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The characteristics of the converter combustion flame are one of the key factors in the process control and end-point control of
steelmaking. In a big data era, it is significant to carry out high-speed and effective processing on frame spectrum data. By
installing data acquisition devices at the converter mouth and separating the spectrum according to the wave length, high-
dimensional converter flame spectrum big data sets are achieved. The data of each converter is preprocessed after information
fusion. By applying the SM software, the correspondence with the carbon content is obtained. Selecting the relative data of the
two peak ratios and the single-peak absolute data as a one-dimensional signal, due to the obvious nonlinear and nonstationary
characteristics, using HHT to do empirical mode decomposition and Hilbert spectrum analysis, the variation characteristics
after 70% of the converter steelmaking process are obtained. From data acquisition, data preprocessing to data analysis and
results, it provides a new perspective and method for the study of similar problems.

1. Introduction

Converter steelmaking is currently the main steel production
method. Under the condition of China’s steel scrap shortage,
converter steelmaking will be dominant for a long time [1].
Oxygen converter steelmaking reduces the carbon content
in molten iron and raises the temperature. By blowing
high-pressure and high-purity oxygen from the oxygen lance
at the top of the converter, the molten steel can meet the
target requirements of composition and temperature. There-
fore, the establishment of an end-point prediction model
with strong adaptability and high hit rate is of great signifi-
cance for ensuring the quality of molten steel, reducing costs,
and improving the production efficiency of steelmaking.

The traditional end-point carbon content and tempera-
ture forecast is based on the mechanism model of the mass
balance and heat balance during the oxygen-blown carbon
process [2]. In recent years, some new end-point prediction
methods have emerged, such as smelting noise analysis,
pattern recognition, and texture analysis [3]. Because the

light intensity spectrum of the converter will show certain
rules along with the process of blowing, as the accurate the-
ory of light intensity spectrum detection matures [4], there
have been many attempts to use optical methods to judge
the end point of converter steelmaking. Professor Yanru
Chen of Nanjing University of Science and Technology
found that the light intensity and image characteristic infor-
mation have remarkable changes in the steelmaking blowing
process and established the end-point time mathematical
model using regression analysis method [5]. Bethlehem Inc.
of the United States has successfully developed an optical
probe that measures the carbon content of the molten steel
by measuring the amount of oxygen blown into the converter
and the difference in light intensity of discharge furnace gas.
At present, it is only applicable for the control of the end-
point carbon content of molten steel with a carbon content
of less than 0.05% in large-scale converters with oxygen
supply stability of over 200 t, and there are cumbersome cool-
ing devices in the plant [6]. Small- and medium-sized con-
verter production accounts for about 75% of the total in
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China at present. The most commonly used of these plants is
the empirical steelmaking method [7], which is a static
control based on material balance and heat balance. In the
production, it is often necessary to melt down, which makes
it difficult to ensure a high hit rate, resulting in waste of
resources and inefficiency.

In the past 30 years, the theory, methods, and techniques
of signal processing have been developing, expanding, and
deepening. With the progress of signal processing theory,
hardware technology, and system technology, signal
acquisition has now entered a diversified big data era [8].
The signal has evolved from one-dimensional signals to
high-dimensional signals. The multispectral image to be
processed is a high-dimensional signal with a large amount
of data. The rapid development of the signal in terms of
bandwidth, dimension, resolution, and acquisition network
makes the growth rate of signal acquisition data higher than
the growth rate of data storage and signal processing speed
[9]. In the past, a major problem for converter flame signal
processing researchers to study the end-point prediction
was the “signal collection bottleneck”: the amount of signal
collected by the sensor system was too small, making subse-
quent information extraction and interpretation difficult
and complex. For this reason, signal processing workers have
been working on two aspects. On the one hand, less data is
used to do as much as possible, and on the other hand, more
abundant signal data is managed to be collected [10]. In the
context of big data, the bottleneck of signal processing has
shifted from “too little signal acquisition” to “how to handle
massive amounts of signal data at high speed” (Figure 1). In
the background of a big data era, traditional methods of
flame spectral signal processing cannot quickly and effi-
ciently excavate the useful information contained in the
flame spectrum big data sets. A large amount of valuable data
is wasted. It is necessary to study signal processing methods
based on big data methods to analyse the frame spectrum.

