91 cannot be equivalent (in. the above sense) to any finite 
model of KB ~ K B D  ~ K B T  ~ so getting a contradiction and concluding those 
strong canonical models do not exist. 

As to notation, we use capital latin letter for propositional variables, small 
ones for Kripke worlds and small greek letters for wff (=  well formed 
formula(s)). 

Let 9I = (W, R, V) where 

W =  {at: i ~ N }  u {bi: i e N }  u {c,: i e N }  

V(a~, A /x q B / x  -] C) = g(bi ,  -7 A A B A -I C ) =  

= V(c~, q A  A q B  A C ) =  I ( i~N)  

V(w, P) = 0 (w ~ W, P :~ A,  B, C) 

R is the least reflexive and symmetric binary relation that satisfies 

aiRbiRCi, aiRc2! , aiRc2i+l ( i e N ) .  

So one can easily realize that 91 looks like the following picture: 

N a -  worlds b-wor tds  c-wor lds 

0 ' 
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By definition, one can see also that each wff has always the same truth value 
in all of the a-worlds, and the same thing happens in b- and c-worlds. 

Furthermore, 0 !1 B and 0 !2 C are true in a-worlds, 0 !1 A and 0 !1 C are 
true in b-worlds, and 0 !1 A and 0 !1 B are true in c-worlds. 

Finally, let us observe that R is symmetric, serial and reflexive so that 9.1 is 
a KB ~ KBD ~ and a KBT~ 

Now we are ready to prove that 9.I cannot be equivalent to any finite model. 

T~FOREM 1. The following sentences 

(1) A--+ O!IB/x 0!2 C 

(2) B ~  ~!IA /x O!,C 

(3) C--~ 0!'IA /x O!IB 

(4) A v B v C 

are valid in 9.I; on the other hand, each finite symmetric model that validates (1), 
(2), (3), validates -q (A v B v C) too. 

PROOF. The first statement obviously holds: (1), (2), (3) and (4)are clearly 
true in every world of 9.I, by definition. 

Let us prove -] (A v B v C) is valid in every finite symmetric model that 
validates (1), (2), (3). Let (IV, R, V) be such a model and define 

d = {we W: V(w, A) = 1} 

= {we w: V(w, B) = 1} 

cd = {we W: V(w, C)--  1}. 

We shall show that 

I d l  = I~1 = I~t 

I~1 = I d l .  2.  

From these relations the claim is easily proved, because they imply 
1~r = Id l "  2, and this implies in turn that either I d l  = 0 or  I d l  > m, but W is 
finite so tsr = 0 and then I~1 = I~1 = 0 too.  As a conclusion ~ (A v B v C) 
holds in every world, so is valid in (W, R, V). 

We have to show the above relations among Id l ,  I~1, I~fl hold. Actually 
R defines a bijection between d and ~ :  if w E d then V(w, A) = 1 and, by (1), 
there exists exactly one w' c ~ such that wRw', i.e. R is a function from d to N; 
on the other hand w ' e N  implies V(w', B ) =  1, so that, by (2), there exists 
exactly one w e d such that w' Rw, namely, by symmetry, such that wRw': so 
R is both surjective and injective and [tit = IN[. The same argument applied to 

and cg, instead of d and ~ ,  gives I~1 = 1% and the first relation is proved. 
Taking  into account (1) and (3), one can see, arguing as above, that R is 

a surjective function from r to d ,  and in fact that IR -1 (w)l = 2, for every 
w e  d ,  i.e. the second relation holds. �9 

COROLLARY 1. 9.I is not equivalent to any finite symmetric model. 
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3. General canonical models 

In this section we shall find axiomatizations for K B  ~ K B D  ~ K B T ~  after 
a brief syntactical introduction we shall show that the "old" and strong 
canonical models, introduced in [D], for those systems do not exist. This fact 
will force the introduction of a new (in fact, weaker) kind of canonical models, 
which we shall call general. 

Let us define the axiom schemata B ~ D ~ as the natural translations in the 
graded environment of the classical ones: 

D ~  [ Z o ~  (>o ~ 

and write again the characteristic axiom of K T  ~ i.e. T ~ using Do instead of L 0 
as in [FD],  [D-l: 

T ~  [S]o ~ -+ ~. 

Now we can define the syntactic bases for our systems: 

Axioms of K B  ~ = the axioms of K ~  ~ 

Axioms of K B D  ~ = the axioms of K ~ + B ~ + D ~ 

Axioms of K B T  ~ = the axioms of K ~ 1 7 6  ~ 

and the rules of inference are the usual ones: modus ponens and (graded) 
necessitation (see [FD],  [D]). 

