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Abstract 

Novel computational representations, such as simulation models of complex systems and video 

games for scientific discovery (Foldit, EteRNA etc.), are dramatically changing the way discoveries 

emerge in science and engineering. The cognitive roles played by such computational representations 

in discovery are not well understood. We present a theoretical analysis of the cognitive roles such 

representations play, based on an ethnographic study of the building of computational models in a 

systems biology laboratory. Specifically, we focus on a case of model-building by an engineer that 

led to a remarkable discovery in basic bioscience. Accounting for such discoveries requires a 

distributed cognition (DC) analysis, as DC focuses on the roles played by external representations in 

cognitive processes.  However, DC analyses by-and-large have not examined scientific discovery, 

and mostly focus on memory offloading,  particularly how the use of existing external 

representations change the nature of cognitive tasks. In contrast, we study discovery processes, and 

argue that discoveries emerge from the processes of building the computational representation. The 

building process integrates manipulations in imagination and in the representation, creating a coupled 

cognitive system of model and modeler, where the model is incorporated into the modeler's 

imagination. This account extends DC significantly, and we present some of its theoretical and 

application implications. 

Keywords: Distributed Cognition, External Representations, Scientific Cognition, Discovery, 

Digital Media, Systems Biology 
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Introduction 

New computational representations are radically changing the way scientific knowledge is generated, 

most notably in the biological sciences and bioengineering. A striking example is the case of Foldit, a 

video game (built on top of a computational model) that allows novel protein-folds to be designed by 

web-based groups of people not formally trained in biochemistry. Using Foldit, a 13-year-old player 

(Aristides Poehlman) designed protein folds that were judged better than the best biochemists' folds in 

CASP (Critical Assessment of Techniques for Protein Structure Prediction), the top international 

competition on protein-folding (Bohannon, 2009). This remarkable result provides an interesting 

cognitive insight: the process of building new protein folds, using the video game interface, allowed the 

novice player to implicitly develop an accurate/veridical sense of the mechanics and dynamics of the 

protein folding problem. In this paper, we provide details of this process more generally, and develop a 

theoretical account of how discoveries could emerge from building. 

 The approach of 'crowdsourcing' difficult scientific problems to novices using novel interfaces is 

now widely accepted, especially after Nature published a paper (Cooper et al., 2010) where roughly 

200,000 Foldit players were included as authors. The paper proposed that harnessing people’s implicit 

spatial reasoning abilities using such model-based games could be a new method to solve challenging 

scientific problems. This proposal is now confirmed, with Foldit players making some remarkable 

discoveries, including building the structure of a protein causing aids in rhesus monkeys, which was an 

unresolved problem for 15 years (Khatib et al., 2011). The game is currently being refined to support the 

development of new drugs by the players. A spin-off game from Foldit, EteRNA, allows players to build 

RNA folds, and every week the most promising folds from the gamers are synthesized by a Stanford lab. 

The synthesis results are then fed back to the gamers, who use these real-world results to improve their 

designs. This closed loop building process has led to the gamers discovering fundamental design 

principles underlying RNA structure (Lee et al, 2014; Koerner, 2012). Other similar crowdsourcing 

games include Phylo (helps optimize DNA sequences) Eyewire (helps map 3D structure of neurons). 
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Eyewire recently helped answer some basic research questions about the way retinal cells detect motion 

(Kim et al., 2014). 

 These games mark an important shift in the direction of knowledge flow in science, which has 

traditionally been from implicit to explicit. For instance, in many areas of biology, the effort is to 

capture implicit procedural knowledge (such as flight patterns and navigation of birds) in explicit 

declarative terms (such as aerodynamics and signaling). In physics, procedural knowledge (such as the 

qualitative understanding of force) is considered to lead to misconceptions, and declarative knowledge 

(such as Newton's Laws) is used to explain many aspects of phenomenal experience. Given this 

procedural-to-declarative trajectory of scientific knowledge, the case of Foldit and similar games marks 

a new approach to discovering scientific knowledge, as such cases re-represent declarative knowledge 

using computational models and a manipulable interface, so that naive participants can use their 

procedural knowledge to build up novel patterns. At the heart of such games and other similar digital 

media for discovery is a re-representation – converting explicit conceptual knowledge, developed by 

science (structure of protein, possible folds, hydrophobic/hydrophilic interactions etc.) to build a control 

interface that can be manipulated using a set of actions. This interface allows building of new 

representations by novices, using their implicit spatial knowledge. These games thus present a 

fundamental shift in the practice of science, particularly an acknowledgment of the role played by 

tacit/implicit sensorimotor processes in scientific cognition (Polanyi, 1958, 1966). The success of this 

approach suggests that there is a close connection between procedural and declarative knowledge. 

 This is a radical epistemic shift, and it is driven by two irreversible factors. One is the focus on 

understanding interdisciplinary problems such as climate change, where the phenomena under 

investigation are spread across many time-scales and spatial levels, and complex feedback loops are 

standard features of the domain. Existing theory and automated methods are not able to solve the multi-

scale combinatorial problems that emerge in such areas. It is also possible that in these domains, as von 

Neumann (1951) observed, the phenomena are the simplest descriptions possible, and any good model 

would need to be more complex than the phenomena. A second factor is the emergence of 'Big Data', 
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where petabytes of data are generated routinely in labs, particularly in biological sciences. It is not 

possible to analyze this avalanche of data without computational models and methods, which themselves 

fail to work for many problems. A good example is the classification of galaxies using data from the 

Hubble space telescope, a difficult problem that led to the development of Galaxy Zoo, the first effort to 

crowd-source science. This web-based citizen-science project has led to at least 30 peer-reviewed 

papers, and a new astronomical object (Hanny'sVoorwerp) named after the Dutch schoolteacher who 

identified it. 

 The crowdsourcing approach to scientific problem-solving is new, but the idea of using the 

human sensorimotor system to detect patterns, particularly in dynamic data generated by computational 

models, has been applied right from the beginning of computational modeling. Entire methodologies, 

disciplines, and phenomena challenging existing models have been built just from visualized patterns on 

computer screens. These include Complexity Theory (Langton, 1984, 1990), Artificial Life (Reynolds, 

1987; Sims, 1994), models of plant growth (Prusinkiewicz, Lindenmayer, &Hanan, 1988; Runions et al., 

2005), computational bio-chemistry (Banzhaf, 1994; Edwards, Peng, &Reggia, 1998), computational 

nanotechnology (reported in Lenhard, 2004; Winsberg, 2006), and climate change (Schneider, 2012). 

All these novel areas of exploration are based on visualizing data from computational models. Apart 

from the visual modality, protein structure has been generated as music (Dunn & Clark, 1999), and 

scanning microscope output has been used to generate haptic feedback (Sincell, 2000). 

 This approach to making scientific discoveries, by coupling the sensorimotor systems of a crowd 

of novice humans to data embedded in novel computational media, raises a number of questions about 

cognition. Particularly, what cognitive mechanisms mediate the re-representation (and back) of scientific 

knowledge as manipulable on-screen structures? What is the relationship between declarative and 

procedural knowledge, such that this conversion is possible and new discoveries could emerge from this 

conversion process? At a more applied level, how could the visual and tactile manipulation of model 

elements on screen, by groups of non-scientists, quickly lead them to build valid structures representing 

imperceptible molecular entities they have never encountered, especially structures that have eluded 
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practicing senior scientists for many years? What cognitive and biological mechanisms support this 

manipulation-based discovery process? How can these mechanisms be harnessed better, to develop other 

collaborative games/interfaces that address more complex and abstract scientific and engineering 

problems with wider applicability?  

 These questions are critical, for practicing as well as learning this new form of science and 

engineering. Addressing these questions requires developing a general theoretical account that captures 

how discoveries could emerge from the building of new computational representations, particularly 

computational models, and re-representation of data from these models. Previous theoretical work from 

our group has described how building physical models, and computational models linked to such 

physical models, leads to discoveries (Nersessian & Chandrasekharan, 2009; MacLeod & Nersessian 

2013a,  2013b) and innovation (Aurigemma, Chandrasekharan, Newstetter & Nersessian, 2013). We 

have also developed an account of the possible cognitive/neural mechanisms involved in this building-

to-discover process (Chandrasekharan, 2009). In this paper, we seek to address four broader questions:   

 What cognitive powers are developed by building new computational representations, 

particularly computational models, and how do these new cognitive powers lead to new 

discoveries?  

 What other roles does the process of building new computational representations play in the 

discovery process, and more broadly, in scientific cognition? 

 What kind of extensions to existing cognitive theory are required to develop an account of how 

discoveries emerge from building new computational representations? 

 What broader implications and possibilities are offered by such a theoretical model? 
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Scientific Cognition as Distributed Cognition 

 In our view, these questions are best addressed within the distributed cognition (DC) framework 

(Hutchins, 1995a; Hutchins 1995b), which was developed to study cognitive processes in complex 

(usually technical and scientific) task environments, particularly environments where external 

representations and other cognitive artifacts are used by groups of people. The DC approach was first 

outlined by Cole and Engestrom (1993), Pea (1993), and Salomon (1993), and apart from the currently 

dominant model presented by Hutchins (1995a, 1995b), significant contributions to the initial 

framework were made by Cox (1999), Hollan, Hutchins, and Kirsh (2000), and Kirsh (1996, 2001, 

2010). Most work in DC is focused on understanding how internal and external representations work 

together to create and help coordinate complex socio-technical systems. The primary unit of analysis in 

DC is a distributed socio-technical system, consisting of people working together (or individually) to 

accomplish a task and the artifacts they use in the process.  The people and artifacts are described, 

respectively, as agents and nodes. Behavior is considered to result from the interaction between external 

and internal representational structures.  

