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I. INTRODUCTION

S is well known, one of the triumphs of classical

physics was the unraveling of the phenomenon
of Brownian motion by Einstein and von Smoluchowski.
Out of these early investigations of Einstein and von
Smoluchowski an extensive literature on the theory of
probability and random variables has grown. In this
paper we shall not attempt to summarize these varied
developments; we shall limit ourselves, rather, to an
analysis of the physical (as distinct from the mathe-
matical) foundations of the theory and to an illustration
from stellar dynamics how Einstein’s ideas have found
fruitful applications in a very different field.

II. THE BASIC ASSUMPTIONS OF THE PHYSICAL
THEORY OF BROWNIAN MOTION

The theory of Brownian motion is concerned with the
irregular, perpetual motions of colloidal particles in
suspension in a liquid. It is known that these motions
have their origin in the collisions which the colloidal
particles suffer with the molecules of the surrounding
fluid. Under normal conditions, in a liquid, a Brownian
particle will suffer about 10? collisions per second.
Since each of these collisions can be thought of as
producing a kink in the path of the particle, it is evident
that we cannot hope to follow the path of a particle in
any very great detail: to our senses, the details are
impossibly fine.

And, reduced to its essentials, the theory of Brownian
motion as initiated by Einstein derives from the
following set of assumptions:

The motion of a free particle (i.e., one in the absence
of an external field of force) is assumed to be governed
by an equation of the form

du/dt=—nqu+A(2), 1)

where u denotes the instantaneous velocity of the
particle. In writing this equation, the assumption has
been made that the influence of the surrounding
medium can be split up into two parts: a systematic
part, —nu, which represents the operation of dynamical
friction, and a fluctuating part, A(f), which is character-
istic of Brownian motion.

Regarding the frictional term, —nu, it is assumed
that it is governed by Stokes’ law according to which
the frictional force decelerating a spherical particle of
radius ¢ and mass m is given by 6mavu/m, where »
denotes the coefficient of viscosity of the surrounding
liquid. In other words,

n=6mav/m. 2)

As for the part A(#) the following principal assumptions
are made: (i) A(#) is independent of u,! and (ii) A(¢)
varies extremely rapidly compared with u. The second
of these assumptions implies that time intervals A¢ exist
such that during Af the changes in u to be expected are
very small, while during the same interval A(f) may
undergo a very large number of fluctuations. Alterna-
tively, we may express this assumption by the state-
ment that though u(f) and u(t+Af#) are expected to

_differ by a negligible amount, no correlation between

A(?) and A(i+A¢) is expected. Considering then the
net increment in velocity,

t+At

B(An)= A(pdg, 3)

¢

which a particle experiences (due to random fluctua-
tions) during an interval Af, we assert (i) that the
increments between the successive intervals (¢, t-+Af;)
and (t+Aty, t+At+At) have no correlation, and (ii)
that the probability of occurrence of different net
increments during an interval A¢ is given by

1
WEB(At)]=meXPE— |B(ar)[?/4gat],  (4)

where ¢ is a certain diffusion coefficient (in velocity
space) related to the frictional coefficient, 3, by

q=nkT/m, )

where k% is the Boltzmann constant and 7 is the absolute
temperature.

III. A DISCUSSION OF THE BASIC ASSUMPTIONS
OF THE THEORY OF BROWNIAN MOTION

The basic assumptions of the theory of Brownian
motion which we have set out, barely in Section II,
emphasize the drastic nature of these assumptions.
The intuitive character of the assumptions is apparent,
already, in the separation of a systematic from a
fluctuating part in the acceleration in Eq. (1) which, by
implication, supposes that we can divide the phenome-
non into two parts:a part in which the discontinuity of
the events taking place is essential, and a part in which
it is inessential and can be ignored. Granting this sep-
aration, we next inquire into the meaning and justifi-
cation of the assumptions underlying Eqgs. (4) and (5).

! We shall indicate later the generalizations required when A(?)
depends on u (see Eq. (13)).
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The justification for the form of the distribution
function (4) is derived from the theory of random
flights.