It is obvious that the above defined systems are sound with respect to the 
relevant classes of models: the symmetric, the symmetric and serial, the 
symmetric and reflexive Kr ipke  models. 

Now we recall the main features of the "old" canonical models and we point 
out their limits: they are defined in [D],  assuming as worlds all the mc-sets 
(=  maximal consistent sets) of formulas and repeating each one a convenient 
number of times; this repetition is ruled by the two functions (~ denotes the 
class of all the mc-sets of formulas, F and F' are m c - s e t s )  

m: ~ •  = row{m} 

m': ~ - + m + l  

(we write m' instead of m ( - ) ,  as in [D], to avoid confusing notations), such 
that m (F, F') represents the number of U-copies which every F-copy needs to 
access to, and m' (F) represents the global number of F-copies which are needed 
in the model .  

Furthermore, an accessibility relation R is suitably defined (taking into 
account the properties induced by the various axiom schemata), and finally an 
evaluation V is defined in such a way that, roughly speaking, "P  iff e" holds for 
all formulas ("p iff e" means that, for a formula, truth in such a world, namely 
in a mc-set, is the same thing as belonging to it). 

From this, completeness and compactness are easily attained. 
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Now, if we want to preserve this conceptual schema, we cannot touch the 
"~  iff ~" feature, of course; moreover we may note the purpose of the function 
m is to explicate power links between any two mc-sets, and in fact it is too 
closely related to the "meaning" of the D i, 0 i operators to allow modifications 
(see [D]): 

re(F, U ) =  {glob { n e N :  O ! , ~ F  for some o~EF'} ifotherwise.this set is not empty 

On the other hand the function m' cannot be strongly affected by R, that is 
only required to be symmetric; in fact m' is defined in [D] as 

m" (r) = Iub (m (r', F): F' e 4)} 

and its purpose is to bound the number of replicas of F. 
However, from our point of view graded canonical models are like puzzles, 

where one does not care for the number of pieces but needs to put every piece 
in the right place. 

The following theorem strengthens this opinion. 

THEOREM 2. Strong canonical models for  KB  ~ K B D  ~ K B T  ~ do not exist. 

To prove the above theorem we need a technical lemma. 

LEMMA 1. Let  A be a G N L  with axiom B ~ and F, F' me-sets o f  A; then 

m(F, F') r O iff m(F', F) r O. 

PROOF. We show only the left-to-right implication, the other one being 
proved similarly, 

Assume m (F, F') ~ 0: for every formula fl, if fi e F then [] 0 ~ o fi E F, so by 
Lemma 3-iii) of [D], we have ~) o fle F'; therefore m (F', F) r 0, by Lemma 3-ii) 
of [D]. �9 

Now we can prove theorem 2. 

PROOF OF TUUOREM 2. Let us consider the model 91 and call F,,  Fb,/ 'c the 
sets of valid formulas in a-, b-, c-worlds respectively; F, ,  Fb, F c are mc-sets of 
KB ~ K B D  ~ K B T  ~ because all of the a-worlds are copies of any fixed one of 
them (in the sense they coincide for formulas' evaluations), and the same holds 
for b- and c-worlds. 

Using indexes i, j e {a, b, c}, we easily have m (F i, F j) = 1 for (i, j) % (a, c), 
and m ('Fa, Fc) = 2. 

Furthermore m (F, Fi) = 0, for every other mc-set F and i E {a, b, c}': in fact, 
being F va Fi, there exists a wff fl~ ~ F - F i  so that fl = fla /X fib A tic ~ F and is 
false in all of the worlds of 9.1; thus 0 !o fl ~ Fi and this implies m (Fi, F) = 0, that 
is re(F, F i ) =  0, by Lemma 1. 

So, by the definition of m', we have m'(F,) = m'(Fb) = 1, m'(Fc) = 2: this 
means that strong canonical models of KB ~ K B D  ~ K B T  ~ have one  copy of 
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F~ and Fb, two copies of F c. This situation implies "~  iff ~" does not hold and 
then the claim follows. 

In fact, suppose "~  iff ~" does hold: then for every F r F i, iE {a, b, c}, if 
fi is the related formula, as above, <)!ofieFi implies <)!off holds in Fi, so that 
every copy of F is not accessible from any copy of F,, F b, Fc; thus the 
restriction of such a canonical model to the copies of Fa, Fb, F c saves the truth 
values of the formulas of these worlds, and, by the definition of F~, the valid 
formulas of the restricted model are exactly the 91-valid formulas. But this 
restricted model is a symmetric and finite one (it has four worlds) and by 
Corollary 1 it cannot be equivalent to 2t: contradiction. [] 

The preceding proof shows not only that the usual control on the power 
of the set of needed copies of me-sets (i.e. m') fails its goal for some 
symmetric systems, but also that every control on the power of such sets 
which requires a finite number of copies of Fa, Fb, Fc fails too. In fact in 
that case we could repeat the above proof, using Corollary 1 and getting 
again a contradiction. 