In view of the above-mentioned status quo and exist-
ing problems at home and abroad, it is urgent to develop

an accurate, low-cost, real-time, high-efficiency, and easy-
to-operate end-point control method suitable for most
converters in the context of big data. The flame spectral
signal is a typical nonlinear, nonstationary time-varying
big data signal that contains a rich frequency component
[11]. Using traditional spectrum analysis methods, it is
difficult to analyse it rationally, and it is impossible to
accurately reveal the details of time-frequency changes.
In order to successfully complete the feature extraction,
it is necessary to introduce a more effective time series
analysis method.

In order to deal with nonlinear, nonstationary big data
signals better, many scholars have proposed many new signal
processing methods in recent years, among which the more
famous is the empirical mode decomposition (EMD). This
method was proposed by Huang et al. in 1998 and is very
suitable for the analysis and processing of time series with
nonlinear and nonstationary features [12]. It is considered
as a major breakthrough in signal processing in recent years.
At present, the method has been widely used in the fields of
economics, geophysics, oceanography, biomedicine, power
system fault signal analysis, and mechanical fault diagnosis
and has achieved good results [13].

Compared with the current end-point prediction
method for converter steelmaking, the use of the HHT
method has certain advantages. The static state model
calculates the content of carbon according to the chemistry
reaction in the pudding and the initialized content of carbon
in the melt iron. However, the static model cannot be used in
the dynamic condition; measuring the carbon emitted
spectrum of the exhaust gas in the furnace to calculate the
content of carbon costs a lot; Bethlehem’s proposal has low
accuracy. The HHT method has advantages such as low cost
and high accuracy. Moreover, it can also be applied to the
dynamic condition.

The spectral information of the steelmaking process is
short-term, transient, nonperiodic, nonlinear, and nonsta-
tionary. Combining the outstanding performance of the
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Figure 1: The performance bottleneck of signal processing.
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EMD method and HHT transform in nonlinear nonsta-
tionary big data signal processing, we propose a HHT-
based spectral analysis method in the context of big data.
We collect the frame spectrum image information from
one steel industry and analyse the signal characteristics
of the spectrum of the steelmaking process. Through the
EMD and HHT transformation [14], the characteristic
points of the spectrum of the steelmaking process are
searched, and the ultimate goal of the steelmaking end
prediction is achieved. It provides a new path and method
for the transformation and value creation of Chinese steel
companies in the Industry 4.0 era.

2. Implementation Process of HHT

Traditional signal analysis and processing are based on Fou-
rier analysis. They are applicable to linearity, Gaussianity,
and stationarity. And they establish an idealized model.
HHT overcomes the shortcomings of traditional signal
analysis methods and is suitable for handling nonlinear and
nonstationary signals and is adaptive. According to the char-
acteristics of the signal, the signal is decomposed into several
IMF components, which has good adaptability and time-
frequency aggregation.

2.1. Definition of Intrinsic Mode Function (IMF). The
intrinsic mode function (IMF) must satisfy the following
two conditions:

(1) Over the entire data range, the difference number of
extreme points and zero crossings is zero or one.

(2) At any point, the average of the envelope formed by
all the maximum points and the envelope formed
by all the minimum points is zero.

The IMF component has significant characteristics of
slowly varying wave packets. Each IMF component is a
stationary signal with nonlinear characteristics. Its slowly
varying wave packet characteristics mean that the wave
amplitudes of different characteristic scale fluctuations
change with time. Therefore, it also has the characteristics
of localization in the time domain.

2.2. The Algorithm of Empirical Mode Decomposition (EMD).
Empirical mode decomposition (EMD) is proposed by N. E.
Huang et al. The IMF component obtained by EMD satisfies
the conditions required by the Hilbert transformation, so the
original data needs to be decomposed by the EMD method.
The EMD process is the process of decomposing the nonlin-
ear unstable signal from high frequency to low frequency into
multiple IMFs. It is also the process of signal stabilization,
and the frequency resolution included in each IMF also
changes with the original signal. It is a kind of adaptive multi-
resolution signal processing method.

The basic principle of EMD can be described as follows:

(1) Determine the local minima and maxima of time
series X t .