 The canonical example of external representational structures in DC is the use of speed bugs in a 

cockpit (Hutchins, 1995a). Speed bugs are physical tabs that can be moved over the airspeed indicator to 

mark critical settings for a particular flight. When landing an aircraft, pilots have to adjust the speed at 

which they lose altitude, based on the weight of the aircraft during landing for that particular flight. 

Before the origin of the bugs, this calculation was done by pilots while doing the landing operation, 

using a chart and calculations in memory. With the bugs, once these markers are set between two critical 

speed values (based on the weight of the aircraft for a particular flight), instead of doing a numerical 

comparison of the current airspeed and wing configuration with critical speeds stored in memory or a 

chart, pilots simply glance at the dial to see where the speed-indicating needle is in relation to the bug 

position. This external representation allows pilots to 'read off' the current speed in relation to 

permissible speeds using perception. They can then calibrate their actions in response to the perceived 

speed difference. The speed bugs (an external artifact) thus lower the pilot's cognitive load at a critical 
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time period (landing), by cutting down on calculations and replacing these complex cognitive operations 

with a perceptual operation. The setting of the speed bugs also leads to a public structure, which is 

shared by everyone in the cockpit. This results in the coordination of expectations and actions between 

the pilots. These two roles of the speed bug (lowering cognitive load and promoting coordination 

between pilots) are difficult to understand without considering the human and the artifact as forming a 

distributed cognitive system.  

 Starting from the above example, one way to extend the DC framework to develop an account of 

the role of building computational representations in discovery, particularly the process of crowdsourced 

discovery, would be to show how the building of external representations, specifically computational 

representations, help offload not just memory, but also processes of imagination. This is roughly the 

direction we will be following in this paper. However, we will argue that offloading is not the right 

metaphor to understand the imagination process developed through the building of novel computational 

representations. Rather, the metaphor should be that of coupling between internal and external 

representations (Chandrasekharan & Stewart, 2007; Nersessian et al., 2003; Osbeck & Nersessian, 2006; 

Nersessian, 2009). This extension of DC is complex, as it requires moving the analysis from the use of 

external structures to lower cognitive load – the focus of DC till now – to the process of building 

external representations to create coupled systems for imagination.  

 Much of the work on external representations within DC has focused on capturing detailed 

descriptions of the way external representations are used in highly structured task environments, such as 

ship navigation and landing of aircraft, and the way these representations change the nature/cost of 

cognitive tasks. Less understood are the processes of generating/building external representations to 

alter task environments (Kirsh, 1996) and the role played by this building process in cognitive processes 

while problem-solving  (Chandrasekharan & Stewart, 2007).  As Schwartz & Martin (2006) observe, 

“most cognitive research has been silent about the signature capacity of humans for altering the structure 

of their social and physical environment”. However, a central premise of the DC perspective is precisely 

this, as Hutchins has succinctly stated, "Humans create their cognitive powers by creating the 
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environments in which they exercise those powers" (1995b, p. 169). Since building problem-solving 

environments is a major component of scientific research (Nersessian, 2012), scientific practices provide 

an especially good locus for examining the human capability to extend and create cognitive powers, 

particularly through building new external representations. In this paper, we focus on an exemplar of the 

building of a computational model – a complex external representation – and examine the role this 

external representation, specifically the process of building it, plays in structuring, as well as altering, 

the task of making scientific discoveries collaboratively in a systems biology laboratory. 

 A handful of studies have examined problem solving in scientific research from a DC 

perspective (see, e.g., Nersessian et al, 2003; Nersessian, 2010; Nersessian, 2012; Alac & Hutchins, 

2004; Becvar et al., 2008; Hall, Stevens, &Torrobla, 2007; Hall, Wiecker t& Wright, 2010; Goodwin, 

1997; Giere, 2002).  Most of these studies do not consider in detail how external representations are 

built, largely because the development of a novel external representation, and the changes this process 

makes to the scientific task environment, are complex events that occur over long periods of time, and 

are therefore not easily captured.  Even when such data are available (Chandrasekharan, 2009; 

Nersessian & Chandrasekharan, 2009), it is not easy to understand the cognitive roles played by the 

building of external representations by direct application of the current DC framework, which is derived 

using studies of well-structured tasks with set goals, and therefore does not transfer well to the ill-

structured and open-ended task environment of a scientific laboratory that focuses on discovery.  

Further, the DC framework, as it stands now, largely focuses on the use of existing external 

representations, not on the processes of generating representations, which play a significant role in 

scientific practice.  Building representations is part of the activity of what Hall et al. (2010) call the 

process of “distributing” of cognition. The DC framework therefore needs to be extended to understand 

scientific practices that require building novel representations for problem solving.  

 Other theoretical frameworks to study complex cognition in group settings, such as Situated 

Cognition (Clancey,1997; Lave, 1988; Suchman, 1987), do not examine the interaction between internal 

and external representations, and in some instances these approaches deny the very existence of 
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representations. With a few notable exceptions (e.g., Larkin & Simon 1987; Schwartz, 1995; Hegarty 

2004) the classical symbol manipulation model of cognition (Vera and Simon, 1993; Newell,1980) also 

has largely ignored the interaction between internal and external representations. Without a focus on the 

interaction between internal and external representations, it is difficult to explain how new external 

representations come into being, particularly ones that lead to new concepts (Nersessian 2009, 2012). 

This is a central reason why DC is the most suitable framework for developing a theoretical account of 

the role of computational representations in discovery. Secondly, a central aspect of the DC account is 

the role played by perception in lowering cognitive load (as illustrated in the speed-bug example). This 

critical role of perception in complex cognitive tasks provides a focused entry point for understanding 

the link between procedural and declarative knowledge, as well as the mechanisms involved in building 

external representations for discovery (Chandrasekharan, 2009; Chandrasekharan, 2014). A third reason 

is that, as noted above, there already exists a literature placing scientific practices, particularly accounts 

based on ethnographic studies of scientific cognition, within the DC framework, and therefore the DC 

framework has a base from which to extend, compared to other related theoretical frameworks, such as 

the extended mind framework developed by Andy Clark (2003). Also, unlike this latter philosophical 

framework, the DC framework’s close connection with cognitive science research provides a basis for 

examining what are the specific cognitive functions of the interaction between internal and external 

representations, and what cognitive/neural mechanisms support this interaction (Chandrasekharan & 

Stewart, 2007; Chandrasekharan, 2009; Chandrasekharan, 2014).  

 In social studies of science, scientific laboratories have been studied to examine how they 

develop new scientific practices and technologies and how representations such as scientific papers are 

generated as part of science practice (Cetina, 1999; Galison, 1997; Latour, 1989; Rheinberger, 1997).  

Our account shares some features with such accounts, particularly the study of scientific labs and 

examination of the socio-cultural nature and effects of building new representations. However, our 

central objective is very different from the social studies approaches – our objective is understanding 

how the mind develops new powers through the building of new modeling media – physical and 
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computational – and how these can lead to discovery and innovation. The analyses in science studies are 

mostly sociological or historical in nature, where the cognitive processes of the agents involved are 

explicitly ignored or treated as black boxes. Some of this research, though, does hint at the cognitive 

saliency of the material objects, including external representations, used in research and of the 

collaborations among researchers (e.g., Baird, 2004; Cetina 1999; Galison 1997; Latour, 1986; Meli, 

2006). However discussing these contributions in detail would lead us too far astray from the central 

issue of this paper, which is understanding the cognitive effects of building computational 

representations and media, and determining how this understanding could help in identifying the 

mechanisms involved in discoveries based on such media and also ways in which this understanding 

could be exploited to analyze and develop new digital media that support scientific discovery. In other 

work, we have addressed how these studies can provide important insights that can be used by 

researchers in the cognitive science of science. Further, we have been arguing that DC provides the basis 

for creating a rapprochement between purely socio-cultural and purely cognitive accounts (Nersessian, 

2005, 2008; Osbeck et al., 2011).  