On the other hand the only information we have about F~, F b, F~ (namely, 
the function m, that controls the power of me-sets' pairs, has always finite 
values) is not sufficient to deduce that at least N o copies of F~, F b, Fc are 
needed in a "good" canonical model. 

This seems to condemn to failure any attempt to deduce a global control on 
the power of the set of copies of a mc-set by a world-to-world power bound, 
and a highly problematic task to try to find any "algorithmic" control of power 
in strong canonical models (i.e. by modifying the definition of m'). 

The main modifications we do now to introduce general canonical models 
are, firstly, to repeat each me-set in a countable number of copies and, secondly, 
to associate with each of  these copies various types of orderings, related to the 
particular me-set and the particular system under examination. 

Note that in what follows re(F, F'), F and U being mc-sets, will be 
considered sometimes as an ordinal number and sometimes as a cardinal 
one (the context will reveal its nature, anyway) and we shall use | 
as the ordinal product, while x will indicate the usual cartesian product. 

Formally, for each me-set F we shall insert in a general canonical model 
a set cp(F) of N o copies of F; so we can define a general canonical mode~ 
gJl = (W, R, V) as follows: 

w = U {cp (r): r E 
R is defined with the help of various orderings on cp (F) 
V respects "~  iff e" for all the formulas. 

Before proving the canonical model existence theorem we need a technical 
lemma: 

LEMMA 2. Let A be a GNL with the axiom D~ for any me-set F of  A there 
exists another mc-set F' of  A such that re(F, U ) ~  0. 
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PROOF. By a standard argument (see e.g. [C], theor. 5.13) we get that {fi: 
fi is a wff and [] 0 fie Y} is a A-consistent set, so there exists a mc,extension of it, 
say U .  W e  have 

(0) for every wff f i eF ' :  <)!ofi(~F; 

in fact, otherwise, there exists a wff f i eF '  such that V-] o ~ f i eF ,  so that 
-7 f i eF ' ,  by definition of F', and U is inconsistent: contradiction. 

From the definition of m and (0) we get re(F, U)ve  0. �9 

THEOREM 3. General canonical models for  KB ~ K B D  ~ K B T  ~ exist. 

PROOF. Let us consider the model 931 = (W, R, V), where W = U {cp(F): 
F e~}.  We set the accessibility relation R as follows: for each Y, F'e~b 

a) if re(F, F ' ) r  0 (and so also m(F', F ) ~  0, by Lemma 1) we define on 
cp (F) and ep (F') orderings of type c0 | m (F', F) and co | m (F, F'), respectively, 
and put 

(F ,  n, i) R (F' ,  n , j )  for each n e e ,  i em(F ' ,  F), j e m ( F ,  U); 

b) if re(F, U ) =  0 (and so also re(U, F ) =  0, by Lemma 1) we state any 
copy of F' is inaccessible from any copy of F, and viceversa; i.e. we p u t  

R c~ [cp (r) x cp (r ')] = R c~ [cp (r') x cp [r)] = O. 

Finally we define V so that "~  iff e" holds for propositional symbols. 
We show the accessibility relation has the required properties in the various 

cases: in every case R is clearly symmetric; moreover, in the case of K B D  ~ we 
have, by Lemma 2, that for any F e ~b there exists F' e ~b such that m (F', F) r 0, 
so R is serial by the above definition; in the case of K B T  ~ by Lemma 7 of [D1, 
we have m (F, F) r 0 for any F e ~, so that, by the use of the indexes in the 
definition, R is reflexive. 

Now we prove "~  iff e" holds for every formula: by the definition of R we 
have clearly that for any copy of F there are exactly m (F, F') copies of U 
accessible from F, so that  the Theorem 1 of [D] and the above choice of 
V imply the  statement. �9 

Theorem 3 yields completeness and compactness theorems for KB ~ K B D  ~ 
K B T  ~ in the usual way. 

4. Existence of general canonical models for GNLs 

In this section we shall show that general canonical models exist for all the 
graded versions of the fifteen main normal graded systems between K ~ and $5 ~ 
(see [C], fig. 4.1 and fig. 5.1), i.e. those graded systems whose models are the 
Kripke models with an accessibility relation that has any combination of the 
main properties (seriality, reflexivity, symmetry, transitivity, euclideaness). Of 
course, they allow to prove general satisfiability theorems (so completeness and 
compactness) for those systems. 