In the problem of random flights, a particle suffers a
sequence of displacements, r; (i=1, 2, - - -), the magni-
tude and direction of each of the displacements being
governed by a probability distribution. After N such
displacements, the position of the particle will be given
by ‘

N
R= Zl'i- (6)

=1

We ask for the probability distribution of R. While it
is not difficult to write down the formal solution of the
problem,? the case of greatest interest is when /V is large
and the different displacements, r;, are governed by the
same spherically symmetric probability distribution,
7(r). In that case, the distribution of R is given by?

R)=—————exp(—3|R|Y2N (), (7
= o PSRN, (D)

where

-0
(= f 7(r)r’dr (8)

—0

is the mean square displacement to be expected on any
particular occasion. .

If we suppose that the particle experiences # displace-
ments per unit time, the net displacement, R, after an
interval At during which a very large number of
displacements take place, is given by

w(R)= exp(— | R[?/49A1), )

(4mgAs)?
where we have written

(10)

g=n{r")m.

Returning to the problem of Brownian motion, we

recall that intervals of time A?¢ exist during which a
particle, though it suffers a very large number of
collisions with the molecules of the surrounding fluid,
experiences only “infinitesimal” increments in the
velocity. During such an interval of time, the net
random increment in velocity, B(A#), which the particle
will experience, is the resultant of the effects of a very
large number of collisions, each of which causes a
certain “minute” -acceleration év. The appropriateness
of the problem of random flights to determine the
probability distribution of B(Af) is apparent. Indeed,

2See e.g., S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943)
(see particularly Chapter I, Section 4 of this paper).
3 Reference 2, Eq. (93).
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we can write this directly from (9) if we interpret ¢ by
(11)

where # is the number of collisions per unit time between
a Brownian particle and the molecules of the surround-
ing fluid, and (| 8v|2? is the mean square increment in
velocity of a particle, per collision. In this fashion,
we recover the form of the distribution function (4).

Turning next to the relation (5) between ¢ and 7,
we introduce considerations of the following type:

Let the distribution of velocities among the Brownian
particles at a particular instant of time ¢ be given by
W(u, t). After a time A¢ the distribution function will
have changed as during such an interval a particle with
a velocity u, for example, would have suffered an
increment of velocity

Au= —quAi+B(ad),

q=%n<l 6VI 2>AV;

(12)

and the probability of such an increment will be
governed by (see Eq. (4))

Y(u; Au)= — exp{— | Au+7quAt

(4mqar)t

—gradugAt|?} /4gAL,  (13)
where we have slightly generalized (4) to allow for a
dependence of ¢ on the velocity. We therefore expect
that the distribution function W (u, /+Af) at time
t+At will be given by

+-o0
W (u, t4-Af) = f W (= u; D (u— Au; Au)d(Auw). (14)

We may parenthetically remark that in expecting
the integral Eq. (14) between W (u, i4A¢#) and W (u, ¢)
to be valid, we are actually supposing that the course
which a Brownian particle will take depends only on
the instantaneous values of the physical parameters
and is entirely independent of its whole previous
history. In probability theory, a stochastic process,
having this property, namely, that what happens at a
given instant depends only on the state of the system
at that instant, is said to be a Markoff process. We
may describe a Markoff process by the statement that
it represents ‘“a gradual unfolding of a transition prob-
ability”” in exactly the same sense as the development
of a conservative dynamical system can be described
as “the gradual unfolding of a contact transformation”
(Whittaker). That we should be able to picture Brown-
ian motion as a Markoff process is reasonable: its
“reasonableness” arising principally from the circum-
stance that in Eq. (14) we can consider intervals Af
during which a very large number of collisions take
place and which, nevertheless, change the distribution
of velocities among the particles only insensibly. With
this understanding, . we can expand W(u,4A¢),
W(u—Au, {), and ¢ (u—Au; Au) in Eq. (14) by Taylor
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series and obtain

W (u, £)+ (0W /30 At+0(A2)

f f f {W(u,t) Lja—mm

oW
AuduA- - - }

i<i Ou0u;

i 1h

{\/z(u Au)— Z——Aul—l—zz 1pAui2

zu, zu@

a?

