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Abstract We modify the payment rule of the standard divide the dollar (DD) game
by introducing a second stage and thereby resolve the multiplicity problem and imple-
ment equal division of the dollar in equilibrium. In the standard DD game, if the
sum of players’ demands is less than or equal to a dollar, each player receives what
he demanded; if the sum of demands is greater than a dollar, all players receive
zero. We modify this second part, which involves a harsh punishment. In the mod-
ified game (DD′), if the demands are incompatible, then players have one more
chance. In particular, they play an ultimatum game to avoid the excess. In the two-
player version of this game, there is a unique subgame perfect Nash equilibrium in
which players demand (and receive) an equal share of the dollar. We also provide an
n-player extension of our mechanism. Finally, the mechanism we propose eliminates
not only all pure strategy equilibria involving unequal divisions of the dollar, but also
all equilibria where players mix over different demands in the first stage.

Keywords Arbitration · Divide the dollar game · Equal division · Implementation ·
Subgame perfect Nash equilibrium · Ultimatum game

“Practically speaking, why threaten such punishment if the threat is likely to be empty and there are, mor-
eover, ‘softer’ ways of inducing reasonable behavior?”

(Brams and Taylor 1996, p. 173)
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1 Introduction

The quote above refers to the punishment threat and egalitarian behavior in the cele-
brated Divide the Dollar (DD) game. The divide-the-dollar game is a special case of
Nash’s (1953) demand game, where the bargaining frontier is linear. In the DD game,
two players simultaneously demand shares of a dollar. If the sum of their demands is
less than or equal to a dollar, they receive their corresponding demands; if the sum of
their demands is greater than a dollar, each player receives zero. Since this simple game
encapsulates important characteristics of most bargaining problems (e.g., parties can
secure a surplus if they can agree on the way it is to be shared; otherwise they cannot),
it received great interest (Binmore 1998; Kilgour 2003). However, despite its appeal-
ing features the DD game suffers from an essential drawback: the Nash equilibrium
does not have much predictive power since any division of the dollar is a Nash equi-
librium. Therefore, in its perfectly divisible dollar version, there are infinitely many
Nash equilibria in this game. One may think that 50–50 division is the most likely
outcome, possibly due to its prominence, symmetry, or presumed fairness. In fact,
this is what is suggested theoretically (Schelling 1960; Sugden 1986; Young 1993;
Huyck et al. 1995; Skyrms 1996; Bolton 1997)1 and observed empirically (Siegel
and Fouraker 1960; Nydegger and Owen 1975; Roth and Malouf 1979). Nevertheless,
from a standard game theoretical point of view the 50–50 division is just one of the
infinitely many Nash equilibria. This makes the research program on mechanisms
that resolve the multiplicity problem and induce reasonable behavior an auspicious
one.

To the best of our knowledge, Brams and Taylor (1994) is the first study that aims
to resolve the multiplicity problem in the DD game in favor of the equal division. They
offer three modifications of the standard DD game, in which they change the payment
rule (DD1), add a second stage (DD2), or do both (DD3). All of these mechanisms
implement equal division in equilibrium. Brams and Taylor (1994) also list five char-
acteristics that any reasonable mechanism should satisfy. These are (i) equal demands
are treated equally; (ii) no player receives more than his demand; (iii) if the estate to
be divided is sufficient to respect all players’ demands, then everyone should receive
his demand; (iv) the estate should be completely distributed in any case; and (v) if
each player’s demand is greater than E /n (E is the value of the estate to be divided
and n is the number of players), then the player with the highest demand should not
receive more than what the player with the lowest demand receives. They show that no
reasonable mechanism can implement the equal division if the equilibrium concept
used is the iterated elimination of weakly (or strongly) dominated strategies.

In a similar fashion, Anbarcı (2001) modifies the payment rule in case the sum of
players’ demands exceeds a dollar. The author interprets incompatible demands (i.e.,
d1 + d2 > 1) as each player asking for a compromise from the other. Anbarcı (2001)
mechanism requires each player to make a compromise identical to the one he asks
from the other player. He shows that the iterated elimination of strictly dominated
strategies attains a unique equilibrium that involves equal demands. Intuitively speak-

1 Schelling’s (1960) argument is based on the prominence of 50–50 division. Arguments in Sugden (1986),
Young (1993), Skyrms (1996), and Bolton (1997) are based on evolutionary accounts.
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ing, this mechanism requires each player to put himself in the other player’s shoes.
Thus, it can be thought as a mechanism that implements equal division by forcing
players to empathize.