The preceding section displays such a result for KB ~ K B D  ~ K B T  ~ 
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Similar results for strong canonical models of other systems have been 
obtained already (see [FD],  [D],  [FC],  [B]): so, as a first example, we shall 
adapt those proofs to show the existence of general canonical models of those 
systems. 

Let us recall the axioms' schemata 4 and 5 and their graded versions 4 ~ 
and 5~ 

4 = [ Z ] o ~  D o D o  ~ 
4 ~ = [Z].e ~ Do [Z.e  (n~N) 
5 = 0o E]o e-- '  Do e 
5 ~  00 [Z],e ~ [ l , e  (heN). 

THEOREM 5. General canonical models exist for /(o, /(D o, / (T o, /(4 o, /(T4 o, 
/ (T5 ~ So those systems are complete and compact. 

PROOf. Given any one of the quoted systems, we need to show that its 
general canonical model exist, that is it satisfies "~  iff e" for any formula. 

To this purpose we can use the existing proofs (see the above quotation), 
redefining the accessibility relation R in such a way to make it work always on 
a countable set of copies of mc-sets: the passage from "~  iff e" for propositional 
symbols to "~  iff e" for all the formulas goes in the same way as in the old 
proofs. 

We shall use the schema 

system's name: - axioms 
- models 
- definition of R in the canonical model 

to compare systems with each other and to stress their main technical features. 
However we strongly point out that canonical models have different sets of 

worlds, depending on the system itself, and that the required properties of the 
accessibility relation are expressed by the function m in specific lemmas. 

In the following schemata the relation R will be apparently the same for 
different systems, because of the same technical definition, but it links really 
different sets in different ways (by different lemmas), so having in fact different 
properties. 

/(o - axioms as in [D] 
- -  all Kripke models 
- R as in [D], i.e. we associate with every cp (F) an ordering of type 

co and define 

(F, i) R (F', j)  for each i~co, jEm(F, F'); 

K D ~  - -  K O  + D o 

- -  all serial Kripke models 
- R as in [D],  i.e. we associate with every cp(F) an ordering of 

type co and define 

(F, i )R (F ' , j )  for each i~co, j~m(F, F'); 
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seriality follows from Lemma 2 (completeness and compactness 
theorems for this system were proved for the first time in [B], by 
strong canonical models); 

K T  o _ KO + T o 

- all reflexive Kripke models 
- R as in [D], i.e. we associate with every cp(F) an ordering of 

type m and define 

(F, i) R (F', j )  if F ~ F' or i ~ m (F, F) 
(F,  i) R (F,  h) otherwise 

for each iem, jem(F,  F'), he[re(F, F ) - { 0 } ]  w {i}; 

K 4  o _ K o + 4 ~ 

- all transitive Kripke models 
- R as in [D],  i.e. we associate with every cp(F) an ordering of 

type m and define 

(F, i ) R ( F ' , j )  for each i~co, j~m(F, F'); 

K T 4 ~  - axioms as in [FC] 
(=  $4 ~ -- all reflexive and transitive Kripke models 

- R is defined as in [FC],  but avoiding bounds on the number of 
blocks b (IF]), which is put = m; so we associate with every cp (F) 
an ordering of type m|  re(F, F) and (recalling from [FC] the 
relation 0 and the number b (F, IF'I), considered as an ordinal one) 
we define 

(F,  n, i ) R  (F' ,  k, j )  if not-FoF' 
(F,  n, i ) R  (F' ,  n, j )  otherwise 

for each nso ,  iem(F, F), jem(F',  F'), keb(F, [F']); 

K T 5 O :  - K o + T  ~  ~ 

(--- $5 ~ - all reflexive and euclidean (i.e. reflexive, symmetric and transitive) 
Kripke models 

- as to R, we have m (F, F) ~ 0 for each mc-set F (see [D]), so we 
consider an ordering of type m | re(F, F) on cp (F) and define 
a) if m (F, F') ~ 0 then 

(F,  n, i) R (F' ,  n, j )  for each n e co, i ~ m (F, F), j ~ m (F', F') 

b) if m (F, F') = 0 then 
no copy of F' is accessible from any copy of F. 