+> Au,-Auj}d(Aul)d(Aug)d(Aus), (15)

i<i OU0u;

or writing

+w
(Aui>m=f Augy(u; Au)d(Au) etc., (16)

—00
we have

(0W /) At+-0(A#)
82

a
== W—Aua+3> W——Aun
3 i dud

Ui

2

ow
+> W (DAt )a— Z(Au Dy 5——

i<i  Ou0u; U5

aw aWw 9
+Z_:“—‘ —<Aui2>Av+Z — "*“(A’l/liA%g)Av

u; Ou; i<i Ou, Ou;

9?2

Z-‘*<Auz >Av+z

i u,b <y

<AM¢AM j> AV
u0U

F+O({Audupu)a), (17)

where the remainder term involves the averages of the
quantities Aw2, Au2Au;, and Aududuy, (3, 7, k=1, 2, 3),
and similar larger combinations. Equation (17) can be
written more conveniently in the form

oW
—AHO(AR)
ot

= —Z——(W<Auz>»w)+ ZZW(W(AM )

"'M’L

2

+2

<7 Qu0u;

(W{Au:Au)0) +O0((AsAuAur)n).  (18)

This is the Fokker-Planck equation in its most general
form.
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For the transition probability (13),

(Au)y= — (nu—gradug)At,
(Aun=2q0t (i=1,2,3)
(Audun=0(AL) and {AuduAun=O0(AF).

Substituting these in Eq. (18), we obtain

(W /30)AtH-O(AR) =3 ; (3/0us) (nuW — W (3q/0u))
+22: (8%/0ud) (gW)+0(AR).

Now, passing to the limit At=0, we have

oW /ot =3 (8/us) [quW — W (3g/du.)
+(0/ou)Wq] (21)

(19)

(20)

or
AW /dt=divu(quW+ q gradu¥). (22)

According to this equation, we may visualize the
motions of the representative points in the velocity
space as a process of diffusion in which the rate of flow
across an element of surface do is given by

— (g gradulW+nWu)<lsdo, (23)

where 1z, is a unit vector normal to the element of
surface considered. It should, however, be understood
that this visualization ceases to be valid when time
intervals less than Af are considered.

So far we have not restricted ¢ and # in any manner.
We now assert that a Maxwellian distribution of velocities
must be invariant to the underlying stochastic process and
that any arbiirary initial distribution of velocities must
eveniually become Maxwellian. In other words, we re-
quire that

W (u) = (m/2wkT)* exp(—m|u|2/2kT), (24)

satisfies Eq. (22) identically; this condition, as may be
readily verified, is equivalent to imposing the relation
(5) between ¢ and 7.

In some ways it is remarkable that we can obtain as
complete a specification, as we have, of the stochastic
process characteristic of Brownian motion, without, at
any point, having been required to analyze the me-
chanics of the collision process itself; but it emphasizes
Einstein’s extraordinary perception into the physical
character of the problem.

IV. STELLAR ENCOUNTERS AS AN EXAMPLE OF
BROWNIAN MOTION

The discussion of the physical foundations of the
theory of Brownian motion in the preceding sections
has disclosed certain inherent limitations in the theory.
The limitations are nowhere more serious than in the
circumstance that the coefficients ¢ and 5 are not
derived from a microscopic analysis of the individual
encounters. It is therefore of interest that stellar
dynamics provides a case of Brownian motion in
which all phases of the problem can be explicitly
analyzed.