Ashlagi et al. (2012) also modify the payment rule in case the sum of players’
demands is greater than the estate. Instead of each player receiving zero in this case,
the estate is completely distributed by using an allocation rule. The authors resort to
bankruptcy (or conflicting claims) problems to find such allocation rules. They show
that equal division prevails in all Nash equilibria of the modified game, if the allocation
rule satisfies equal treatment of equals, efficiency, and order preservation of awards
(Theorem 1).2 Alternatively, in case the rule satisfies equal treatment of equals, effi-
ciency, claims monotonicity, and non-bossiness, the same result holds (Theorem 3).3

Thus, Ashlagi et al. (2012) show that it is possible to implement equal division in the
Nash equilibria of the modified DD game even after avoiding the punishment (i.e.,
everyone receiving zero in the case of incompatible demands) and using allocation
rules that satisfy certain properties (e.g., claims monotonicity and order preservation
of awards) that encourage greedy behavior. The class of rules they consider is large
and contains—but is not restricted to—most of the prominent bankruptcy rules (e.g.,
proportional rule, constrained equal awards rule, constrained equal losses rule, and
Talmud rule).

A result by Trockel (2000) in a different line of research is also of interest. Trockel
(2000) implements the Nash solution based on its Walrasian characterizations. He con-
siders convex bargaining sets (i.e., including ones with non-linear frontiers). Although
his focus is somewhat different than the papers mentioned above, if one limits attention
to DD the methods Trockel (2000) employs can be seen as other ways to implement
the equal division, because the Nash bargaining solution in DD is the 50–50 division.4

Walrasian mechanisms that he employs and Brams and Taylor (1994) and Anbarcı
(2001) offer share some common features: all of these mechanisms (i) alter the pay-
ment rule in case of incompatible demands and (ii) discriminate between players and
favor the player with a more modest demand in this case.

Our modification (DD′) involves a second stage with a softer (in comparison to
DD) punishment rule in the case of incompatible demands. In such a case, players
have one more chance to divide the dollar. Specifically, they can avoid the excess
they generated in the first stage with an ultimatum game in the second stage. In
the two-player version, the player who demanded less (more) in the first stage is
the proposer (responder). In case of a tie, a player will be chosen randomly. The
proposer makes an offer, which suggests the part of the excess that will be deducted
from his demand and the responder’s demand. If the proposal is accepted, then both

2 Equal treatment of equals: any two players with equal demands should receive the same amount. Effi-
ciency: if the sum of demands exceeds the estate, the estate should be completely distributed. Order preser-
vation of awards: a player with a higher demand should not receive a lower amount than a player with a
lower demand.
3 Claims monotonicity: a player should not receive a lower amount after increasing his demand. Non-
bossiness: a change in a player’s demand should not be able to change other players’ payoffs, if this change
does not influence his own payoff.
4 Harsanyi (1977), Howard (1992), and Miyagawa (2002) are some other studies that implement the Nash
bargaining solution in subgame perfect equilibrium with sequential game forms.
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players receive their corresponding (post-deduction) demands. In case of a rejection,
the excess cannot be avoided and players do not stand another chance: they both
receive zero. If one interprets the modifications to DD as guidelines of different types
of arbitrators, the arbitrator type that corresponds to DD′ would be one that (i) does not
immediately enforce harsh punishments, (ii) leaves the floor to bargaining parties as
much as possible, and (iii) encourages agreeable behavior. Moreover, in the two-player
version, DD′ attains a unique subgame perfect Nash equilibrium in pure strategies,
in which players demand (and receive) an equal share of the dollar in the first stage
(Theorem 1). In the n > 2 version, there are payoff-equivalent subgame perfect Nash
equilibria with the same characteristics.

In all three studies on the DD game mentioned above, the authors focus on pure-
strategy equilibria. However, if one also considers mixed-strategy equilibria, the prob-
lem of multiplicity is even more severe, as hinted by Myerson (1991, p. 112) and
illustrated in detail by Malueg (2010). In particular, Malueg (2010) shows that prac-
tically any set of balanced demands can support a mixed-strategy Nash equilibrium.
As we show below, the mechanism we propose not only eliminates all pure-strategy
equilibria involving unequal division of the dollar but also eliminates all equilibria
where players mix over different demands in the first stage (Theorem 2).5

The organization of the paper is as follows: In Sect. 2, we introduce the modified DD
game (DD′) and prove our results for two players. Section 3 concludes. Extensions
of our results to n > 2 players are provided in the appendix.

