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Abstract We develop an algorithm that can be used to approximate a decisionmaker’s
beliefs for a class of preference structures that includes, among others, α-maximin ex-
pected utility preferences, Choquet expected utility preferences, and, more generally,
constant additive preferences. For both exact and statistical approximation, we dem-
onstrate convergence in an appropriate sense to the true belief structure.

Keywords α-Maximin expected utility · Choquet expected utility ·
Rank-dependent · Invariant biseparable preferences · Constant additive preferences ·
Geometric tomography

The elicitation of subjective probabilities, via the betting odds system devised by de
Finetti (1937, 1972), is conceptually central to the theory of decisionmaking under
uncertainty. Procedures for eliciting subjective probabilities are available in both the
state-independent, subjective expected utility framework (e.g., Savage 1971; Davis
and Holt 1993) and the state-dependent, subjective expected utility framework (Karni
1999). However, repeated empirical validations of both the Allais Paradox and the
Ellsberg Paradox have forced the realization that subjective expected utility theory
may not accommodate reality. As a consequence, a variety of competing preference
representations have been developed (Kahneman and Tversky 1979; Quiggin 1981,
1982; Bewley 1986, 1987; Schmeidler 1989; Gilboa and Schmeidler 1989; Tversky
and Kahneman 1992; Epstein and Zhang 2001; Ghirardato and Marinacci 2001; among
many others).
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272 R. Chambers, T. Melkonyan

This article develops an algorithm that can be used to approximate an individual’s
belief structure for a class of decision theoretic models that includes many of these
more general preference structures. Our algorithm also provides an approximation to
the class of imprecise probability models (Walley 1991) where information is repre-
sented by a set of probability measures. This model is in one-to-one correspondence
with Walley’s (1991) model of coherent lower previsions which, according to Walley
(2000), is the most general theory of imprecise probability in situations not involving
conditioning on events with probability zero.

The elicitation procedure is based upon the generalization of de Finetti’s (1937,
1972) betting-odds system that underlies the modern theory of imprecise probabilities
(Smith 1961; Levi 1980; Good 1983; Walley 1991). Both exact approximation and
statistical approximation are considered. Exact approximation refers to the case where
an individual’s willingness to pay can be measured without sampling error, while sta-
tistical approximation refers to the case where willingness to pay is measured with
sampling error. We provide an upper bound on the measurement error (in terms of
the Hausdorff distance between the true belief structure and the constructed belief
structure) in both instances, and we demonstrate that both procedures converge in an
appropriate sense to the true belief structure.

The approach relies on the recognition that, for a very broad class of models, an
individual’s marginal willingness to sell or marginal willingness to buy a stochastic
asset can be represented mathematically as a support functional for the individual’s
belief structure (in a sense made precise below).1 This recognition allows the exact
and statistical approximation algorithms that have emerged in the literatures on geo-
metric tomography, pattern recognition, and signal processing (e.g., Gardner 1995) to
be applied to the belief elicitation problem in a simple and straightforward manner.

There is a large and growing literature on belief elicitation in models that allow for
violations of the axioms of expected utility theory. Most studies take rank-dependent
utility (RDU) theory or cumulative prospect theory (CPT) as starting points and then
estimate decision weights for the Bernoulli utility functions that are embedded in
these structures (see, for example, Cohen and Jaffray (1988), Currim and Sarin (1989),
Starmer and Sugden (1989), Camerer and Ho (1994), Mangelsdorff and Weber (1994),
Fox and Tversky (1998), Wu and Gonzalez (1999), Viscusi and Chesson (1999),
Abdellaoui (2000), Bleichrodt and Pinto (2000), Kilka and Weber (2001), Diecidue
et al. (2003), Abdellaoui et al. (2005)).

Our elicitation procedure is for a class of preferences that includes α-maximin
expected utility, Choquet expected utility (CEU), rank-dependent, invariant bisepara-
ble and, more generally, constant additive preferences, and smooth variational pref-
erences. By introducing a reference point and considering both gains and losses our
approach can be utilized to elicit beliefs of a decisionmaker with CPT preferences.

The approach that we take does not impose any specific structure on the underlying
preference function (such as additive separability over co-monotonic acts). Instead, it
imposes structure on a differential representation of preferences. Specifically, we treat

1 A number of others have used local approximations to study decision-making under uncertainty, an
approach owing much of its popularity to Machina (1982).
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Eliciting beliefs 273

preference structures for which beliefs are proportional to an appropriately normalized
Clarke differential of the preference functional (Clarke 1983).

