
Commentary/Hanson & Burr: Connectionist learning and representation

Connectionism and classical computation

Nick Chater
Department of Psychology and Centre for Cognitive Science, University
College London, Gower Street, London, WC1E 6BT, England

Hanson & Burr provide an Informed discussion of connectionist
learning, and, in particular, suggest a variety of interesting
geometrical and statistical methods for analyzing the results of
such learning. While generally sympathetic to H&B's paper, I
shall focus here on one aspect that I find tendentious - their
treatment of the relationship between connectionism and clas-
sical, symbolic computation.

H&B remark that "It is possible in principle for a net to
implement any sort of classical computation (McCulloch & Pitts
1943)" (sect. 2.3, para. 4). This claim can be read in at least two

ways - one exhilarating but false, one prosaic and true. H&B
appear to be exhilarated by the first reading, but adduce evi-
dence that points only to the second.

The false but exhilarating reading is that any computable
function can be computed by some network; In other words,
networks have "Turing machine" power. Any finite network
with units with a finite number of levels of activation (such as
those used by McCulloch & Pitts) is equivalent to a finite state
machine (MInsky 1967) however, and hence has considerably
less than Turing machine power.

The result of McCulloch & Pitts to which H&B advert is that a
network of "neural unit[s] computing a 'majority logic' or 'poly-
morphy' logic (m out of n) could be used, In principle, to
Implement any logical [i.e., Boolean] function" (Hanson &
Burr, sect. 4.2 para. 1). Since any Boolean function of n inputs is
a finite mapping f:{0, 1} -» {0, 1}, it can be performed by a finite
state machine, for example by table look-up. Therefore, Mc-
Culloch & Pitts's result does not imply that networks have
Turing machine power.

Similar considerations apply to the other general computa-
tional result that H&B adduce, that "there is no arbitrary
computational limit on what [it] is possible to represent" (Han-
son & Burr, section 4.7, paragraph 3), since "with at least one
layer of a sufficient number of hidden units and a continuous,
monotone fan-out function, any real valued function or mapping
from Rn to Rm can be constructed" (Hanson & Burr, sect. 2.3,
para. 12 [point 7]). Yet this cannot be quite right. After all, even
a simple mapping g:Rn —> Rm such that g(r) = 1 only if r Is
rational and g(r) = 0 otherwise Is not network computable. (To
see this, consider what the nature of the decision boundary
would have to be, given that the rationals are dense and of
measure 0.) Indeed, the class of mapping from Rn to Rm is not
even Turing computable, since the reals are uncountable, there
are uncountably many such mappings, but only countably many
Turing machines.

The result H&B mention is surely more limited: that with a
single layer of hidden units any appropriately well-behaved
mapping from Rn to Rm can be approximated arbitrarily closely
(g, as defined above, will not be well-behaved!) The analogy that
H&B draw with Fourier analysis is apt. A Fourier series cannot
construct any real valued function, but a sufficiently large
number of terms of the Fourier series (hidden units) can approx-
imate any appropriately well-behaved function arbitrarily well.

So a Turing machine reading of H&B's claim cannot be
sustained. Yet a footnote attached to their claim suggests that
H&B may Intend this reading: "Since networks with sufficient
resources can Implement any real valued or Boolean function
mapping . . . it is trivial to equate a network of a certain size and
type with any Turing machine computing the same function"
(Note 6). I doubt that they intend the uninteresting conclusion
as stated: that any function that Is network computable is Turing
computable. Presumably, they intend the converse: that any
Turing-computable function is network computable. This Is the
exhilarating but false reading of the original claim.

The true but prosaic reading of H&B's claim is that every
computation performed by an actual digital computer can be
performed by some network. A digital computer is, at bottom,
simply a network of Boolean logic gates, each of which may be
replaced by the appropriate network fragment. (This is guaran-
teed by McCulloch & Pitts). The resulting machine is a network
which precisely mimics the digital computer.

The two conclusions that we have drawn may seem contradic-
tory. If a digital computer is a finite state, how is It that the
model of classical computation is the Turing machine? This is a
subtle issue, but a key point is that although any actual computer
is finite, it may be idealized into two parts: a finitely specifiable
processor (a finite set of rules) and a potentially unbounded
memory (storing arbitrarily complex representations; Pylyshyn
1984). Symbolic computation is best understood by idealizing
away from memory and other resource limitations. Abstractions

BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3 493



Commentary/Hanson & Burr: Connectionist learning and representation

such as programming languages, theorem provers, and other
pieces of software have Turing machine power, even though any
concrete implementation must necessarily be resource limited.
(There is a stack space-overflow, the set of formulae is too large
to be stored, etc.).

These considerations may be taken as evidence for the view
(Fodor & Pylyshyn 1988; Pinker & Prince 1988) that connec-
tionist networks may be thought of as an alternative hardware in
which to implement symbolic computation (since they are
powerful enough to mimic the logic-gate hardware of actual
digital machines), but that they cannot be seen as alternatives to
structured, symbolic computation (idealized as having Turing-
machine power). This conclusion need in no way undermine the
significance of connectionism for cognitive science, however.
The challenge for connectionism is to implement symbolic
processes while retaining their computationally attractive net-
work properties. In such implementations, symbolic processes
will not be autonomous (Chater & Oaksford 1990) from the
network substrate, but may exploit properties of that substrate
as primitives (such as massively parallel constraint satisfaction).
This challenge has long been recognized in the connectionist
community, and has stimulated a wide variety of interesting
schemes (Derthick 1987; Hinton 1981; 1987; Rumelhart 1986;
Shastri 1985; Smolensky 1987; Touretzky & Hinton 1985).
Meeting this challenge should be a concern of all advocates of
symbolic models of cognition. After all, symbolic mental pro-
cesses must be implemented, in real time, in a massively
distributed system of simple, highly interconnected processing
units - the brain.

494 BEHAVIORAL AND BRAIN SCIENCES (1990) 13:3