2 Modified DD

Let i = 1, 2 denote players and di ∈ [0, 1], player i’s demand in the first stage. Let πi

denote the amount player i receives at the end of the game. If d1 + d2 ≤ 1, then the
game ends in the first stage and for all i, πi = di . If d1 + d2 > 1, then the player with
the lowest (highest) demand is chosen to be the proposer (responder) in the ultimatum
game in the second stage. If d1 +d2 > 1 and d1 = d2 , then each player is chosen to be
the proposer with probability 1/2. We assume that players are risk-neutral. We denote
the excess by x ≡ d1+d2−1. If player j is the proposer (i.e., either d j < dk or d j = dk

and player j is chosen as a result of a random draw), to avoid x he makes a proposal to
player k �= j, (x j , xk) such that x j +xk = x . x j is the part of the excess to be deducted
from d j and xk is the part of the excess to be deducted from dk . Player k can either
accept or reject this proposal. Thus, the proposer’s action set in the second stage is
xk ∈ [0, x] and the responder’s action set in the second stage is {accept, reject}. If
player k accepts the proposal, then π j = d j − x j and πk = dk − xk . If player k rejects
the proposal, then π j = πk = 0.6

The following theorem shows that when only pure-strategy equilibria are consid-
ered, there exists a unique subgame perfect Nash equilibrium of DD′ and demanding
an amount different than 1/2 is not part of this equilibrium,

5 We thank an anonymous reviewer for bringing Malueg (2010) to our attention and suggesting an alter-
native proof, which also considers mixed strategies (Theorem 2).
6 To keep the paper simple, reader-friendly and comparable to Brams and Taylor (1994) and Anbarcı
(2001), we intentionally used actions as the working horse instead of strategies.
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Theorem 1 In the unique subgame perfect (pure strategy) Nash equilibrium of
DD′, (d1, d2) = (1/2, 1/2).

Proof First, we analyze the equilibrium behavior in the second stage. Player j is the
proposer and player k is the responder. Two cases need to be analyzed.

Case 1 dk − x > 0. In this case, player j proposes xk = x and player k accepts the
proposal since rejection brings πk = 0, whereas acceptance brings πk = dk − x > 0.

Case 2 dk − x = 0. In this case, player j proposes xk = x − ε where ε is an arbitrarily
small, positive real number and player k accepts the proposal since rejection brings
πk = 0, whereas acceptance brings πk = dk − x + ε = ε > 0 . Note that when n = 2,
this case occurs only if d1 = d2 = 1.

Also note that dk−x < 0 is not possible since for all i = 1, 2, di ∈ [0, 1]. Therefore,
given the first-stage demands, the subgame perfect Nash equilibrium behavior in the
second stage is uniquely determined.

Now, knowing what will happen in the second stage if the game reaches there,
we analyze the equilibrium behavior in the first stage. First, we show that (d1, d2) =
(1/2, 1/2) is part of the subgame perfect Nash equilibrium. Without loss of generality,
we use player 1 in our arguments. Clearly, any unilateral deviation d ′

1 < 1/2 is not
profitable for player 1, since π ′

1 = d1
′ < 1/2 = π1. Any unilateral deviation d ′

1 > 1/2
is not profitable for player 1 either, since in that case d ′

1 + d2 > 1, player 2 will be
the proposer in the second stage, and π ′

1 = d ′
1 − (d ′

1 + d2 − 1) = 1/2 = π1. Thus,
(d1, d2) = (1/2, 1/2) is a Nash equilibrium in the first stage of DD′ and part of the
subgame perfect Nash equilibrium.

Now, we show that (d1, d2) = (1/2, 1/2) is the only Nash equilibrium (in the first
stage of DD′) that is part of the subgame perfect Nash equilibrium. The following
exhaustive set of cases needs to be analyzed. In each case, we show that at least one
profitable unilateral deviation exists.

Case 1 d1 = 1/2 and d2 < 1/2. Clearly, a unilateral deviation d ′
2 = 1/2 brings

π ′
2 = 1/2 > d2 = π2. Note that a similar argument is valid for d1 < 1/2 and

d2 = 1/2.

Case 2 d1 < 1/2 and d2 < 1/2. Without loss of generality, take player 1. A unilateral
deviation d ′

1 = 1 − d2 brings π ′
1 = 1 − d2 > 1/2 > d1 = π1.

Case 3 d1 = 1/2 and d2 > 1/2. A unilateral deviation d ′
1 = d2 − ε brings π ′

1 =
d2 − ε > 1/2 = π1. A similar argument is valid for d1 > 1/2 and d2 = 1/2.

Case 4 d1 = d2 > 1/2. Without loss of generality, take player 1. A unilateral deviation
d ′

1 = d2 −ε brings π ′
1 = d2 −ε > (0.5)(d1)+ (0.5)(d1 − (d1 +d2 −1)) = 1/2 = π1.

Case 5 d1 < 1/2 and d2 > 1/2. There are two subcases here.