 The paper is structured as follows. Section 1 provides a basic description of computational 

modeling, particularly ordinary differential equation (ODE) modeling, for readers not familiar with this 

method. Readers familiar with ODE modeling can skip this section. Section 2 outlines our empirical and 

theoretical approach. Here we provide an overview of the scientific lab environment we are studying, 

and how it is different from the traditional environments studied by DC.  Section 3 describes the general 

process of building computational models in the Lab, and captures it using a flow chart. Section 4 goes 

deeper into the modeling process, presenting a specific case of building a model that led to a remarkable 

discovery in basic science. Based on this case, Section 5 examines different cognitive powers that are 

created or enhanced by building simulation modeling environments. Section 6 examines how our 

account extends Distributed Cognition theory and of some of the broader implications and possibilities 

offered by our account. 
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1. Computational Modeling: A Primer 

Building models of various kinds is essential to scientific problem solving. Models are usually built to 

investigate complex real-world phenomena -- a comparison of the model's behavior with the real 

system's behavior provides a way of understanding the complex phenomena. For instance, some plants 

such as mimosa fold their leaves at dusk, and also when touched. One could try to understand the 

mechanism underlying this behavior by building a physical model of a leaf, where folding is 

accomplished using small electric motors that are activated by light and touch sensors. Once such an 

electromechanical folding model of the leaf is created, its performance can be compared with the actual 

plant's folding, qualitatively (Is the model's closing as graceful as the plant's? Do all leaves close at 

once, or in order?), and quantitatively (What is the difference in speed-of-closing between model and 

plant? How sensitive is the model to light and touch, compared to the plant leaf?). These comparisons 

allow the model's design to be optimized, until the model's behavior parallels that of the plant. Once the 

behavior of the electromechanical model matches that of the real leaf, the nature of the mechanism that 

is used to fold the mechanical leaf can provide an understanding of the mechanism used by the plant 

leaf, particularly in terms of the complexity required and the limits of the mechanism. At this point, the 

model can be used to predict the nature of other folding behavior exhibited by mimosa leaves, such as in 

response to heat.  

 A more abstract kind of modeling based on mathematical equations is possible if there are 

quantitative data about the real plant's behavior, usually captured as a graph with one variable (say 

folding speed) changing in relation to another standard variable (say light). Suppose many speed-of-

folding values of the leaf are known, for different standard light conditions, and these real world data are 

plotted as a graph. Now, a mathematical equation could be developed, which captures the relation 

between folding-speed and light, represented in the graph, using variables than can take different values. 

For instance, let's say the equation is 7L - h = 2S/f, where L is the amount of light, S is the folding 

speed, h is the height of the plant and f is the size of its foliage.  Here S and L are variables, and h and f 

are parameters, which vary for different plants. This equation is a possible mathematical model, trying to 
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capture the plant's folding behavior using a set of variables and parameters, starting with a graph 

representation of one aspect of leaf folding (speed).  

 To see if this equation is a good model for folding behavior, the model should generate its own 

data, just like the electromechanical model, and these data need to be compared with the real-world data 

from the plant. To get data from the mathematical model, you give h and f constant values (say the 

height and foliage values from the plant for which you have real-world data), and then give different 

numbers for light (L), and track the speed (S) output by the equation. If the graph made using these S 

values output by an equation closely matches the graph made using the real world S data from the plant, 

the model 'fits' the data. If this fit holds for many mimosa plants, with varying heights (h) and foliage (f), 

then the equation can be considered a robust/good mathematical model of the folding behavior of the 

plant. One key advantage provided by such an abstract model is that it allows you to make predictions 

quickly about how fast the plant will fold for light/touch values you have not tracked, or light/touch 

values you cannot track experimentally because of the limitations of your equipment.  

 The next possibility is the computational model. It is possible to develop mathematical equations 

from a graph when there are only two variables, but this approach breaks down when the studied 

behavior is complex, with many graphs, and their variables are interconnected. For instance, you can 

have a chain of reactions, where one reaction's output becomes another reaction's input. Such a chain of 

biochemical reactions is termed a pathway. A mathematical model of a pathway requires developing a 

set of equations, one for each reaction, and 'coupling' together the equations, i.e. the first equation's 

output becomes the next equation's input. In this case, equations are not developed based on the patterns 

seen in the graphs, but based on the idea that any reaction can be considered as a rate of change of one 

set of metabolites into another, in the presence/absence of some regulating agents. A rate of change is 

usually modeled mathematically using differential equations. In the case of a pathway, ordinary 

differential equations (ODEs) are commonly used, in a chained (coupled) fashion, as the reactions these 

represent are coupled. 
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 To be effective, such complex models with coupled equations need to generate data that compare 

well with real-world data. Data generation is difficult in such cases, because the different values for the 

variables and parameters need to be changed systematically and in many combinations, to get model 

data that 'fits' real-world data. Since many combinations of numbers can generate a 'fit', the space of 

possible numbers (the parameter space) needs to be explored to find the combinations that generate the 

best 'fit' with the real-world data.  This exploration, known as parameter estimation, is difficult, because 

to get a unique set of numbers that give a best 'fit' in such complex cases, the set of equations have to 

generate data that match all the graphs, i.e. data from all the reactions in the pathway (for a detailed 

analysis of parameter fitting processes, see MacLeod & Nersessian, forthcoming).  

 A computer can be used to solve both these problems (systematic exploration of the parameter 

space, comparing model data with experimental data for fit) by quickly ‘running’ or simulating the 

dynamics of the model many times, putting different values for the variables and parameters, thus 

generating a range of model data. This is usually done using standard programs known as ODE solvers. 

Simulations can also be used to compare the 'fit' between a range of real-world data and the data 

generated by the model. Such automated solving of mathematical equations using numerical methods 

(i.e. by trying different numbers, and not through purely algebraic methods) is one influential form of 

computational modeling, and our case study focuses on such modeling using ODEs.  

 We have omitted many details in this primer, and there are many other forms of computational 

modeling, but for our purposes it provides a reasonably good starting point to understand the modeling 

case we discuss. The most important point to keep in mind is that in the model validation process ('fit'), 

the data the model generates need to match the real-world data. This data generation and matching 

process becomes very difficult when the real-world system has many elements, which raises the number 

of elements (variables and parameters) in the model, and the number of graphs to be matched. Also keep 

in mind that the modeler can change the structure of the models (such as the number of equations, 

number of parameters etc.) while trying to get a fit.  
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2. Lab G as a Distributed Cognitive System 

Our research involves studying distributed cognition in scientific laboratories. This is a relatively new 

research area, and our focus is on understanding scientific cognition as situated in complex 

environments, comprising researchers and artifacts. Specifically, we are interested in understanding how 

innovations and discoveries arise from the building and use of cognitive artifacts in scientific research 

labs. This approach to studying scientific cognition provides substance to Hutchins’ claim we cited 

above about creating cognitive powers (see, e.g., Nersessian, 2012). 

 In our current project, we have been conducting a four-year ethnographic study of cognitive and 

learning practices in two systems biology labs. This project is part of a longer (twelve-year) effort to 

both understand these aspects of research practices in bioengineering science laboratories, and develop 

instructional contexts that reflect salient dimensions of these practices. We use ethnographic data 

collection methods of participant observation, informant interviewing, and artifact collection. In both 

labs we conducted unstructured interviews with the lab members as well as some collaborators outside 

of the lab. We collected and analyzed relevant artifacts, including presentation files, paper drafts, 

published papers, grant proposals, dissertation proposals, and completed dissertations. We have 

collected 97 interviews and have audiotaped 24 research meetings. We focus here on one lab that does 

only computational modeling (“Lab G”). In this lab, the modelers come mainly from engineering fields, 

but work on building computational models of biochemical pathways to simulate and understand 

phenomena as varied as Parkinson’s disease, plant systems for bio-fuels, atherosclerosis and heat shock 

response in yeast. The problems Lab G modelers work on are provided by outside experimental 

collaborators, who see modeling primarily as a means to extract patterns from the large amounts of real-

world data they have, and thus helping isolate/predict key experiments of scientific or commercial 

importance. The collaborators provide experimental data for modeling, and sometimes also generate 

data needed for developing a model, or for validating a model's predictions.   

 In broad terms, the Lab G modeling processes can be understood as occurring within a 

distributed socio-technical system, which is the primary unit of analysis in DC. This system comprises 
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people working together (modelers, experimentalists) to accomplish a task (discover fruitful changes to 

biological pathways), and the artifacts they use (models, pathways, diagrams, graphs, papers, databases, 

search engines) in the process. We will ignore the physical models and instrumentation systems used by 

the experimental collaborators in this analysis, since Lab G modelers do not interact with these. 

 The task environment of the lab and the external representations used by modelers differ 

significantly from those usually examined in DC. The main differences can be classified as follows: 

Actors and Goals: The lab does not have a structured task environment, with synchronous actions 

connecting individuals or groups. The objective of the lab is to make discoveries, so the lab task 

environment is one where the specific goal is not set or known in advance. There are very general goals, 

such as “discover interesting reactions”, and less general goals, such as “fit model”. These general goals 

are spread across people who share a resource (experimental data), but do not share a tightly integrated 

task environment. The actors have different goals; they work in different settings, at different times, and 

using different instruments.  

Conflicts: The community sharing the data has conflicting interests. Even though the modelers are 

working on a problem of specific interest to the experimentalists, it is very hard to get data from 

experimentalists, even when they have initiated the collaboration.  One reason is that the experimental 

labs have other experimental projects underway, and the modeler’s requests are often not an immediate 

priority for lab members. Other reasons are the experimentalists' insufficient understanding of the model 

and the modeler's requirements, as well as their inclination to publish experimental results first before 

sharing the data with modelers, even when the data is necessary for building the model. Finally, the 

experimentalists collect and report data suitable for their own interests and community standards (such 

as data showing a statistically significant rise/fall from a baseline level, but only at one time-point), but 

the modeler often requires a different type of data (such as time-series data, which reports many 

measurements across a thick series of time-points) that allows her to lower the mathematical complexity 

of her model. Further complicating the interaction, the two communities also work at conflicting time-
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scales. For instance, once developed, the models run blazingly fast, and can produce interesting 

predictions in a few days. But experimenters take weeks and months to gather data based on these 

predictions, and this phase-lag frustrates the modeler. Conflicts also arise over the different epistemic 

values, such as placing importance on specific data points and considering only trends in the data.   