In stellar dynamics, one of the fundamental problems
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is to incorporate in the framework of a general theory
the effect of encounters between stars; and stellar
encounters under Newtonian inverse square attractions
influence the motions of stars in the manner of Brownian
motion. The analogy with Brownian motion arises
from the peculiar character of inverse square forces:
Encounters with small values of the impact paraments
(which produce appreciable deflections, for example)
are very rare, and encounters with large values of the
impact parameter, which are frequent, are very ineffec-
tive. Thus, as in Brownian motion, it is only the
cumulative effect of a large number of encounters which
will produce sensible changes in the directions and the
magnitudes of the motions. There is, however, one
inessential difference: In the stellar case, stars influence
one another, while in the Brownian motion of colloidal
particles,. the particles are primarily influenced by the
molecules of the surrounding fluid. But, physically,
the close analogy that exists between the motion of a
star in the gravitational field of its neighbors and the
motion of a colloidal particle describing Brownian
motion results from the following circumstance: Even
as collisions with single molecules of the surrounding
fluid hardly affect the motion of a colloidal particle,
so also does an average encounter with another star
hardly affect the motion of a star; and in both cases
what is of importance is the cumulative effect of a
large number of separate events each of which has
only a very minute effect. Moreover, in both problems,
during a time interval, Az, necessary for the velocity of
a particle (star) to change sensibly, a very large number
of collisions (encounters) take place. In the stellar
case, this time interval is of the order of 10° years:
during such an interval of time an average star will
have experienced about 100 encounters since the time
required for an average star to traverse a distance
equal to the average distance between the stars is of
the order of 10! years.

V. DYNAMICAL FRICTION

If our analogy of the effect of stellar encounters with
Brownian motion is correct, then we should expect to
establish by a direct analysis of stellar encounters the
operation of dynamical friction superposed on random
fluctuations. It is remarkable that such a separation of
the effects of stellar encounters can be accomplished
without appealing to any heuristic concepts.

Turning then to an analysis of stellar encounters,
we recall that during an encounter each star will
describe a hyperbola relative to the other. As a result
of the encounter, a star will suffer certain increments
Asy and Aw, in its velocity in directions parallel,
respectively, perpendicular to the initial direction of
motion. The exact amounts of these increments will
depend on the parameters which are necessary to
specify an encounter. Considering an encounter of a
star of mass m and velocity u with another “field star”
of mass m; and velocity v;, we find from a straight-
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forward analysis based on the classical two body
problem that*

Anyy= —[2m1/ (mi+m) [ (u—v; cosh) cosy
~+ 21 sinf cos® siny ] cosy, (25)

and

Ay = [ 2my/ (my+m) 12+ 02— 2uv, cosd
— {(u—v; cosB) cosy+ v, sinf cos® sing }2]? cosy, (26)

where @ denotes the angle between the two vectors u
and v, © the inclination of the orbital plane to the
plane containing u and vy,

cosy= {14 D*(12+v®— 2uvy cos0)?/G2(mi+m)?} %, (27)

D the impact parameter, and G the constant of gravi-
tation.

Consider an interval of time At (~10° years) long
compared with the time (~10* years) required for two
stars to separate by a distance equal to the average
distance between the stars, but short compared to the
time intervals during which the velocity of a star may
be expected to change appreciably. During such an
interval of time the net incremernts Y Au, and > Au,,
which a star with an initial velocity u may be expected
to suffer, can be obtained by simply averaging the
expressions (25) and (26) for Au,, and Au,.

According to Eq. (26) and as can indeed be expected
on general symmetry grounds, A#, when summed over
a large number of encounters vanishes. But this is not
the case with Au; it is given by

o d@

«© T 27 Do
ZAu”=Atf d7J1f d(if dwf dD
0 0 0 0 0o 2w

X{2wN (v, 0, ¢)} VDAuy, (28)

where V' denotes the relative velocity between the two
stars, N(vi, 0, ¢)dvid0de is the number of field stars
with the specified parameters in the indicated ranges,
and Dy is the average distance between the stars.
Further, in Eq. (28) the various integrations are with
respect to the different parameters defining a single
encounter. Carrying out the various integrations, except
the last, we find®

G2

> Auy= —1rm1(m+ml)——Alwa(vl)Q(vl)dvl, (29)
uZ

0
where

logl (1+¢Lutu ) A+ Lu—v )] (01<u)
logl (1416¢%0,H)]—4  (vi=u)

K P
loge———
{1+*(ni—u)*} o

*S. Chandrasekhar, Principles of Stellar Dynamics (University
of Chicago Press, Chicago, 1942), p. 229, Eq. (5.721).