Case 5.1 d1 < 1/2, d2 > 1/2, and d1 + d2 < 1. A unilateral deviation d ′
1 = 1 − d2

brings π ′
1 = 1 − d2 > d1 = π1.

Case 5.2 d1 < 1/2, d2 > 1/2, and d1 + d2 ≥ 1. A unilateral deviation d ′
1 = d2 − ε

brings π ′
1 = d2 − ε > 1/2 > d1 = π1. Note that similar arguments are valid for

d1 > 1/2 and d2 < 1/2.

123



E. D. Cetemen, E. Karagözoğlu

Case 6 1/2 < d1 < d2. A unilateral deviation d ′
2 = d1 − ε brings π ′

2 = d1 −
ε > d ′

2 − (d1 + d ′
2 − 1) = 1 − d1 = π2. Clearly, a similar argument is valid for

1/2 < d2 < d1.
Hence, in the unique subgame perfect Nash equilibrium of DD′, (d1, d2) =

(1/2, 1/2). �	
Note that x = 0 in equilibrium and the game ends in the first stage. Hence, it is

the presence of the ultimatum threat rather than its execution, which induces players
to demand equal shares in the first stage. One can also see that the presence of the
ultimatum threat and the way the proposer role is assigned make the behavior of
players in DD′ similar to firm behavior in Bertrand competition: as equilibrium prices
in Bertrand competition with two firms (with equal and constant marginal costs) are
situated at the common marginal cost, the equilibrium demands of the players in DD′
are situated at equal division.

Theorem 1 shows that the mechanism we propose eliminates all (pure strategy)
equilibria involving unequal divisions of the dollar. However, as Malueg (2010) points
out there are many mixed-strategy equilibria of DD. For instance, both players mixing
over demands, 1/3 and 2/3 with equal probabilities (i.e., 1/2 and 1/2) constitute a
mixed-strategy Nash equilibirum in DD. A natural question is whether such mixing
behavior can be observed in the subgame perfect Nash equilibria of DD′ or not. The
following theorem shows that it cannot.

Theorem 2 There is no subgame perfect Nash equilibrium of DD′, which involves
mixing in the first stage.

Proof We will prove this result in four steps.7

Step 1 Claiming di < 1/2 is strictly dominated by claiming di = 1/2, for every player
i = 1, 2.

Without loss of generality, we focus on player 1. It is sufficient to investigate the
following two cases: x ≤ 0 and x > 0.

Case 1 x ≤ 0. Let us analyze a deviation from d1 < 1/2 to d ′
1 = 1/2. This is always

profitable for player 1. Note that even if this deviation leads to x > 0 (i.e., an excess
emerges), it brings π ′

1 = d ′
1 > π1. The reason is that player 1 will be the proposer at

the second stage, set x2 = x and player 2 will accept this offer.8

Case 2 x > 0. In this case, since x > 0 and d1 is less than 1/2, d2 must be greater
than 1/2. Thus, a deviation from d1 < 1/2 to d ′

1 = 1/2 brings π ′
1 = d ′

1 > π1.
Therefore, d1 = 1/2 strictly dominates any d1 < 1/2. Since player 1 is chosen

without loss of generality, the same result holds for player 2, as well.

Step 2 In any subgame perfect Nash equilibrium, E(πi ) ≥ 1/2 for every player
i = 1, 2, where E stands for the expectation operator.

7 The following arguments—explicitly or implicity—use the fact that sequential rationality implies accep-
tance of any offer in the second stage.
8 The subcase, d2 < 1/2, is not analyzed here since it is trivial and analyzed in Theorem 1.
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From Step 1, we know that setting di = 1/2 guarantees πi = 1/2, independent of
what the other player does. Therefore, in any subgame perfect Nash equilibrium of
DD′, the expected payoff of any player should be greater than or equal to 1/2.

Step 3 Subgame perfection implies π1 + π2 = 1.
First, note that π1 + π2 < 1 cannot hold in any subgame perfect Nash equilibrium

since it implies that at least one of the players has a demand less than 1/2 and claiming
less than 1/2 in the first stage is a strictly dominated action. Moreover, note that if the
game reached the second stage, then d1 + d2 > 1 must hold. There are three subcases
to be analyzed here:

Case 1 d1 < d2. Then, π1 = d1 and π2 = 1 − d1.
Case 2 d2 < d1. Then, π1 = 1 − d2 and π2 = d2.
Case 3 d1 = d2. Then, E(π1) = E(π2) = 1/2.

Therefore, π1 + π2 = 1 holds in any subgame perfect Nash equilibrium of
DD′.