We emphasize, however, that what we term “beliefs” may encompass behavioral
traits other than “true beliefs” about the stochastic environment (see Ghirardato et al.
2004, 2005 for a discussion and example). As our procedure is defined for a number
of different models, the interpretation of the results obtained using that procedure
necessarily varies across those models. Moreover, the interpretation of the empirically
elicited “beliefs” will also depend on the specifics of the experimental design used to
elicit them and upon the maintained theoretical model of the “true belief” structure. In
contrast to the “relation-based” axiomatic approach where there is no knowledge about
the decisionmaker’s information, a properly designed experiment, within the context
of a maintained model of the underlying belief structure, can attempt to filter out var-
ious behavioral traits of “beliefs,” such as perception of ambiguity and probabilistic
risk aversion, by controlling the experimental subjects’ information on the stochastic
environment. Thus, the economic interpretation of the ’beliefs’ elicited using our pro-
cedure depends critically upon the empirical setting and upon the maintained model
of the true beliefs.

In what follows, we first define our notation and make some preliminary obser-
vations. Then we specify the class of preference structures. After that, we present
two algorithms (one exact and one statistical) to approximate the underlying belief
structure. The article then concludes.

1 Notation and preliminaries

� denotes a finite state space, � = {1, . . . , S}. Random variables are defined as maps
from the state space to �, the set of reals. � denotes the σ -algebra of all subsets of �.
� denotes the set of all additive probability measures over �. A generic element of �

is denoted by π = (π1, . . . , πS), where πs is the probability of elementary event {s}.
Random variables can be identified with vectors in ��, which is endowed with

the Euclidean norm |·| and inner product. The degenerate random variable is denoted
by 1 = (1, . . . , 1) ∈ ��. For x, y ∈ ��, we represent the inner product by x′y ≡∑S

s=1 xs ys . The unit sphere is denoted M ⊂ �� where

M = {
x ∈ ��: |x| = 1

}
.

The (upper) support function h(K , ·) for a non-empty closed convex set K ⊂ �� is
defined by

h(K , u) ≡ sup
{
k′u : k ∈ K

}
for u ∈ ��,

and the (lower) support function is

−h (K ,−u) = − sup
{
k′ (−u) : k ∈ K

}
for u ∈ ��

= inf
{
k′u : k ∈ K

}
for u ∈ ��.
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274 R. Chambers, T. Melkonyan

The Hausdorff distance between two sets K , L ⊂ �� is defined by

δ(K , L) = max

{

sup
k∈K

inf
l∈L

|k − l| , sup
l∈L

inf
k∈K

|k − l|
}

for K , L ⊆ ��. (1)

For convex compact sets K , L ⊂ �� (Schneider 1993):

δ(K , L) ≡ sup
u∈M

{|h(K , u) − h(L , u)|} .

2 Preferences

Preferences over random variables are given by the functional, W : �� → �. For
our elicitation procedure to work, preferences must satisfy a minimum smoothness
requirement. W is assumed to be Lipschitzian (of rank N ) in the neighborhoods of
the degenerate random variables. That is, for any λ ∈ � there exists ε > 0 such
that

∣
∣W

(
y1

) − W
(
y2

)∣
∣ ≤ N

∣
∣y1 − y2

∣
∣ for all y1, y2 ∈ (λ1 + εB) . Ghirardato et al.

(2004) demonstrate that preferences satisfying the axioms underlying the class of
invariant biseparable preferences satisfy this smoothness requirement.

When W is Lipschitzian (of some rank N ) near y, it has a well-defined (lower)
generalized directional derivative at y in the direction of v defined by

W ′ (y; v) = lim inf
x→y,t↓0

{
W (x + tv) − W (x)

t

}

.

W ′ (y; v) is finite and superlinear (positively linearly homogeneous and superadditive)
in v (Clarke 1983). As it is superlinear, it is the (lower) support function for a closed,
convex set. That closed, convex set is the generalized gradient (Clarke differential)2

and is given by

∂W (y) = {
π ∈ �� : π′v ≥ W ′ (y; v) for all v ∈ ��

}
. (2)

From Proposition 2.1.2 in Clarke (1983)

W ′ (y; v) = inf
{
π′v : π ∈ ∂W (y)

}

= −h (∂W (y) ,−v) , (3)

and

− W ′ (y; − v) = h (∂W (y) , v) . (4)

These directional derivatives are interpreted, respectively, as the marginal benefit in
the neighborhood of y accruing to the individual from acquiring control of the random
variable, v, and losing control of the random variable y.

2 The terminology Clarke differential is due to Ghirardato and Marinacci (2004).
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Eliciting beliefs 275

Our remaining assumption on the preference structure is satisfied by a very broad
class of state-independent preference structures (expected utility, rank-dependent util-
ity, α-maximin expected utility, invariant biseparable preferences, and, more generally,
constant additive preferences).

Assumption For any λ ∈ �, there exists µ > 0 such that

∂W (λ1) = µP, (5)

where P ⊂ � is closed and convex.