Artifacts:  The lab researchers do not simply use external representations to reach a goal. The task of 

the lab is to build novel representations (biological pathway diagrams, mathematical and computational 

models) and use them to make discoveries. These representations are themselves built from other 

representations (papers, data files, online databases, code), which provide information in a scattered 

fashion. Modelers with little biological background need to drill deeply into a very specific experimental 

literature, about which they have no prior knowledge. There are significant judgments involved in 

acquiring and assessing this scattered information (Is this database curated? Is this cell line compatible 

with my problem?), and integrating the information into a coherent representation (Should this reaction 

be included in my pathway? Are there other regulations missing here?). The engineers involved in 

building the models are largely novices in making these judgments, and they gain knowledge by 

discussing these judgments with the experimentalists, who, in turn, have little to no understanding of 

how the model works, the components of the model, and what the modeler needs to build the model.  

 These differences suggest that understanding the lab as a distributed cognitive system requires 

extending the current DC framework – to task environments where goals are not clearly specified, where 

many kinds of conflicts exist, and where building representations is the central component of the task. 

Such an extension requires developing an understanding of the cognitive roles played by external 

representations in such environments, and how the features of these representations and their building 

processes meet the demands of the task. This expansion is critical for understanding scientific cognition, 

because building computational models is fast becoming a requirement in contemporary science, and the 

cognitive roles played by these models by-and-large have not been addressed.  
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3. Constructing the Pathway and the Model: The General Process  

 Lab G researchers mostly build ordinary differential equation (ODE) models of metabolic 

systems, which capture how the concentration levels of different metabolites in a given biological 

pathway (a series of reactions) change over time. The first step in this building process is the 

development of a pathway diagram, which shows the main reactions involved. The number of reactions 

in the pathways studied by the lab range from 14 to 34, but the number of equations from this set of 

reactions varies for specific models, depending on the question the modeler is exploring and the 

computational/data resources available. The pathway diagram also captures positive and negative 

regulation effects, which specify how the presence of different metabolites has a positive or negative 

influence on different reactions (Figure 1). A rough diagram of the pathway is sometimes provided by 

the experimental collaborators, but most often the modelers have to stitch together the pathway by 

searching for and reading the relevant biology literature. Once the pathway is constructed in sufficient 

detail, the modelers, who mostly come from engineering backgrounds, have to estimate the details of the 

pathway by themselves, particularly values of parameters related to metabolites, such as speed of the 

reaction (rate constant) and an index of the reaction mechanism (kinetic order), which are  usually not 

measured by experimenters. Some of this information is available in rough form (with varying degrees 

of reliability) from online databases, but most often these values need to be estimated, usually through 

iterative testing of the model, using a range of numbers as parameter values.  

 

[Figure 1 about here]  

 

 Modelers also add some components to the pathway, usually metabolites that are known to 

interact with the network provided by the experimenters. These components are found by reading and 

searching biology journal articles and databases related to the problem being modeled, and also based on 

results from preliminary models.  Even when much of the pathway is provided by experimentalists, 
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these kinds of additions based on literature searches are required, because the provided pathway does not 

identify all the components, and the regulatory influences they have on the reaction.  

 The pathway developed by the modeler thus brings together pieces of information that are spread 

over a wide set of papers, databases, and unreported data from the experimentalists. This pathway is 

usually trimmed, based on some simplifying assumptions, mostly to lower the mathematical and 

computational complexity involved in numerically solving the differential equations. After the 

trimming, differential equations are generated to capture the trimmed pathway, usually directly as 

Matlab (Mathworks Inc.) code. A variable is used to represent the metabolite, while the speed of its 

change (rate constant) and an index of its reaction mechanism (kinetic order) are represented by 

parameters. The next step involves estimating rough values for these parameters, and these values are 

then used to initialize simulations of the models. The simulation results (model data) are then compared 

to actual experimental results (real-world data), to judge the ‘fit’ of the model. 

 Usually, modelers split available experimental data into two sets: one set is used to develop and 

fit the model (training data), and the other set is used to validate/test the completed/fitted model (test 

data). When the model data do not fit the test data, the parameters are “tuned” to get model results that 

fit. Once the model fits the test data, it is run through a series of diagnostic tests, such as for stability 

(e.g. does not crash for a range of values), sensitivity (e.g. input is proportional to output) and 

consistency (e.g. reactant material is not lost or added). If the diagnostic tests fail, the parameters are 

tuned again, and in some cases, the pathway changed, until the model meets both the fit and diagnostic 

tests. Figure 2 provides a broad outline of the modeling process. Sometimes, when data are scarce and 

the model can be fitted using many parameter values (see below), the diagnostic tests are run early, to 

lower the space of parameter values. Lab G modelers also run Monte Carlo simulations (which involve 

randomly testing numbers from a set) to explore the dynamics of different parameter values/ranges. 

[Figure 2 about here] 
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 Lab G models do not use real-time dynamic visualizations. Parameter values are changed 

manually or using scripts, and the equation code is numerically solved using a Matlab ODE solver. 

Model results for different parameter values are compared using a deck of graphs, where each graph 

plots the concentration value of a molecule in the pathway across time, for model and experimental data. 

These graphs (see, e.g., Figure 3) are used by the modeler while discussing the model with collaborators 

and other team members. A significant chunk of the parameter estimation problem is tackled using 

optimization algorithms (such as simulated annealing and genetic algorithms), which automatically do 

the ‘tuning’ of parameters to get a fit, by comparing the output values of the model (for different 

parameter inputs) against a desired value or range of values (objective function). 

 

     [Figure 3 about here] 

 Importantly, the linear work flow suggested by the above description is very deceptive – the 

modeling process is highly iterative and incremental. For instance, to develop the pathway diagram, 

preliminary models are built using the pathway network provided by the experimenters, and these are 

run using tentative parameter values, and the generated model data are fit to the training data. The 

parameter values are then revised based on this fit.  If the model data do not fit after a large number of 

these parameter revisions – particularly if the data trends are the exact opposite of experimental data – 

the modeler will add some components to the pathway network, based on elements that are known (in 

the literature) to be related to the pathway. These pathway revisions, and their justifications, are 

discussed with the collaborators, and if a revision is considered “reasonable” by the experimenter, it 

becomes a stable component of the pathway. This pathway identification process is usually bottom-up, 

and creates a composite network, made up of parameter values and metabolites extracted from 

experiments in different species, different cell lines, and so forth. This composite is unique, and does not 

exist anywhere else in the literature.  
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 One of the central problems the lab members face is the unavailability of rich, and dependable, 

data. One central use of data is to establish that the model captures a possible biological mechanism, and 

this is done by showing that the model’s output matches the output from experiments (fitting data). A 

second use of data is to tune parameter values during the training phase of building the model. The fit 

with the experimental data from each training simulation can indicate how the model parameters need to 

be changed, so that the generated model data fits the training data. This use is highly dependent on the 

type of data available. Most of the time, the available data are ‘qualitative’ in nature – usually data 

showing how an experimental manipulation led to a change in a metabolite level from a baseline. 

Mostly, this is reported as a single data point, indicating the level going up or down, and then holding 

steady. However, when this type of (steady-state) data fits the results of the model, this fit does not 

indicate that the model has captured the biological mechanism, because a range of parameter values can 

generate model results that fit such sparse data – the fit is not unique. Further, since the pathway is an 

approximation, the modeler is uncertain in such cases as to whether the lack of a unique solution is due 

to poor estimation of parameters, or because some elements are missing from her pathway. 

 As a general example of modeling in this lab, consider G12, an electrical engineer by training, 

who is modeling atherosclerosis. When she started modeling, she had no background on atherosclerosis. 

She was provided a rough outline of the pathway by her experimental collaborators, and she learned 

more about the pathway by reading papers. The initial papers were from the collaborating lab, but then 

she spread out using the reference lists of those papers. The data available were mostly steady-state data. 

Once she had read a number of papers, she started building rudimentary computer models and testing 

these using available data.  She then added some components to the model based on connections in the 

literature. It is worth noting here that while her problem mostly concerned endothelial cells, some of her 

parameters were taken from experiments with neurons, a very different cell class, and a domain of 

research (neuroscience) that is not usually connected to research in endothelial cells. After discussion, 

her collaborators endorsed some of her additions to the pathway, as “reasonable”. 
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 Estimating parameter values for her model was a tough problem, since the data were sparse. To 

get parameter values that generated model data that fit the training data, she ran a large number of 

simulations and compared the model results with the training data. Finally, she arrived at a set of values 

that generated data that roughly matched the training data. Once this was done, she tested her model 

against the test data, and got a rough fit there as well. Based on this fit, she generated a number of 

predictions from the model, by changing the parameter values.  Some of these predictions would be 

tested by her experimental collaborators. 

 This exemplar is representative of much of the modeling in Lab G, where external 

representations (pathways and models) are built up from scattered and unreliable information, and 

discussion. These representations are built by modelers (engineers with no background in biology) using 

an iterative building strategy, starting from rough data and guidelines from experimental domain 

experts. This building process requires interaction between the modelers and the experimentalists, and,  

when working well, the interaction can foster a rich collaboration. The modeler is dependent on the 

experimentalist to validate the model’s predictions, and the completed model’s predictions can guide 

experimental decisions and lead to discoveries in critical areas such as biofuel production. The data from 

these experiments are then incorporated into the model, leading to another cycle of experiments and 

discoveries. 