Next, combining Steps 1, 2, and 3 it follows that in any subgame perfect Nash
equilibrium, E(π1) = E(π2) = 1/2. Note that this equal division outcome can, in
principle, be reached in different ways. For instance, both players may mix uniformly
over [1/2, 1], or one player may (purely) demand 1/2 and the other player mixes over
[1/2, 1].9 In Step 4 we show that this cannot be the case in equilibrium.

Step 4 In any subgame perfect Nash equilibrium, it is impossible to have players
demanding a share above 1/2.

Suppose without loss generality that player 2 mixes over [1/2, 1] using a probability
distribution F .10 First, we show that F cannot have atoms above 1/2. Suppose for a
contradiction that it has an atom above 1/2. Hence, we can pick an arbitrary point a
such that a > 1/2 and P(a) > 0. Now, suppose player 1 mixes using a distribution
G, which has a support [1/2, a) and is first-order stochastically dominated by F and
G(1/2) �= 1. As a result, we have E(π1) > E(π2) and hence E(π1) > 1/2 (a
contradiction to E(π1) = E(π2) = 1/2), where the second inequality follows from
subgame perfection. This shows that F cannot have atoms above 1/2. In other words,
we should not worry about ties in demands.

Therefore, playing d1 ≥ 1/2 brings an expected payoff, π1(d1) = [1− F(d1)]d1 +∫ d1
1/2(1−d2) f (d2)d(d2) to player 1 implying π ′

1(d1) = 1− F(d1)+(1−2d1) f (d1).11

Obviously, if F(1/2) < 1 then π ′
1(1/2) > 0. This implies that player 1 can receive

a share higher than 1/2 just by marginally increasing his demand. But this means
player 2 must receive a share less than 1/2 in that case, which is in contradiction with

9 We assume that players mix over only the Borel measurable subsets of [0, 1] . Also note that since players
utility functions are linear they are Borel measurable.
10 Note that it is sufficient to check the best response of a player against a mixing opponent.
11 For simplicity, we assume that F is an absolutely continuous function, which implies that there exists a
Lebesgue-integrable function f equal to the derivative of F almost everywhere. Moreover, this f is called
the density function. Note that, alternatively F can be assumed to be continuous and have a derivative
almost everywhere, which would then imply that there exists a Henstock–Kurzweil integrable f (Bartle
2001, Theorem 4.7).

123



E. D. Cetemen, E. Karagözoğlu

findings from Steps 1, 2, and 3. Hence, a positive probability cannot be assigned to
any demand above 1/2, in equilibrium.

Therefore, the result follows from Steps 1, 2, 3, and 4. �	
The intuition for this result is simple. First, playing di < 1/2 can be an equilibrium

strategy in DD, whereas it is strictly dominated in DD′. Second, playing di > 1/2
can pay off in some equilibria of DD, whereas the competition for the proposer role
in DD′ kills players’ incentives for playing di > 1/2. Hence, no di �= 1/2 can be
assigned a positive probability in any equilibrium of DD′, which eliminates mixing
behavior in the first-stage.

3 Conclusion

Similar to Brams and Taylor (1994), Anbarcı (2001), and Ashlagi et al. (2012), we
provide a simple mechanism, which resolves the multiplicity problem and implements
equal division in the divide-the-dollar game. We introduce a second stage, in case the
sum of players’ demands exceeds a dollar. This replaces the harsh punishment of the
original DD game, where all players receive zero if their demands are incompatible.
In this second stage, the players have a chance to avoid the excess and divide the
dollar in an efficient manner. The player with the lowest (highest) demand in the first
stage is assigned the proposer (responder) role in an ultimatum game. The proposer
makes an offer, which suggests the amounts of excess to be deducted from his own
and the responder’s first-stage demands. If the responder accepts this proposal, players
succeed in avoiding the excess and receive their corresponding shares. Otherwise, they
both receive zero.

Our mechanism can be interpreted as a guideline of an arbitrator, who (i) refrains
from intervening the negotiation process as much as possible; (ii) in case of a disagree-
ment, gives one more chance to parties to resolve their conflict instead of imposing a
harsh punishment right away; and (iii) encourages players to be agreeable and modest,
by favoring such a player in the case of a conflict. All of these are qualities of a good
arbitrator (see Bloom 1981 and references therein). We show that for n = 2, DD′ attains
a unique subgame perfect Nash equilibrium (in pure strategies), which induces equal
demands and equal division, in the first stage (Theorem 1). Moreover, the mechanism
we propose also eliminates all equilibria where players mix over different demands in
the first stage (Theorem 2). Finally, for n > 2, there exists payoff-equivalent subgame
perfect Nash equilibria that induce equal demands and equal division, in the first stage
(Theorems 3 and 4).