This completes the proof of the theorem. �9 

Now we can prove the completeness and compactness theorems for the last 
symmetric system KB4 ~ whose models are the symmetric and transitive Kripke 
models, and which has / ( ~ 1 7 6 1 7 6  as a complete axiomatization: 

THEOREM 6. The general canonical model of KB4 ~ axiomatized as above, 
exist; so it is complete and compact. 
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PROOF. We can use the proof we used for KT5 ~ with slight modifications: 
first of all, we have to pay attention to keep copies of any mc-set F such that 
re(F, F) = 0 totally inaccessible from any other world; furthermore, following 
the completeness proof for KT5 ~ (=  $5 ~ in [D], we have to replace the use of 
axiom 5 ~ in Lemma 8 of [D] by our Lemma 1. [] 

To complete the treatment of euclidean systems (i.e. those having 5 ~ among 
their axioms) we need the following lemma: 

LEMMA 3. For every system having 5 ~ among its axioms one has 

m (r",  r ')  >1 m (c, 1% 

for any F, F', F"e ~b such that re(F, F") r O. 

PROOF. By the definition of m we need only to prove that <), ~ e F" when 
~ , ~ F  and aeF ' .  

In fact, for every wff ~, if 0 , ~ e F  then V], < ) , ~ F  (by axiom 5~ so 
( } , ~ s  (by the hypothesis re(F, F" )#  0 and Lemma 3 of [D]), i.e. the 
thesis. [] 

Now we can prove our last theorem, stressing that the proof of the critical 
passage from "~ iff ~" for propositional symbols to "~  iff ~" for all the 
formulas goes in the same way as in K ~ using Theorem 1 of [D]. 

THEOREM 7. General canonical models of K5 ~ KD5 ~ K45 ~ KD45 ~ exist. So 
those systems are complete and compact. 

PROOF. Following the same style of Theorem 5, we set 

K 5 o :  - -  K o +  5 ~ 
- -  euclidean Kripke models 
- R as in [D], i.e. we associate with every cp (F) an ordering of type 

0~ and define 

(F, i) R (F ' , j )  for each ier j~m(F,  F'); 

by Lemma 3, R is euclidean, that is if 

a) (F, i ) R  (F', h)  and b) (F, i )R  (F", k) 

then (F' ,  k ) R  (F', h): in fact, by the. definition of R, a) yields 
h < re(F, F') and b) implies re(F, F" ) r  O, that implies in turn 
(Lemma 3) m (F, F') <~ m (F", F'), so h < m (F", F') and the claim 
follows; 

K D S ~  - -  K o + D ~  ~ 
- all euclidean and serial Kripke models 
- R as in [D], i.e. we associate with every cp(F) an ordering of 

type co and define 

(F, i) R (F ' , j )  for each i~o), jEm(F, U); 

seriality follows from Lemma 2 and euclideanness from Lemma 3, 
as above; 



General canonical models... 251 

K 4 5 ~  m 

m 

K o + 4 ~ + 5 ~ 

all transitive and euclidean Kripke models 
R as in [D], i.e. we associate with every cp(F) an ordering of 
type ~o and define 

(F, i) R (F ' , j )  for each i~o~,j~m(F, F'); 

transitivity follows from Lemma 6 of [D] and euclideanness from 
Lemma 3, as above; 

K o + D ~ + 4 ~ + 5 ~ 

all serial, transitive and euclidean Kripke models 
R as in [D], i.e. we associate with every cp(F) an ordering of 
type ~o and define 

(F, i) R (F ' , j )  for each i~o~,j~m(F, U); 

Lemma 2 yields seriality, Lemma 6 of [D] transitivity and 
Lemma 3 euclideanness. 

K D 4 5 O :  - 

This completes the proof of the theorem. [] 

5.  C o n c l u s i o n s  a n d  a c k n o w l e d g e m e n t s  

In this paper we have proved that the "old" and strong canonical models do 
not exist for some symmetric GNLs. 

In fact they include a global control on the power of the set of needed 
replicas of mc-sets, based on the number of worlds that are one-step accessible. 

So strong canonical models exist and work well both for systems whose 
accessibility relation does not care of distant worlds (as e.g. K ~ KD ~ KT ~ and 
for systems whose accessibility relations make many-steps distance equivalent 
to one-step distance (i.e. the transitive GNLs). 

But for systems whose accessibility relation has an intermediate strength (as 
the symmetric GNLs KB ~ KBD ~ KBT ~ strong canonical models do not exist 
at all. Actually we have exhibited a semantical reason of this failure, that is the 
critical model 9A. 

So we have introduced a weaker, but more useful, notion of canonical 
model of a GNL, that exists and works well in every case, so providing 
completeness and compactness theorems for all the" relevant GNLs. 

Finally I like to gratefully acknowledge the fruitful and encouraging 
conversations I had with Prof. M. Fattorosi-Barnaba about the topic of this 
work. 
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