(2) The local minima and maxima of X t are respec-
tively fitted with cubic spline curves to form upper
and lower envelopes, Xmax t and Xmin t , and mean
values m t are calculated.

(3) Let h t = X t −m t and compare with the IMF
condition; if it meets the condition, h t is the IMF-
1 component of X t , record as C1 t , then get the
residual function r t = X t − C1 t . Let r t be a
new X t and repeat processes (1)–(3); if it does not
meet the conditions, let h t be a new X t and repeat
processes (1)–(3).

(4) Repeat procedures (1) through (3) until the residual
function r t is a monotonic function or constant.

The time series X t is decomposed into several intrinsic
mode functions and one residual quantity by EMD, which
can be expressed as

X t = 〠
n−1

i=1
Ci t + rn t 1

The above method is the empirical mode decomposition
(EMD).

2.3. Analysis of Hilbert Spectrum. A set of intrinsic mode
functions are obtained by EMD, and then the Hilbert trans-
formation is performed on each IMF to calculate the instan-
taneous frequency. Change i to j in formula (1):

X t = 〠
n

j=1
Cj t + rn 2

A Hilbert transformation is applied to each intrinsic
mode function Cj t except the residual quantity rn to obtain
the data sequence C̄ j t :

C̄ j t = 1
π
P

Cj t

t − τ
dτ 3

We can form a complex sequence by Cj t and C̄ j t

z j t = cj t + ic̄ j t = aj t e
iθ j t 4

We get the instantaneous frequency as

ωj t =
dθ j t

dt
5

Therefore, the original data can be expressed as

X t = Re 〠
n

j=1
aj t exp i ωj t dt , 6

where Re represents the real part; rn t is generally omitted
because it is a monotonic function or constant.

According to (6), time t, frequency ωj, and amplitude
aj can be plotted on a three-dimensional figure, which is
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called the Hilbert amplitude spectrum and referred to as
the Hilbert spectrum.

Mark the Hilbert spectrum as

H t, f = Re 〠
n

j=1
aj t exp i ωj t dt 7

Define the marginal spectrum as

h f =
T

0
H t, f dt, 8

where T is the total length of the signal, H t, f is the var-
iation of the amplitude of the signal over the entire frequency
band and the frequency, and h f is the variation of the
amplitude of the signal with the frequency over the entire
frequency band.

3. Big Data Processing in Converter
Steelmaking Process

3.1. Technological Process of Converter Steelmaking. The
traditional converter steelmaking process is to mix molten
iron after steelmaking through a mixer furnace, then pour
it into a converter and insert a water-cooled oxygen lance
into the converter to convert it to a certain oxygen pressure,
gun position, and slagging system. When the operator esti-
mates that the end of the blowing is reached, the oxygen
gun is raised, the converter is inverted to a certain position,
and the composition and temperature of the molten steel
are sampled and measured. If the molten steel composition
and temperature do not reach the target range, the water-

cooled oxygen lance needs to be reinserted into the converter
and slag-forming. The above steps are repeated until the
molten steel reaches the target range. In the conventional
converter process, the oxygen top blowing converter has
always been dominant. The main function of the process
shown in Figure 2 is oxidating carbon content in molten iron,
so that the carbon content in the converter can meet the
requirements. By increasing the molten steel temperature
by a large amount of exothermic reaction, the molten steel
temperature requirement for secondary refining is satisfied.

3.2. Big Data Analysis of Spectral Information in Converter
Steelmaking. In empirical control or dynamic control mode,
workers must obtain varying degrees of information from
changes in the flame. This information includes the light
intensity, spectral distribution, and flame image information
of the flame. In order to find the end of converter steelmak-
ing, we first analyse the spectral information in the steelmak-
ing process. A variation diagram of wavelength-time-flame
intensity of the whole process is as shown in Figure 3.