Our modified divide-the-dollar game, DD′, shares some similarities with DD3 in
Brams and Taylor (1994) in that it has a second stage where the excess can be avoided.
However, there are important differences between the two mechanisms. First, we
use an ultimatum game in this stage whereas Brams and Taylor (1994) use a sort of
sequential dictatorship game. Therefore, our mechanism still gives all players (that
face an effective ultimatum) a veto power, whereas DD3 may not (i.e., the dollar may
be divided before some players take their dictatorship turn). Second, DD′ assigns
the proposer role based on the players’ first-stage demands, whereas DD3 assigns
sequential dictatorships based on the players’ second stage decisions (e.g., confirming
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with own first-stage demand or usurping others’ demands). In addition, from an ex-
ante point of view, this difference implies that in DD′ the excess may be avoided in the
second stage, whereas in DD3 it is surely avoided, which makes DD′ more interesting
from a strategic point of view. Finally, for n > 2 our game attains payoff-equivalent
multiple equilibria in all of which players’ demand equal shares of the dollar in the first
stage, whereas DD3 attains a unique equilibrium. Which of these mechanisms would
be more effective in implementing equal division in reality is an interesting empirical
question that could be addressed in future work with experimental techniques.

Another interesting question future studies may focus on is the characterization
of mechanism classes, which implement equal division (or any particular division) in
modified DD games. Properties of mechanisms in this class—and whether they are con-
sonant with good arbitration practices—would be interesting to know for arbitration
practitioners as well as bargaining, fair division, and conflict resolution researchers.
Finally, future work studying similar issues in divide-the-dollar games where the pie is
not exogenously given but rather endogenously and jointly produced by bargainers will
also be of great interest [see Andreozzi (2010) for theoretical work and Karagözoǧlu
(2012) for experimental work on such problems].
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4 Appendix

In this appendix, we provide an extension of our mechanism to n > 2 players. First, we
introduce some new notation. i = 1, ..., n still denotes players. If

∑n
i=1 di ≤ 1, then

the game ends in the first stage and for all i, πi = di . If
∑n

i=1 di > 1, then the game
reaches the second stage and the player with the minimal first-stage demand is chosen
to be the proposer in the ultimatum game. If

∑n
i=1 di > 1 and there are multiple

players with the common minimal first-stage demand, then each such player is chosen
to be the proposer with equal probability. We assume that players are risk-neutral. We
denote the excess by x ≡ ∑n

i=1 di − 1. If player j is the proposer (i.e., either d j is
the unique minimal demand or player j is chosen among players with the minimal
demand as a result of a random draw), to avoid x he makes a proposal (x1, ..., xn) to
other players such that

∑n
i=1 xi = x . Each other player can either accept or reject

this proposal. The proposer’s action set in the second stage is for every i, xi ∈ [0, di ]
and the responders’ action sets in the second stage are {accept, reject}. 12 If each
responder accepts the proposal, then for all i, πi = di − xi . If at least one responder
rejects the proposal, then π1 = ... = πn = 0. Therefore, the mechanism requires a
unanimous agreement. For clarification, below we provide some examples on how our
mechanism works.

Example 1 Let n = 5 and (d1, d2, d3, d4, d5) = (0.2, 0.3, 0.4, 0.8, 0.9). In this case,∑n
i=1 di > 1, x = 1.6 and the minimal demand is unique. Player 1 proposes a split

of x . A possible allocation would be (x1, x2, x3, x4, x5) = (0, 0, 0, 0.7, 0.9). This

12 Note that when n = 2, it is not necessary to assume xi ∈ [0, di ] since xi > di is not possible.
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proposal would be accepted by all responding players and thus, for all i = 1, 2, 3, πi =
di ;π4 = 0.1, and π5 = 0.

Example 2 Let n =4 and (d1, d2, d3, d4)=(0.3, 0.3, 0.6, 0.7). In this case,
∑n

i=1 di >

1, x = 0.9 and the minimal demand is not unique. A random draw determines the
proposer. Without loss of generality, assume that player 2 is chosen to be the proposer.
A possible allocation would be (x1, x2, x3, x4) = (0, 0, 0.4, 0.5). This proposal would
be accepted by all responding players and thus, for all i = 1, 2, πi = di ; π3 = 0.2,
and π4 = 0.2.

Note that the proposals in these examples are just given for clarification purposes and
hence may not be optimal in the subgame perfect sense. Characteristics of sequentially
rational ultimatum proposals will be provided in the following proof.

Theorem 3 There exists payoff-equivalent multiple subgame perfect Nash equilibria
of DD′ and (d1, ..., dn) = (1/n, ..., 1/n) in all equilibria.

Proof We first show that the subgame perfect Nash equilibrium play induces x = 0
and there are multiple ways to avoid the excess in the second stage if it is reached
(Claim 1). Then, we show that in subgame perfect Nash equilibrium, the minimal
demand is equal to the maximal demand in the first stage (Claim 2). The result directly
follows from these arguments.