5For the details of the derivation see S. Chandrasekhar,
Astrophys. J. 97, 255 (1943) (pp. 258-260).

. (30)
(v1>u)
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and
D,
e —
G(my+my)
Dy/parsec.

=2.33%10¢ ,
[(my+ms)/ ©J[10 km/sec. 2

Under normal conditions, ¢*(vi+%)* and ¢?(v;—u)* are
very large compared to unity, and we can simplify
Eq. (30) to

31)

4 logq(u*—v:2) (n1<u)
Q= {2 logdqu2—4 (m=u) (32)
4 log[ (vi+u)/(v1—u) ]—8u/vy  (0,>u).

From Eq. (32) the remarkable result emerges that fo a
sufficient accuracy only stars with velocilies less than the
one under consideration contribute to 3 Awuy,. It is pre-
cisely on this account that dynamical friction appears
on our present analysis.

- With the further approximation

Q={f=)1ogq<lulz>Av (1<)

('U1> u); (33)

where (|u|? is the mean square velocity of the field
stars, Eq. (29) becomes

1
ZAMH = %(m“f‘m])M],NGZI—‘

u|?

X (104%’1—23”])& fo Iulf(vl)dv,,

where IV denotes the number of field stars per unit
volume and f(v;) is the distribution function governing
the probability of occurrence of a star with velocity
|vi] =v1. According to Eq. (34) the star experiences
dynamical friction with a coefficient of dynamical
friction # given by

(34)

G2

n=4wNmi(m~+m,)
[uf?

X (log[—w]) 0 ]“]f(vl)dvl‘

(35)
G(my+m)

Again from Eq. (26) we similarly find, after averaging
over the various parameters of the encounter, that

ZAM..2=§7er12ii;(log[G£(§§l—2£])([u[2>AvAt

|

X | Jf)dv,

0

which represents, in analogy with Eq. (19), a diffusion

(36)
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in velocity space. The completeness of the analogy of
our present problem with Brownian motion is seen even
more clearly when we note that, according to Egs. (35)
and (36),

SAu? 2 omy
nAt

@37)

which, in our present context, is the equivalent of
Eq. (5).

In some ways the emergence of dynamical friction
from a straightforward analysis of stellar encounters is
surprising. Indeed, it is contrary to what one might
have expected on the following arguments which sound
“plausible” enough.

(a) Suppose we consider a star of velocity |u]
appreciably less than the root-mean-square velocity
(|u|?*. We should then expect that it encounters
oftener stars, with velocities greater than its own, than
stars with velocities less than its own. Consequently,
we might be led to believe that stars with velocities less
than the average would be systematically accelerated
and similarly, that stars with velocities greater than
the average would be systematically decelerated.

(b) We might go even farther and argue that the
conclusions reached in (a) are ‘“reasonable,” for, it
might be supposed that systematically different effects
on stars with relatively large, respectively, small
velocities are required for the statistical maintenance
of the average (i.e., normal) conditions.

In view of the great importance of dynamical friction
for statistical dynamics, it is important to see the
fallacy in these arguments:

The fallacy in (a) is simply that for inverse square
encounters, the effect on the velocity in the direction
of motion of a given star, by stars with velocities greater
than that of the given one, nearly cancels out on the
average; and it is only stars with velocities less than
that of the given one which predominantly affect the
velocity in the direction of motion.