In the early period of converter steelmaking, the colour of
the flame is dark red, the brightness is low, and a large
amount of smoke is present. In the midstage of converter
steelmaking, the flame gradually becomes whitish, the bright-
ness is obviously increased, and irregular jitter occurs,
accompanied by small-scale shot-spraying. At the later stage
of converter steelmaking, the flame is pale white, the bright-
ness is the highest, the flame is relatively stable, and there is
explosion sparks appear. Through the analysis of the flame
at the late stage of steelmaking, although there will be metal-
lic excitation lines (Na line and double K line), and small
peaks appear in the vicinity of 800mm, the overall flame

O2

CO2 CO2

CO CO

Slag (FeO)

Molten steel

Air

Spectrograph

Figure 2: Schematic diagram of a basic oxygen furnace.
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intensity is strong and does not need to feed the converter.
Oxygen feeding is relatively stable, so the flame spectrum is
relatively stable during this period. When predicting the
end point of converter steelmaking, the spectrum of late
steelmaking can be selected for analysis. This article selects
the steelmaking process after 70% for analysis.

3.3. Converter Combustion Flame Spectrum Big Data Sets. In
the process of metal smelting, the converter produces
flame, then the optical information emitted by the flame
is projected onto the photo detector through the theory
of pinhole imaging. Next, according to the discrete fre-
quency, the light intensity data of the flame is recorded
at every 0.5 s by the photo detector.

First, the collected spectrum information is a data set,
each column representing a specific frequency. Each row cor-
responds to the problem of the light intensity data set. The
amount of data received by the photo detector is 2048 during
every 0.5 seconds. It is a big data problem to use the values of
these 2048 light intensities to predict the flame temperature
and the content of the key elements in the raw materials in
real time. The collected data sets are so voluminous and com-
plex that traditional data processing application software is
inadequate to deal with them. Therefore, in order to better
reflect the characteristics of the collected data, in this article,
we call the spectrum data set collected by the sensor in real
time as “converter combustion flame spectrum big data sets.”
Converter combustion flame spectrum big data sets have 3V
characteristics: volume, velocity, and value.

3.4. Information Fusion of Flame Spectrum. The data pro-
vided by the sensors installed in the converter ports may have
problems such as repeated data redundancy, incomplete con-
tent, sparseness, and inaccuracy [15]. In order to extract use-
ful, real-time, and accurate information from a large number

of multicategory information to determine the end point of
converter steelmaking, it is necessary to fuse the collected
flame spectrum big data sets. The problems to be studied
now have shifted from data lack to data enrichment. The
flame spectral signal processing in the context of big data
needs to firstly perceive compression to reduce the data vol-
ume of the signal and then multisensor information fusion
to handle complex multisource information. Through smart
sensor network technology, valuable signals are extracted.
Finally, high-speed signal processing improves signal pro-
cessing speed. The whole process is as shown in Figure 4.

Since the object to be processed is the raw data informa-
tion obtained by the sensor, we adopt a centralized process-
ing information fusion structure. The data captured by each
sensor will be transmitted directly to the fusion centre where
the data is aligned and interconnected. The loss of informa-
tion in a centralized system structure is relatively small. The
specific implementation process is shown in Figure 5.

3.5. Processing of Converter Frame Spectrum Big Data Sets.
During the steelmaking process, the spectrometer collects
the light information of the flame in the converter and
records the luminous intensity f_1–f_2048 of different light
frequencies every 0.5 seconds. The raw data also includes the
time t, the Kelvin temperature T, the instantaneous oxygen
blowing rateVQ, and the primary carbon content C. The data
of the oxygen lance position greater than 2.5 and the data of
instantaneous oxygen rate less than 1000 are removed.

3.5.1. Content of Carbon. By the formula

Qn =
VQn−0 5 + VQn

2 ,

Q =〠Qn
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Figure 3: Variation diagram of wavelength-time-flame intensity of the whole process.
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We can obtain the cumulative oxygen blowing Q of the
entire steelmaking process. Qn indicates the average value
of oxygen in the n second. VQn−0 5 and VQn represent the
instantaneous oxygen blowing rate for the n− 0.5 second
and the n second, respectively.

The definition of cumulative oxygen consumption ratio

P = 〠n
1Qn

Q
10

This article studies the cumulative oxygen consumption
ratio in the 70% to 100% phase. According to the oxygen
content and the amount of primary carbon in the collected
data, the SM software provided by the steel company is used.
This software can derive the value of the cumulative oxygen
content with a step of 0.1 carbon content [16]. Through
observation and judgment, the carbon content is linearly
related to the cumulative oxygen blowing amount [17]. Using
piecewise linear interpolation, the carbon content corre-
sponding to each cumulative oxygen volume is determined.