Claim 1 Subgame perfect Nash equilibrium play induces x = 0.
The following exhaustive set of cases needs to be analyzed. In each case, we show
that at least one profitable unilateral deviation exists.

Case 1 x < 0. Without loss of generality take player j . Clearly, a unilateral deviation
d ′

j = 1 − ∑
i �= j di brings π ′ = 1 − ∑

i �= j di > d j = π j .

Case 2 x > 0. There are two subcases here. Before analyzing these subcases let us first
take a look at the second-stage behavior. If and when the second stage of the game is
reached, without loss of generality assume that player j is the proposer. As in Brams
and Taylor (1994), we employ iterated elimination of weakly dominated strategies
here.

For any responding player k, playing accept brings πk ∈ [0, dk] and hence it weakly
dominates (also there exist cases in which strict dominance occurs) playing reject.
Thus, responding players choose to accept any proposal. This establishes the second-
stage behavior of responding players.

Now, let us denote the set of players with the common maximal first-stage demand
as H and the common value of the maximal demand as h ≡ max{d1, ..., dn}. Given
that any responding player chooses to accept any proposal, there are two cases to be
studied: if x �

∑
i∈H di , then “offering xi = di to all players in H and distributing

the remaining amount x − ∑
iεH di to n − 1 − |H | players in such a way that for all

remaining players, πi ≥ 0” weakly dominates all other strategies. Note that there are
(infinitely) many ways of distributing x − ∑

iεH di to n − 1 − |H | players, which is
why there exists multiple equilibria. On the other hand, if x <

∑
iεH di then player

j distributes x among the players in H . In these two cases, weak domination follows
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from the fact that playing such, player j can always gurantee π j = d j . This establishes
the proposers’ second-stage behavior.

Case 2.1 Minimal demand is unique. Without loss of generality, assume that d j =
min{d1, ..., dn}. Denote the set of the remaining demands as A, where A ≡ {di :
di �= d j }. Clearly, for player j , a unilateral deviation d ′

j = min(A) − ε brings
π ′

j = min(A) − ε > d j = π j .

Case 2.2 Minimal demand is not unique. This means that there exists a set of players
with the common minimal demand. Denote this set as M and the common value of
the minimal demand as m ≡ min{d1, ..., dn}. There are two subcases.

Case 2.2.1
∑

iεM di < 1. Then there are two subcases.

Case 2.2.1.1
∑

iεH di � x . Without loss of generality, take player j ∈ H . Then for
player j , a unilateral deviation, d ′

j = m − ε brings π ′
j = d ′

j = m − ε > π j = ε.

Case 2.2.1.2
∑

iεH di > x . Without loss of generality, take player j ∈ M . Let d ′′
j

be the demand that satisfies
∑

iεH di = x . Then, for player j a unilateral deviation,
d ′

j = min(h − ε, d ′′
j ) brings π ′

j = d ′
j > π j = d j .

Case 2.2.2
∑

iεM di � 1. This implies x �
∑

iεH di . Without loss of generality,
assume that player j is the one with the maximal demand. Thus, a unilateral deviation,
d ′

j = m − ε brings π ′
j = d ′

j = m − ε > π j = ε.

Arguments above imply that in the subgame perfect Nash Equilibrium x = 0.

Claim 2 In the subgame perfect Nash equilbrium, x = 0 induces h = m.

Case 1 h < m. This case is impossible by definition.

Case 2 h > m. Without loss generality player j is the one with the minimal first-stage
demand. Therefore, a unilateral deviation to d ′

j = h−ε brings π ′
j = h−ε > π j = d j .

�	

The following theorem is a generalization of Theorem 2.

Theorem 4 There is no subgame perfect Nash equilibrium of DD′ (with n > 2),
which involves mixing in the first stage.

Proof We will prove this result in steps.

Step 1 Claiming di < 1/n is strictly dominated by claiming di = 1/n , for every
player i = 1, 2, ...n. Without loss of generality, let us focus on player 1. It is sufficient
to investigate the following two cases x ≤ 0 and x > 0.

Case 1 x ≤ 0. Let us analyze a deviation from d1 < 1/n to d ′
1 = 1/n. Note here, we

assume that (as in Theorem 3) in case the second stage is reached, the proposer will
distribute x as follows: (i) he starts from h and if possible deducts the whole x from
h, if not possibe deducts as much as possible from h; (ii) then he moves to the agent
with the second highest demand follows the procedure in (i); and (iii) continues in the
same fashion until x vanishes. Under this assumption, a deviation from d1 < 1/n to
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d ′
1 = 1/n is always profitable for player 1. Note that, even if this deviation creates an

excess, x > 0, it brings π ′
1 = d ′

1 > π1. To see why, observe that h > d ′
1 and x < h.