 In the next section, we outline a specific case of model building in Lab G, where the process of 

building an ODE model of lignin led to a remarkable discovery, changing the very basic science 

knowledge that was used to create the model.   

4. A remedy for recalcitrance: modeling of monolignol bio-synthesis 

 One of the projects we studied in Lab G was the modeling of the pathway of lignin, a natural 

polymer that helps harden plant cell walls. The objective of the model was to help develop transgenic 

plants with lower lignin content, which would make commercial production of biofuel possible. The 

hardening property of lignin provides the plant with structural rigidity, and supports growth. While 
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biologically useful for the plant, and also potentially useful for making carbon nanofibres (Ago et al. 

2012), this hardening property is a problem for the bio-fuel industry, because lignin is difficult to 

breakdown (exhibits “recalcitrance”) when biomass is processed into fermentable sugars (using 

enzymes/microbes). This recalcitrance of lignin makes the extraction of sugars difficult and costly, and 

bio-fuel production is therefore uncompetitive in comparison to fossil fuels. To solve this problem, 

genetically engineered plant varieties with lower lignin content have been developed (for various plant 

species such as alfalfa and poplar;Wilkerson et al., 2014), but these transgenic species are not optimal, 

as they exhibit unforeseen consequences such as decreasing only one of the three monomer building 

blocks of lignin (termed monolignols, H, G, S). Computational modeling has the potential to help in 

understanding the mechanisms underlying lignin production, and this understanding could contribute to 

the development of transgenic species that have low lignin content, but also good growth (very low 

lignin content will lead to plants not having structural integrity, and this could prevent growth). The 

modeling could also help develop plants with different ratios of lignin monomers H G and S, such as a 

lower S/G ratio, which also helps in improving the extraction of sugar from plant cellulose. 

 Lab G was approached by a research lab in another US state to model the pathway involved in 

lignin biosynthesis. The researchers wanted to understand how the monolignol components (monomers: 

H,G,S) of lignin are generated by the components of the lignin pathway. This is a new modeling area; 

most of the other modeling efforts in the bio-fuel domain involve developing bio-informatics models, or 

models of organisms that are used to break up the plant biomass.  

 G10 was the principal researcher working on the lignin biosynthesis model.  Our analysis of this 

case is based on 5 interviews (1 to 1.5 hours each; the initial interview was open format, with semi-

structured follow ups), drafts of papers, presentation files, dissertation proposal and defense, dissertation 

and defense, and field notes on research presentations.  G10 mostly worked from home, so field 

observations of the modeling process were not possible.  G10 was a bioengineering Ph.D. student, with 

bachelor’s and master’s degrees in electrical engineering from outside the US. He had no previous 

knowledge of lignin or of biofuels. In the collaboration, G10 started by building a model of the lignin 
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pathway in alfalfa (the species used by the experimental lab), which, along with switch grass, is the plant 

species of choice in the US, given its geography), based on existing knowledge about the pathway from 

the literature, and data from papers. 

To progress, he needed new data from the experimental lab. However, he faced significant 

problems in getting data from his collaborators. The problems were three-fold. One was that the nature 

of the data he wanted was different from the data collected by the collaborators. 

 

….the biologist(s) produce the data they want. But those data are not actually what we want 

when we do the parameter estimation. ...so there ... might be some gap between these two, 

between us. 

… they only focus on one species. But even so they don’t produce enough data. They don’t 

produce, they don’t measure the concentration for example. And they have few kinetic data. 

...most of the data they have is just the output, the final output, ... the composition of the lignin. 

That’s what they have. ... we [modelers] try to use only that kind of data to construct a full 

model. 

 

A second problem was delays, and not having good access to the collaborators. 

 

...the problem for me is that I cannot, I cannot ask the biologists question[s] as often as I want… 

because they are in [different US state.] So I ... email ... him and so the man who, who have 

contact [with] me is a research scientist…he is very busy. So sometimes you want to ask him [a] 

question, and he would get back to you in a month… or even two month… or ... don’t even reply. 

...that’s a problem… because we are not expert ...[in] that field. We try to do the modeling right, 
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but we need more information, not this data in the literature. They have more information than 

we know from the literature... I think the major problem is the communication channel between 

us and the biologists. ...if we can build up a, a very solid channel between us, I think it will be 

great for our work. 

 

A third problem was the unwillingness of the collaborators to part with data before publication, and this 

issue was complicated by G10’s status as a junior researcher.  

 

... right now they just give us the data they have published. But we want more data which they … 

[have] not yet publish[ed]. And I cannot, from my past experience with them ... they just told me 

if they’re working on something they need to get published first…and then they can give me the 

data later. And sometimes it’s a problem of you know, it’s the different status [between] me and 

the research scientist. 

 

These three problems illustrate the inherent conflicts involved in the collaboration, and these conflicts 

make the interaction between the modeler and the experimentalist very different from the cooperative 

interaction that is seen in other distributed cognition analyses. 

4.1 The Poplar model 

While waiting to get data and feedback on the alfalfa model from his collaborators, G10 developed a 

model of lignin biosynthesis in poplar. A significant amount of data was available for this species, which 

is preferred for biofuel production in Europe. This model helped him to understand the lignin pathway 

better, and also to develop a two-step modeling technique that helped in dealing with the complexity of 

the lignin pathway. The model also led to the development of a novel parameter estimation method, 
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suited to the available data (consisting mostly of S/G ratio in genetically engineered plants). This 

method involved a three-step process. 

 

• First, each parameter value was constrained to a physiologically realistic range. This technique 

uses a biological constraint – survival – to simplify the mathematical problem of estimating 

parameter values. A Monte Carlo type random sampling of parameter values within this range 

was then done to simulate the model. These simulations generated a large set of model data 

(different S/G ratios). 

 

• In a second step, correlations were established between the parameter values used in these 

simulations and the S/G ratios, to select significant parameters (any parameter where a small 

change lead to a large change in the S/G ratio).  

 

• In the final step, these significant parameters were optimized using computational techniques 

(linear programming and simulated annealing) so that the difference (SSE: sum of squared error) 

between model results and experimental data was minimal. This generated an ‘ensemble’ of 

models with low SSE. 

 

 This ensemble of models helped identify the key reactions that influenced the S/G ratio. The 

ensemble of models was then used to simulate the test data (two transgenic experimental results not 

included in the training data). The models (note the plural; there was no unique model) were able to 

approximate these test data, as well as provide some mechanistic insight into the working of the 

pathway, which was found to be supported by available experimental evidence.  
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 Based on this validation, the ensemble of models was used to make some predictions about how 

the pathway could be engineered to reduce the S/G ratio. Even though this model of lignin mechanism in 

poplar was developed based just on pathway information and data available in the literature, it helped 

create a modeling template for the lignin domain. Particularly, the three-step process was useful in 

managing the mathematical complexity of the system, and the parameter estimation process was 

developed in a way that was tailored to data in this domain. These templates were then applied, with 

variations, to the alfalfa model, to make significant discoveries relating to the lignin pathway. 

4.2 The (second) Alfalfa model 

Once G10’s collaborators had published some of their experimental work, they shared their data (excel 

files) with him, which he incorporated into the Alfalfa model. The collaborators did not provide G10 

with the pathway structure, only data was given. 

 

They don’t tell us what the pathway looks like. We just get this information from the literature…., 

the pathway structure is from the literature…. everybody is using it. The black arrows is [sic] 

what everybody thinks is right…. The red ones are the new findings. 

 

 There were also some other results that appeared from the experimental group at that time, which 

were also incorporated into the model, but based on the data the group reported in the literature. The 

newly added components can be seen in the figure below. 

 

[Figure 4 about here] 
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 The blue arrows are new components added by G10, based on his modeling and analysis. These 

are revisions to the established pathway that “everybody is using”. 

 

The blue ones are actually a hypothesis from our analysis of data – from the results of our 

analysis. So based on our analysis we suggest there are a few, for example, there are three, we 

need to add these three arrows[blue] here… so that our model can fit the data. And also we need 

to… we need to set these three reactions to be reversible so that our data can be explained by 

our model. So they are, these blue arrows are actually our findings, our new findings…. we have 

data from our collaborators and we analyze it with very simple linear models and based on our 

analysis results, and we suggest there… this original pathway needs to be modified so that this 

data can be explained. 

 

 The alfalfa model was more complex (24 equations) than the poplar one, since there was more 

real-world data to account for (7 transgenic species) than the poplar case.  Further, the data included the 

lignin levels at different points of growth of the plant stem (8 different internodes), and the lignin levels 

were different for each of these growth points. Developing a model whose output matched this 

differential expression of lignin at different growth points was a challenge. However, now there were 

lots of data available: 

 

...we have many data...we have data for six or seven transgenic experiments and each experiment 

generate uh, about seven sets of data. So we have many data... 
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…our collaborators ...are generating transgenic plants in alfalfa and they...actually modify every 

single enzyme within the pathway. So they have more data than … we need to know. 