3.5.2. Converter Flame Spectral Information. Analysis of the
data of 20 converters revealed that when the accumulated
oxygen consumption ratio is between 70% and 100%, there
always exists two peaks and the wavelengths are similar and
concentrated near a certain band, as shown in Figure 6.

In order to further explore the relationship between the
carbon content and flame spectrum, peak light intensity
(absolute intensity) and the ratio of the light intensities of
the two relative peaks (relative intensity) are analysed as the
signal. The signals obtained after two different processing
methods are shown in Figures 7 and 8:

4. Analysis of Results

4.1. Intrinsic Mode Function (IMF). The EMD method is an
adaptive signal processing method with a high signal-to-
noise ratio [18]. Each intrinsic mode function (IMF) of the
absolute intensity signal and the relative intensity signal is
obtained by empirical mode decomposition. With the carbon
content on the x-axis and the frequency of each IMF on the y-
axis, all the IMF patterns for each converter are drawn. This
article takes the converter 6C00582 as an example for analy-
sis. To ensure accuracy, the original signal is decomposed
into eight IMF components. The decomposition results of
the absolute intensity signal and the relative intensity signal
are shown in Figures 9 and 10.

There are eight IMF components in the figure, of which
IMF-8 is a trend item. It can be seen from the figure that
when absolute intensity signal is used as the signal for
analysis, the first two-order components have obvious irreg-
ular fluctuations and the latter waveform gradually tends to
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ease; when relative intensity is used, the first three-order
components have obvious irregular fluctuations. Afterwards,
the waveform gradually became stable. It reflects that the
characteristics of the high-frequency part of the absolute
intensity signal are reflected in the first two-order compo-
nents, the characteristics of the low-middle-frequency part
are reflected in the later-order IMF components, and the
characteristics of the high-frequency part of the relative
intensity signal are in the first three-order components. The
result shows that the relative intensity signal contains more
high-frequency signals than the absolute intensity signal.
The trend of IMF-8 reaction shows that with the decrease

of carbon content, the frequency is increasing, which is con-
sistent with the actual phenomenon, indicating that the use
of empirical mode decomposition can accurately reflect the
trend of changes in carbon content in steelmaking.

From the IMF component images derived from the orig-
inal data and empirical mode decomposition (EMD), it can
be concluded that the data composition and trend of the con-
verter number 6C00582 is generally consistent with most of
the other converters. It can be inferred that the converter’s
steelmaking raw materials are similar to the process [19].
By comparing the data of steelmaking raw materials, the con-
clusions are illustrated.
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Figure 7: The signal diagram of the converter 6C00582 with absolute intensity as the original signal.
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Figure 8: The signal diagram of the converter 6C00582 with relative intensity as the original signal.
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Mathematical data anomalies occur when dealing with
some of the converter’s raw data and IMF images. In the
actual steelmaking process, the data anomalies may be

due to differences in the quality and ratio of raw materials
for steelmaking or accidental influencing factors in the
steelmaking process.
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4.2. Analysis of Hilbert Spectrum. The intrinsic mode func-
tions of twenty converters’ data are compared, and sixteen
converters with valid data are selected. In the sixteen selected
converters, eleven converters with stronger IMF laws are
analysed. It is found that the relative brightness (the ratio of
the peak value of the wavelength to the mean value) of the
Na reaction will change significantly when the carbon
content was around 0.3%.

The intrinsic mode function of converter number
6C00582 is selected for spectrum analysis. In the following,
the absolute intensity signal and the relative intensity signal
are respectively decomposed by EMD to obtain their intrinsic
mode function. Hilbert transformation is performed on each
intrinsic mode function to obtain the Hilbert spectrum and
marginal spectrum, and the results of adopting two different
signal selection methods are compared and analysed.

4.2.1. Analysis of Absolute Intensity Signal Hilbert Spectrum.
The Hilbert spectrum diagram of IMF-3 signalled with
absolute intensity is as shown in Figure 11.