Case 2 x > 0. In this case, since x > 0 there must exist a player j with d j > 1/n.
Now, consider a deviation from d1 < 1/n to d ′

1 = 1/n. Clearly,
∑

i∈b di < 1 where
b ≡ {i : di ≤ 1/n}. Therefore, under the assumption made in Case 1, x will vanish
before reaching player 1. This implies that π ′

1 = d ′
1 > π1. Since player 1 was chosen

without loss of generality, the result is valid for any player.

Step 2 In any subgame perfect equilibrium E(πi ) ≥ 1/n, for every player i =
1, 2, ..., n.

From Step 1, we know that for any i setting di = 1/n guarantees πi = 1/n inde-
pendent of what other players do. Therefore, in any subgame perfect Nash Equilibrium
of DD′, the expected payoff of any player should be greater or equal to 1/n.

Step 3 Subgame perfection implies
∑n

i=1 πi = 1.
Suppose that,

∑n
i=1 di > 1 and without loss of generality player 1 is the proposer

in the second stage. Observe that there is always a way to divide x such that player 1
is not punished: by definition x = ∑n

i=1 di − 1 and d1 ≤ 1; therefore, x ≤ ∑
j �=1 d j .

This implies, player 1 have uncountably many ways to divide the x to other players.
Then, in any subgame perfect equilibrium

∑n
i=1 πi = 1.

Therefore, combining Steps 1, 2, and 3 implies that in any subgame perfect equi-
librium, E [π1] = ... = E [πn] = 1/n.

Note that this equal division outcome, in principle, can be reached in different
ways. For instance, all players may mix uniformly over [1/n, 1] 13, or one player may
(purely) demand 1/n and the others mix between (1/n, 1], or yet some of the players
(purely) demand 1/n and others mix over different demands. Nevertheless, Step 4
shows that this cannot be the case in equilibrium.

Step 4 Suppose without loss generality that players 2, ..., N mix over [1/n, 1] using
a probability distribution F . First, we show that F cannot have atoms above 1/n.
Suppose for a contradiction that it has an atom above 1/n. Hence, we can pick an
arbitrary point a such that a > 1/n and P(a) > 0. Now, suppose player 1 mixes
using a distribution G, which has a support [1/n, a), which is first-order stochastically
dominated by F and G(1/n) �= 1. As a result, we have E(π1) > E(π2) = ... = E(πn)

and hence E(π1) > 1/n (a contradiction to E(π1) = E(π2) = ... = E(πn) = 1/n),
where the second inequality follows from subgame perfection. This shows that F
cannot have atoms above 1/2. In other words, we should not worry about ties in
demands.

Suppose k < n players mix over demands within the support, [1/n, 1]. For simplic-
ity, assume that they use the same distribution, F , which has a density above 1/n. F
denotes the joint distribution of demands for k players. Therefore, for player i playing

13 As in Theorem 2, we assume that players mix over only the Borel measurable subsets of [0, 1].
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di > 1/n will bring an expected payoff , πi (di ),

πi (di ) = (1 − F(di ))
kdi +

k∑

h=1

(
k

h

)

(1 − F(di ))
h

di∫
· · ·

∫

1/n

[I{ϕ>x}di

+((1 − I{ϕ>x}) max(0, di − x + ϕ))] f (d1)... f (dh)d(d1)...d(dh)

+ max

⎛

⎜
⎝0,

di∫
· · ·

∫

1/n

(di − x) f (d1)... f (dn)d(d1)....d(dn)

⎞

⎟
⎠ ,

where ϕ ≡ ∑
j∈L d j , L ≡ { j : d j > di }, is the set of agents with demands higher than

di and I{ϕ>x} is the indicator function, which takes the value 1 if the sum of demands
higher than di is less than x and 0 otherwise.14

Observe that if we take the derivative of πi (di ) with respect to di , we get π ′
i (di ) =

(1 − F(di ))
k−1 − f (di )� + (1 − F(di ))� + ∑k

i=1 γi f (di )(1 − F(di ))
k , where

�,�, and γ are some positive constants. Obviously, if F(di ) < 1, this derivative is
greater than zero. This implies that player i can receive a share higher than 1/n just
by marginally increasing his demand. This means that there must exist some player j
with π j < 1/n, which is in contradiction with findings from Steps 1, 2, and 3. Hence,
a positive probability cannot be assigned to any demand above 1/n in equilibrium.

Therefore, the result follows from Steps 1, 2, 3, and 4. �	
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