The fallacy in (b) is due to a misuflderstanding.
There is nothing really obvious in the requirement that
for the statistical maintenance of the average conditions
stars differing from the average conditions should be
affected differently according to the semse of their
departure from the normal state. Indeed, the require-
ment that the normal conditions are self-perpetuating
Is to state in a different way one of two things: Either,
that starting from any arbitrary initial state we always
approach the normal state (i.e., the Maxwellian distri-
bution of velocities) as i ; or, that once the normal
state has been attained it continues to be maintained.
It is now apparent that these conditions can be met
only if a given star behaves at later times in a manner
less and less dependent on an initial state as time goes
on; or expressing the same thing somewhat differently,
we should much rather expect that a star gradually
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Joses all trace of its initial state as time progresses.
Such a gradual loss of “memory” can be achieved only
by the operation of a dissipative force like dynamical
friction which will gradually damp out any given
initial velocity. Thus, if we assume for the sake of
simplicity, that % is independent of |u|, then the
average velocity at later times will tend to zero like

(38)

but this is not to imply that the mean square velocity

] — —nt .
U=uee™ ",
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also tends to zero. Indeed, the restoration of a Max-
wellian distribution of velocities from an arbitrary
initial state requires that

(39)

To achieve the first of these conditions we need dy-
namical friction and to achieve the second we need
random fluctuations as expressed by a diffusion coeffi-
cient. The recognition of these facts is, of course,
Einstein’s achievement. '

3—0 while (| u|?)y—a constant as 0.
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A Special Method for Solving the Dirac Equations

A. H. Taus
Mathematics Department, University of Illinois, Urbana, Illinois

Exact solutions to the Dirac equations for an electron in an external field of an arbitrary plane wave
are obtained by transforming plane wave solutions for a free electron by variable Lorentz matrices. These
matrices are those which occur in the discussion of the classical orbits. An example shows that this method,
which applies classically, may fail for the Dirac equations when the external field is a constant one.

1. INTRODUCTION

N a previous paper! it was shown that solutions of
the classical relativistic equations of motion for a
charged particle in the external field of a plane electro-
magnetic wave may be obtained in terms of Lorentz
matrices determined by the antisymmetric tensor de-
scribing the external field. In this paper it is shown
that when plane wave solutions of the Dirac equations
for a free particle are transformed by these Lorentz
matrices then the exact solutions to the Dirac equations
for an electron in the external field described above are
obtained. These solutions have been discussed by
Volkow? and Singupta.?

We first obtain the necessary and sufficient conditions
that a variable set of Lorentz matrices must satisfy in
order that they be able to transform plane wave
solutions of the Dirac equation for a free particle into
solutions of these equations when an external field is
present. It is then shown that these conditions can be
satisfied in case the external field is that of a plane wave.

In the binary spinor formalism* the Dirac equations

are
o e

g"(— ——CI),,)¢= —imcg,
729x° ¢

(1.1)

o e _
ga(_ +"¢)u)¢= —ima//, .
70x° ¢

1 A. H. Taub, Phys. Rev. 73, 786 (1948).

2 D. M. Volkow, Zeits. f. Physik 94, 25 (1935).

3N. D. Singupta, Bull. Calcutta Math. Soc. 39, 147 (1947).

4 The notation used here is that of an earlier paper: “Tensor
equations equivalent to the Dirac equations,” Ann. of Math.
40, 937 (1939). This will be referred to as T.E.

where m and e are the mass and charge of the particle,
h is Planck’s constant divided by 2, ¢ is the velocity of -
light, ®, is the four-vector potential describing the
external field and ¢, ¢ and g° are spinors. The first two
are single index spinors and the g° are two index ones
satisfying the matrix equation

3(@e+ig)=—g"-1, (1.2)

where 1 is the 2X2 identity matrix and in a galilean
frame,

-1 0 0 0
Zor= 0 —1 0 0 =go'f. (1.3)
0 0 —-10
0 0 0 1
An explicit set of matrices satisfying (1.2) are given in

T.E., p. 938.

Equations (1.1) are numerically invariant under a
proper Lorentz transformation of the independent
variables x7, namely,

xcr_)xa* — Lr uxr’

where the L,” are constants, provided the spinors ¢
and ¢ have the transformation law

Y—* () =T (L),
o—¢*(x)=To(L ™),

where T' is the spin-image of the Lorentz matrix L.
Thus I' is determined in terms of L by the equations:

(1.4)

I°T'=L,°g", (1.5)
and satisfied the condition
(1.6)

detI'=1.