From the absolute intensity signal’s IMF-3 Hilbert spec-
trum, it can be known that the yellow energy band is a low
energy band, which is concentrated in the frequency range
of 0~70Hz. When the carbon content is in the range of
0.15~0.2% and 0.5~0.55%, two blue high-energy spectra will
appear, and the frequency signal is between 120 and 140Hz.
The energy is high. There exists an obvious low-frequency,
low-energy moment when carbon content is in the range of
0.3%~0.35%. A marginal spectrum of IMF-3 signalled with
absolute intensity is shown in Figure 12.

From the marginal spectrum, we can see that there are
high peaks and high energy values in the frequency range
of 100~200Hz, which is consistent with the results of the
above analysis of the Hilbert spectrum.

4.2.2. Analysis of Relative Intensity Signal Hilbert Spectrum.
The Hilbert spectrum of IMF-3, which uses the ratio of the
light intensities of the two relative peaks of the converter as
the original signal, is shown in Figure 13.

According to the Hilbert spectrum of IMF-3 signalled
with relative intensity, the yellow energy is concentrated
in the frequency range of 40~100Hz, and the frequency
signal between 40 and 100Hz exists in the whole process;
when the carbon content is in the range of 0.15~0.2% and
0.4–0.45%, two blue high-energy spectra will appear, the
frequency signal is between 120 and 140Hz, and the
energy is relatively high. The IMF-3 marginal spectrum
of the relative intensity signal is shown in Figure 14.

From the marginal spectrum, we can see that there are
high peaks and high energy values in the frequency range
of 100~200Hz, which is consistent with the results of the
above analysis of the Hilbert spectrum.

4.2.3. Comparison and Conclusion. Compared with the abso-
lute intensity signal, the frequency signals of the two high-
energy spectra of the relative intensity signal have shorter
intervals and are closer to the time when the carbon content
is 0.3%. With the absolute intensity signal, when the carbon
content is close to 0.3%, low-frequency and low-energy phe-
nomena occur. This provides an important basis for the pre-
dicting the end points of converter steelmaking.
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Figure 11: Hilbert spectrum diagram of IMF-3 signalled with absolute intensity.
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Figure 12: Marginal spectra of IMF-3 signalled with absolute
intensity.

9Complexity



The converter flame spectral information collected by
the sensing device is transmitted to the computing device,
and the computing device extracts in real time the ratio of
the light intensity of the flame peak and the ratio of the
light intensities of the two local peaks as the original signal
and performs empirical mode decomposition and Hilbert
transformation. First, observe IMF-3 Hilbert spectrum of
the relative intensity signal. When a 120~140Hz fre-
quency signal appears, the carbon content has dropped
to 0.4%, which is about to reach the end of the converter
steelmaking; when the low-energy, low-frequency moment
of the IMF-3 Hilbert spectrum of the absolute intensity
signal appears, it means that the carbon content is about
to drop to 0.3%, which has reached the end of converter
steelmaking. At this point, it is necessary to stop the
oxygen blowing process.

5. The Real-Time Prediction Test of the Model

In order to verify the validity of the HHTmethod for predict-
ing the end point of the converter, the data of twenty con-
verters are collected and simulated at the same time. The
results are shown in Figure 15. The forecast result is ideal.

6. Conclusions

Faced with the pressures of international competition and
domestic environmental governance, building intelligent
factories is the only way for steel companies to transform,
upgrade, and survive. Raising the final hit rate of steelmaking
control and then achieving automatic steelmaking is an
important link and goal for the construction of an intelligent
steel company. This research is carried out in a steel
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Figure 13: Hilbert spectrum diagram of IMF-3 signalled with relative intensity.
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Figure 14: Marginal spectra of IMF-3 signalled with relative intensity.
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company, and the flame spectrum big data sets are acquired
by installing a data acquisition device at the mouth of the
converter. After data preprocessing such as information
fusion, the relative data of the ratio of the two peaks and
the single peak absolute data are used as signals for the 70%
flame after the steelmaking process of the company. Adaptive
analysis is performed with HHT to achieve the spectrum
change characteristics. The pretreatment, analysis methods,
and results for such data have not been reported in other doc-
uments. It is an easy-to-execute, referential treatment
method and has important reference value.
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