 

The modeling approach used was a variation of the three-step one used in the case of poplar. First, this 

model made the assumption that the lignified stem tissues of wild-type alfalfa plants evolved to 

maximize the production of lignin monomers, and this biological assumption was used to develop a 

mathematical term for optimizing parameter values (the objective function).  

 In the second step, the transgenic plant data (for every inter-node of the plant) were modeled 

using a method where it was assumed that a genetically modified strain tries to function as similarly to 

the wild-type as possible within the limitations imposed by the genetic modification. This is a biological 

assumption that provides a mathematical term. Finally, a Monte Carlo type simulation similar to the 

poplar case (random sampling of many parameter values) was performed, to understand the role of 

kinetic features of the participating enzymes. 

 This three-step modeling process led to a series of insights (six postulates). These include the 

reversibility of some reactions (blue arrows pointing up in figure 4) and the possibility of independent 

pathways for the synthesis of G and S monolignols.  

 However, one spectacular finding stood out: the modeling showed G10 that the traditional 

pathway – used by almost everyone in the field for twenty years – is incomplete, and an element (termed 

X by G10; this naming is significant, as we discuss below) outside the standard pathway has a 

significant regulatory effect on the behavior of the lignin pathway.  

 

So this is actually the biggest finding from our model. So by adding this reaction you can see that 

we hypothesize that there is another compound that can give a regulation… give a feed forward 

regulation to other parts of the pathway. 
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 The figure below captures the regulatory role of X in two different scenarios. The thickness of 

the red and blue lines indicates the size of the regulatory effect. The size of the violet circle indicates the 

amount of X generated. The violet line ending in an arrow indicates activation, the horizontal line 

ending indicates inhibition. 

 

[Figure 5 about here] 

 

 This finding would not be possible without modeling, and the proposed role of X in the lignin 

pathway, if correct, would rewrite the scientific consensus on the lignin pathway significantly. 

 

And this finding will not be possible if we haven’t done any modeling… because well if you just 

look at the data, the data only tells you the composition of these three lignin... 

 

 G10’s collaborators found this proposal interesting, and it significantly increased their 

willingness to collaborate by conducting experiments on the model’s prediction. Their experiments 

identified a possible candidate metabolite that played the specific roles X played in G10's models. A 

paper outlining the modeling and experimental results was published in a high impact modeling journal, 

and the paper was written jointly with the experimental collaborators. According to G10, the 

experimental collaborators knew about the existence of the candidate metabolite (outside the lignin 

pathway), but they did not consider the metabolite either as important or as influencing the production of 

lignin.  
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They just don’t focus on it… because it's not important. I mean it is not…not important because 

they just focus on how the three products are being produced by this pathway. But they don’t 

know how this part could affect this…the production of these products. So originally they're just 

focused on ok this is our precursor and how is this precursor being converted into the products 

we want. But they don’t know how this compound… which is also derived from this precursor 

could affect the pathway. 

 

 This result illustrates clearly the ideal case of modeling – of the model making a significant 

experimental prediction, which is then tested and validated by the experimentalist. It shows the value 

modeling can provide for experimentalists.   Based on this finding, and the collaboration that resulted 

from it, G10 was optimistic about an enhanced interdisciplinary collaboration that will provide more 

data from his collaborators.  

 

I guess this findings [sic] will give them more confidence in what we are doing so maybe in the 

future they could be more willing to give us…to share more data. 

 

 In contrast to his statements in the beginning of the modeling, when he was frustrated about not 

having access to data, he was now cautiously optimistic about his collaborators' willingness to share data 

and to do additional experimental work to validate the model’s predictions.  

 

If our model really produce [sic] something very new, they would want to validate that.  
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...we also [have] come up with another hypothesis which they are looking into right now because 

it involves more complex regulation… the transcription, the transcriptional regulation that 

would involve more enzymes, more proteins, and they don’t know if that is correct or not. ... so 

they, I believe they will do experiments to validate. 

In the following section we examine some of the cognitive effects of the model building process.  

 

5.  The cognitive effects of building  

The above case study illustrates two critical cognitive effects of building an external computational 

model in the process of scientific research: 

1) New cognitive powers that facilitate scientific discovery emerge from building an external model  

2) Collaboration ecosystems emerge from building an external model  

We discuss these points below, and the following section outlines how they help extend the DC 

framework. 

5.1 The emergence of cognitive powers 

The original goal of the lignin project was tweaking a given pathway so as to make lignin break down 

more readily for biofuel production, which is an engineering goal. But G10 ended up changing the 

standardized pathway, the scientific consensus on the mechanism underlying lignin production. This is a 

basic biological science discovery, generated by an electrical engineer, based on a few months of 

modeling. The finding is remarkable. The discovery shows that the built external model is not just a 

replica of an existing standardized structure (the pathway) for the purpose of tweaking. The external 

model, and its building, is a mechanism that affords discovering unknown features of the pathway.

 Approaching this discovery event from the point of view of understanding the role of external 

representations in cognition, a key question is: what are the cognitive changes involved in building the 
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external simulation model, and how could these changes lead up to the discovery? The key cognitive 

change is that within the course of many iterations of model building and simulation, the model 

gradually becomes coupled with the modeler’s mental system, particularly his imagination (mental 

model simulation) of the phenomena he is modeling, based on which the modeler explores different 

scenarios. The building process slowly creates an 'external imagination' that is closely coupled to the 

modeler's imagination system. This coupling allows "what if" questions in the mind of the modeler to be 

turned into detailed, and close to actual, explorations of the system. It is important to note that the model 

acquires this external imagination role only in a gradual manner, through its incrementally acquired 

ability to enact the behavior of the system that it is modeling. As it is built over many iterations (such as 

the first poplar model), using many data sets, the model's output/behavior comes to parallel the 

pathway's dynamics. Each replication of experimental results by the model adds complexity to the 

model, and this process continues until the model fits all available experimental data well. At this point, 

the model can enact the behavior of the real system – the pathway that is being examined – and thus 

support detailed "what if" explorations that are not possible to do in the mind alone (see also Kirsh, 

2010), or in experiments. 

 Importantly, the model's ability to enact the real system behavior is a very complex judgment 

made by the modeler, based on a large number of iterations, where a range of factors, such as sensitivity, 

stability, consistency, computational complexity, nature of pathway etc., are explored. The gradual 

confidence in the model is thus a complex intuition about its overall performance, emerging over a long 

series of interactions and revisions, and does not depend just on data fitting, even though fitting is the 

most critical process leading to this judgment. 

 As the enaction ability of the model develops gradually through the building process, the model 

starts making manifest many behaviors the modeler might have only imagined previously. But, the 

model goes further, as it also makes visible many details of the system's behavior, which the modeler 

could not imagine (Kirsh, 2010) because of the fine grain and complexity of these details. The gradual 

process of building creates a close coupling between the model and the modeler's imagination, with each 
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influencing the other. The computational model now works as an external component of the imagination 

system. This coupling significantly enhances the researcher’s natural capacity for simulative model-

based reasoning (Nersessian et al., 2003; Nersessian, 2008; Nersessian, 2009;Chandrasekharan, 2009; 

Chandrasekharan et al. 2012), particularly in the following ways: 

1. It allows running many more simulations, with many variables at gradients not perceivable or 

manipulable by the mind (say .0025 of metabolites a and b). These can then be compared and 

contrasted, which would be difficult to do in the mind.  

2. It allows testing what-if scenarios that are impossible to do in the researcher’s mind. Such as, 

what would happen if I change variable 1 and 2 downwards, switch off 6 and 21, and raise 7 and 

11 with a time lag between 16 and 19?  

3. It allows stopping the simulation in between, and checking its state. It also allows tracking the 

simulation's states at every time point, and if something desirable is seen, tweaking the variables 

to get that effect more often and consistently. This 'reverse simulation' is impossible to do in the 

mind, or in experiments.  

4. It allows taking apart different parts of the system as modules, simulating them, and putting them 

together in different combinations.  

5. It allows changing the time at which some in-between process kicks in (say, making it start 

earlier or later), and this can be done for many processes, which is very difficult to do in the 

mind, or in experiments.  

6. It exposes the modeler to system behavior that experimenters would never encounter, as most of 

the above manipulations are not possible in experiments. 

The process of building this distributed model-based reasoning system comprising researcher(s) and 

model leads to the creation of new or enhanced cognitive capacities. We list some of these here. 
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Integration/Synthesis 

 The model building process brings together a range of experimental data and creates a synthesis 

that exists nowhere else in the literature, and would not be possible for the biology researchers to 

produce on their own. Further, given internet search engines and extensive on-line databases, current 

models synthesize more data than ever possible. In effect, the model-building process creates a running 

literature review. The structure of the external model, however, is arbitrary because the modeler is free 

to add/delete elements from the model, based on what he wants to focus on, and also the 

computational/data resources available. Given this arbitrariness, how can a model enact a real-world 

system? Roughly, the enactive ability is achieved by infusing data into the model, using a highly 

recursive process. In the particular case of Lab G modeling, there are three distinct elements of the 

model – data fit, parameter values, and network structure – that can be altered in many ways to replicate 

experimental data. During the process of building the model using the training data, these elements are 

tuned iteratively and in tandem, until they lock together like pieces of a jigsaw puzzle. The lock-in 

happens because the iterative changes constrain each element, and their interactions.   

 The engine behind this process is the fitting of data. The notion of fit is complex, as it is not a 

point-by-point replication of all experimental data for all variables. Rather, ‘fit’ usually means the model 

replicates the trends (metabolite production going up/down) in the experimental data, for most of the 

major variables. In other words, fit is a global pattern, and it is approximate. While estimating the values 

for parameters, the modeler uses the fit with the experimental data as an anchor, in the following way. 

For each change in a parameter value, the way the model’s output maps to the experimental results also 

changes. But only parameter values that improve fit, or keep fit at an acceptable level, are considered. 

The building process proceeds by using the global behavior of the model (fit) as an anchor to specify the 

local structure (parameter values), which is involved in generating the fit itself. The fit is also used to 

add/delete components in the pathway. Importantly, this process of synthesis is not planned; it emerges 

from exploration, and is best thought of as a coagulation process, where each of the three changeable 
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elements (pathway-structure, parameters, fit) are fluid in the beginning, but get more and more 

constrained by their interactions. 

Abstraction 

 A critical cognitive effect of this sophisticated external component of the modeler's imagination 

is that it provides the modeler with an external, system view of the pathway – a global perspective of the 

system as whole, gradually developed from the thousands of runs of simulations, and the analysis of 

system dynamics for each simulation. This global view would not be possible to develop just from 

mental simulation, particularly when the interactions between the elements are very complex and 

difficult to keep track of separately.  It is developed solely through the model-building process.  

 The modeler does not gain expertise in biology from this process. However, the system view, 

together with the detailed understanding of the dynamics, provides the modeler with an intuitive sense of 

the biological mechanism – how the equation set used (the pathway structure) could generate different 

types of experimental data. This intuitive understanding of biological mechanism enables her to extend 

the pathway structure in a highly constrained fashion, to account for experimental data that could not be 

accounted for by the current pathway structure. The model-building process thus creates abstractive 

capabilities as well as intuition about the pathway's dynamics (which the Lab G director often calls “a 

feel for the model.”). Developing such an intuitive sense of mechanism through interaction with the 

model also helps explain the success of Foldit, EteRNA and EyeWire players (also see Chandrasekharan, 

2014). 

Possible world thinking 

 The model-building process begins by capturing a reaction using variables, and then proceeds by 

identifying ideal combinations of numbers for these variables – combinations that generate model data 

similar to experimental data. Variables are a way of getting the building process going by representing 

the unknown using place-holders. But this place-holder representation has an interesting side effect. The 

variable representation provides the modeler with a more flexible way of thinking about the reaction, 
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compared to the experimentalist, who works only with one set of values she can control (all possible 

experimental results), which are privileged values, arising from a set of spatial/structural/thermal 

properties of the molecules, and the possibility of controlling them. While the modeler also starts from 

this privileged view of experimental values, once the model is built, the variables can take any set of 

values, as long as they generate a fit with experimental data. The variable representation enables the 

modeler to think of the real-world experimental value as one possible scenario, and examine why this 

scenario is commonly seen in nature, and not others. This helps her to think of generic design patterns 

and design principles that generate the natural order; such as thermodynamic principles, biological 

systems' preference for many small changes, their bias for reusing existing structures, and so forth. 

Identifying such meta-mechanisms is an ongoing effort in the lab.  

 Thinking in variables also supports the modeler’s objective of altering the structure of the 

reaction, in a way such that patterns commonly seen in nature (such as the thickness of lignin in plant 

cell walls) can be redesigned. This objective requires: 1) not fixating on the given natural order and 2) 

thinking of design principles underlying this natural order. The variable representation facilitates both 

these cognitive steps. More broadly, the variable representation puts the modeler in a counterfactual 

thinking mode, where it is very natural to think of reality, or the data from the real-world, as 

representing one possible world (Chandrasekharan & Nersessian, 2008). This stance significantly 

expands the imagination space of the modeler, compared to the experimentalist, and even the modeler's 

own imagination before building the model. Note that this does not mean experiments do not provide 

counterfactual explorations, or that they are not, or cannot be treated as, part of the cognitive system. 

See Aurigemma et al.(2013) for an account where we examine experiments and prototype development 

from this perspective. 

 Finally, since the process of constraining variables is gradual, the modeler encounters many 

variations and extremes in pathway dynamics, and the parameter/network settings that generate these 

variations. These variations are not exhibited by the final constrained model. But since they are 

encountered, these variations provide insight on 1) which are the most influential variables, 2) how they 
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constrain each other, and 3) how they contribute to the nature of the real-world data. This gradual 

contraction of the imagination space, via encountering many extremes and variations, provides a much 

richer and focused perspective than is possible by just mentally simulating the pathway.  

 In sum, the coupling between the model and the modeler's imagination changes what is available 

to the mind and what it can do with it. One of the things the mind can do with the new configurations, 

manipulative abilities, and the system view is to ask the question: what happens if the very 

representational mapping of the model (the pathway) is changed? This question can be asked only after 

the modeler has created lots and lots of variation, and thus has a firm grasp of the system behavior, and 

every possible change other than this one fails to provide a good fit. It is a very bold move, and the 

building process (particularly variable thinking, variations seen during the modeling process, and the 

allocentric system view abstracted from the variations) provides the researcher with warrant (and 

confidence) to make this bold proposal. 

5.2. The emergence of collaboration ecospaces 

As the case study shows, the modeler – experimentalist relation often starts out strained in the 

beginning. However, in this case the successful building of the model, and the predictions that followed 

from it, led to a very close collaboration, where the experimentalist replicated the modeler's prediction, 

and the two groups published a joint paper, in a high profile modeling journal. Thus model building can 

lead to a deepening of collaborations. 

 The relationship between the modeler and experimenter(s) started off bumpy for a variety of 

reasons. The researchers had different representations of the mechanism, different levels of control, 

different goals/objectives, and little understanding of the nature of these differences. Once built, the 

model generated some interesting predictions, which the experimental collaborators also found 

interesting, even though the modeling process by which the predictions were made was opaque to them. 

However, the predictions generated by the model were tested by the experimentalists and the results 

supported the predictions. Although it does not always happen that the experimentalists will use the 
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predictions in this way, when it does, this process, over time, creates a new collaboration space, and 

offers the potential for bringing the modeling and experimental communities together, leading to a 

transdisciplinary research field that is distinct from the background disciplines of researchers in both the 

streams.  

The building process also leads to new overlapping mental representations of the problem. For 

instance, each reaction occurs in a specific location in the cell (nucleus, organelles, cytoplasm), and 

every reaction is determined by the structural properties of the molecules involved. The 

experimentalist’s judgments are based on this spatial complexity. But the ODE models are based on rate 

of change of metabolite concentrations, and thus do not take into account any of this spatial complexity, 

and the modeler with an engineering background is largely unaware of this complexity. (An indication 

of this lack of structural understanding is G10's naming the unknown element outside the pathway 'X', 

instead of providing a possible metabolite name.)  Over time, the building of the model, and the 

discussion with experimentalists about possible additions, can lead to the modeler developing more 

awareness about the spatial complexity, and sometimes new modeling strategies (such as agent-based 

models or molecular dynamics models) that take into account this complexity. In the other direction, 

discussions about the mathematical advantages provided by time-series data could influence 

experimentalists to report data across time, even if the results are not statistically significant. The 

building process thus can lead to overlapping problem representations, and approaches that fit the other 

community’s task better.  

 We term this growth over time of shared collaboration space and overlapping mental 

representations the mangrove function of external representations, after Clark’s (1997) example of the 

growth of a mangrove tree to illustrate how writing can generate new thought capacities. A mangrove 

tree germinates from a seed floating in shallow water. It then sends out a complex web of roots to the 

ground, creating a “plant on stilts.” This structure traps floating debris, and over time, sand accumulates 

around this debris, creating a little island around the plant. The tree thus generates its own land to grow. 
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This is similar to how the piecemeal building of the model generates its own task environment, 

collaboration space, research domain, and shared representations. 

 Another way in which simulation modeling environments build their own ground for future 

research possibilities is in providing the basis for novices in the lab to start at a more complex level than 

if they had to start from scratch. Further, built models link together a range of results in a domain, and 

thus prevent the dissipation of data and concepts. Simulation models are thus cultural artifacts that 

provide what Tomasello (1999) has called the ratchet effect. In this case, the effect enables modelers and 

experimentalists to build upon previous work. 

6. Extending Distributed Cognition 

The current DC framework considers external representations that are by-and-large already existing in 

the system. We have argued that understanding scientific cognition, particularly discoveries based on 

building new computational representations, requires examining the processes through which 

representations are built, and treating these building processes as a part of the DC systems that solve 

problems and generate scientific discoveries. Abstracting from the case study, we have outlined above 

ways in which building an external simulation model changes the task environment – by affording new 

cognitive operations, by helping make discoveries, and by furthering collaboration. These effects of 

building, and their sub-components, extend the DC framework, in the following ways: 

 DC has discussed how structures in the environment could be made part of the cognitive system 

to lower processing load, for instance in the process of landing an aircraft (Hutchins, 1995a) or 

playing Tetris (Kirsh & Maglio,1994). In accounting for how G10 made the discovery about the 

pathway structure, we proposed that the discovery emerged from a coupling that gradually 

emerged between his imagination system and the external model. This proposal extends the DC 

idea of making external structures part of the cognitive system, to include complex mental 

processes such as mental simulations, and complex external structures such as computational 

simulations. Further, we propose that this coupling emerges gradually, from the start of the 
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modeling process, and develops incrementally through the process of building the external 

model. Current DC models do not provide an account of the process by which external structures 

are made part of the cognitive system, though Kirsh & Maglio (1994) discuss how mental 

rotation is offloaded to physical rotation in the video game Tetris, and how this skill develops 

with expertise. In our account of model-building, the internal-external coupling is driven not by 

the modeler's expertise, but by the way the model ‘gains expertise', i.e. how well it enacts the 

real-world phenomena. This enaction feature, as well as the gradual integration between the 

internal and external imagination 'spaces' through systematic exploration of the possibilities of 

the external model, makes the process in our account different from offloading. Ours is an 

'incorporation' account (see Chandrasekharan, 2014), where the building process leads to two 

kinds of integration. First, incorporation of real-world data into the model, which allows the 

model to enact the behavior of the system it parallels. Second, incorporation of the model as part 

of the imagination system, such that imagined scenarios are tried out in the model, and the results 

are integrated into the internal model of the system the model parallels. This notion of 

incorporation is novel, and the cognitive mechanisms involved in this process would be wider 

than just perception (as, for e.g., the highly visual nature of crowdsourcing computational media 

such as Foldit might lead one to infer), and would involve cognitive systems relating to the 

processing and understanding of motor control and tool use (Chandrasekharan, 2014). 

 Current DC accounts examine how external artifacts serve a coordination function. For instance, 

Hutchins (1995) discusses how the speed bug provides a shared representation of critical speed 

values for the two pilots in the cockpit. However, DC models do not provide an account of how 

coordination emerges among actors through the use of external representations (but see 

Galantucci, 2005; Chandrasekharan &Tovey, 2012), particularly when actors have conflicting 

interests. The G10 case presents an instance of how building an external simulation model led to 

collaborations emerging between groups with conflicting interests. This case contributes to 

pushing the DC notion of coordination further, to include task environments where many kinds 
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of conflicts exist between the actors. The mangrove effect captures aspects of this process 

metaphorically, but it also suggests that shared representations need not pre-exist for developing 

collaborations; building an external model (such as a protein fold using Foldit) can lead to the 

emergence of shared representations of complex problems and, partly through these, the building 

process can lead to better collaborations and discoveries. 

 DC assumes that new cognitive capacities emerge from building new environments, but does not 

discuss in detail the nature of such new cognitive capacities and their relation to the built 

environments. Our discussion of the way imagination is augmented by simulation model-

building provides support for the notion that new cognitive capacities emerge from building new 

environments, and also how they are interwoven with the building of the external model. In 

particular, we argue that operations done using the external model are impossible to execute 

internally, and this is the reason the model is built. This view rejects the equivalence between 

internal and external operations, which suggests that building the external model is optional, and 

the model is just "called on" when cognitive load becomes higher. Our view suggests the 

external model is a requirement for running many of the more complex imagination processes, 

and therefore the model needs to be incorporated into the imagination system. This coupling 

between the external and internal models leads to discoveries.  

In the following section, we examine some of the theoretical and application possibilities offered by this 

significant extension of the DC framework. 

6.1 Broader implications 

Our account extends the notion of distributed cognition in two new directions. One is to the problem of 

discovery, where we propose that novel computational representations help generate discoveries through 

a process of incorporation, where imagination based on internal representations is integrated with the 

building and behavior of a dynamic external representation. Second, in contrast to traditional DC 

accounts, we provide a process account of representation-integration and coordination, where both 
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emerge through the process of building an external representation. These theoretical extensions open 

ways of addressing the following important issues. 

Mechanisms underlying model-based discovery 

Our account suggests that discoveries based on models emerge from a gradual 'incorporation' process 

that is akin to learning, where the model becomes part of the modeler's imagination system through 

systematic actions executed in the model and feedback from these actions. In this account, the model 

expands the action space of the modeler, similar to the way tools expand the action space of users 

(Maravita & Iriki, 2004). The cognitive/neural mechanisms involved in this process are possibly, thus, 

similar to those in the case of tool use described by Maravita &  Iriki (2004). Our account thus provides 

a specific testable hypothesis, and extends the previous mechanism account of building-based-discovery 

(Chandrasekharan, 2009; Chandrasekharan, 2014). 

Design of novel digital media 

Our account of discovery suggests a way of understanding the success of novel digital media for 

discovery, such as Foldit and EteRNA. Essentially, the process of incorporation is based on building new 

structures, then executing actions on this model, and getting feedback. The crowdsourcing games’ re-

representation of valid declarative knowledge as a control interface allows novices to build and then 

execute actions on the model and get feedback. Once the gamers' imaginations and the external media 

(which embed real-world system behavior) are coupled through these processes, they get an implicit feel 

for the behavior of the real system as a whole, and they can then use this implicit understanding to 

design novel structures that can stand up to real-world testing. Importantly, the incorporation also 

provides a 'coordination space' that allows gamers to build on, and extend, others' designs. The success 

of the crowdsourcing model is thus based on the development of this shared action space. 

 This approach to understanding new computational media for scientific discovery suggests that it 

would be possible to design similar control interfaces for non-structural modeling problems, such as the 

metabolic engineering case we have described, and for numerical simulations in general. Working 
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closely with Lab G, we have developed a prototype tangible control interface that turns model-building, 

parameter estimation and model fitting into tangible actions (see Wu et al, 2011), and we are currently 

extending this prototype further1. This design is driven by the theoretical framework we have developed, 

and we hope to refine our framework through this design-based research project.   

Understanding model-based learning 

In mathematics and science education, manipulatives and models are commonly used to improve 

learning of abstract concepts, such as fraction concepts and area concepts, and unperceivable patterns, 

such as DNA structure and stereochemistry. More broadly, there are standard approaches to learning 

based on actions and feedback, such as learning-by-doing and activity-based-learning, and software 

platforms that promote action-based learning, such as Geogebra, Netlogo (Wilensky & Reisman, 2006) 

and Kill Math, which seeks to promote learning of math and science concepts through manipulations of 

objects and numbers on screen.  

 The incorporation account provides a way of understanding how these model-based learning 

approaches work, and how they are related to scientific practice and discovery based on games such as 

Foldit. Essentially, scientific discovery games work by re-representing conceptual knowledge as a 

control interface, where global knowledge of the system can be gained through actions on models and 

feedback from these actions. In model-based-learning, conceptual knowledge is gained through similar 

actions and feedback, via the manipulation of models and physical artifacts. In our account, the 

underlying mechanism in both these cases would be the gradual integration of the internal imagination 

process and the external model, and the implicit understanding of the system's behavior that emerges 

from this incorporation. This account of model-based learning allows the use of DC as an analysis 

framework to understand learning situations involving manipulable models and novel digital media 

(Landy & Goldstone, 2009; Ottmar, Landy & Goldstone, 2012; Landy, Allen & Zednik, 2014;Marghetis 

& Nunez, 2013; Majumdar et al., 2014), and also extend learning frameworks based on modeling (such 
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as Modeling Theory, Hestenes, 2011), thus taking the DC framework back to its original learning roots, 

as proposed by Pea and Salomon (1993). 

Conclusion 

The study of scientific laboratories as distributed cognitive systems is in its infancy. We contend that 

such analyses can help establish distributed cognition as a leading framework in understanding how 

discovery and innovation happens in science and engineering.  The incorporation account we provide 

extends the DC framework, and the implications we outline offer initial glimpses of how our account 

could help in understanding the way cognitive powers are developed through the building of novel 

computational representations in the domain of scientific discovery and beyond. 
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Figure Captions 

 

Figure 1: A sample pathway diagram. Metabolite names have been replaced with alphabets. The dark 

lines indicate connections where material moves across nodes, the dotted lines indicate regulatory 

connections. Note the questions marks over some connections that are postulated by the modeler.  

 

Figure 2: An outline of the modeling process in Lab G 

 

Figure 3: A sample of graphs that show a 'fit'. The blue and red lines indicate experimental data, the 

dots indicate model results, blue indicates baseline. Note that the green dot in the last graph in the top 

row shows a model result (rising above the baseline) that is exact opposite of the experimental results 

(falling below the baseline). The previous graph also shows a model result that falls way outside the 

experimental data points. However, this set of graphs, from a published paper from Lab G, is presented 

as a good 'fit', indicating that fit is a global feature.   

 

Figure 4: The lignin pathway in the second alfalfa model. Metabolite names have been replaced with 

alphabets and random numbers. The red lines and elements indicate new data added. The blue lines 

indicate G10's findings. 

 

Figure 5: The lignin pathway in the second alfalfa model, with the new element X and the role it plays 

in the lignin pathway at different levels of concentrations. Metabolite names have been replaced with 

alphabets and random numbers. The red and the blue lines indicate channels that lead to S and G 

monomers. The thickness of these lines indicate the size of the channel (which decides the rate of the 
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reaction). The violet lines indicate the influence of X on these channels. Violet lines ending with an 

arrow indicate a positive influence, horizontal ends indicate negative influence. The size of the purple 

circle around X indicates the concentration of X. The red cross indicates that the reaction is blocked. 
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