Broadly speaking, the assumption ensures that in the neighborhood of the degen-
erate random variables, preferences are decomposable into two components. One (µ)

measures the decisionmaker’s tastes and the other (P) represents his or her beliefs
about the state of the world. Operationally, the assumption is important because it
implies that the individual’s marginal willingness to sell (MWS) an asset v as mea-
sured in units of the degenerate random variable is

−W ′ (λ1; − v)

W ′ (λ1; 1)
= h (µP, v)

−h (µP,−1)

= h (P, v) ,

because h (µP, v) = µh (P, v) and −h (µP,−1) = µ.

We close this section with some examples of classes of preferences that satisfy (5).

Example Let preferences be of the variational class derived by Maccheroni et al.
(2006)

W (y) = min
{
π′u (y) + c (π) : π ∈ ∆

}
,

where c (π) is convex and lower semicontinuous, u (y) = [u (y1) , . . . , u (yS)], and u
is the decisionmaker’s concave and smooth utility of deterministic outcomes. Then

∂W (λ1) = u′ (λ) arg min {u (λ) + c (π) : π ∈ ∆}
= u′ (λ) arg min {c (π) : π ∈ ∆} .

Example More generally, let

W (y) ≡ V (u (y)),

where V is nondecreasing in all its arguments. Constant additive preferences satisfy

V (u + α) = V (u) + α,

where u ∈ ��, and α = (α, α, . . . , α) corresponds to a constant act. For the class of
constant additive preferences, calculation reveals

V ′ (u, û + 1
) = V ′ (u, û

) + 1,
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and

V ′ (u, û − 1
) = V ′ (u, û

) − 1,

so that any p ∈ ∂V (u) must satisfy

p′1 ≥ 1 ≥ p′1,

and thus p ∈ �. Thus, constant additive preferences with concave u satisfy (5). Spe-
cial cases of constant additive preferences include invariant-biseparable preferences,
CEU preferences, α − M EU preferences, MEU preferences, RDU preferences, and
SEU preferences.

3 Algorithm to approximate P

3.1 Approximation without noise

In this section, we assume that it is possible to obtain exact measurements of MWS
without any sampling error. Denote the S − 1-dimensional unit sphere by

T = {
x ∈ ��: xS = 0, |x| = 1

}
.

For 0 < ε < 1, U ⊆ T is called an ε- net if for every x ∈ T there exists z ∈ U such
that |x − z| ≤ ε, i.e., each point in T is within an ε distance of some point in U. Due
to the requirement that probabilities have to sum to 1, the maximum dimensionality of
any set of probabilities is S − 1. This allows us to consider S − 1-dimensional ε-nets
when the number of states of nature is S.

Figure 1 depicts an ε-net in the three-dimensional case; S − 1 = 3. We have not
depicted dimension x4 in Fig. 1 since x4 = 0 for all points in an ε-net. The points on
the sphere of radius 1 represent the endpoints of the vectors that form the ε-net. Each
such vector emanates from the origin, has unitary length, and is within an ε distance
of some vector in the ε-net.

Choose a set of directions (y1, . . . , yN ), with each yi ∈ T, that forms an ε-net
for some ε ∈ (0, 1). Elicit from a respondent, whose initial position is λ1, his or her
MWS and let the report be denoted by φi . Performing this procedure for each element
of (y1, . . . , yN ) gives N reports of MWS. Let

P̂ ≡
{
π : π′yi ≤ φi for all i = 1, . . . , N

}
. (6)

Then:

Theorem 1 (i) P̂ is a polytope; (ii) h(P, yi ) = h(P̂, yi ) for all i = 1, . . . , N ; (iii)
P ⊆ P̂; (iv) δ

(P, P̂) ≤ 2ε
1−ε

.

Proof (i) P̂ is a polytope if and only if it is a bounded polyhedral set (Theorem 9.2 in
Brondsted 1983). By construction, P̂ is the intersection of a finite number of closed
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Fig. 1 ε − net
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halfspaces, i.e., P̂ is a polyhedral set. P̂ is bounded since (y1, . . . , yN ) forms an
ε -net; (ii) h(P, yi ) = φi = h(P̂, yi ) by construction. (iii) follows immediately from
our construction and (ii); (iv) Lemma 4.1 in Gardner and Milanfar (2003) states that,
for α > 0 and 0 < ε < 1, if K and L are compact convex sets in �� such that
h(K , y) ≡ h(L , y) ≤ α for each u in some ε-net U ⊆ T then δ (K , L) ≤ 2εα

1−ε
. P and

P̂ are compact convex sets with h(P, yi ) ≡ h(P̂, yi ) for all yi in an ε-net (y1, . . . , yN )

(parts (i) and (ii)). Furthermore, h(P, yi ) = h(P̂, yi ) = sup
{∑S

s=1 πs yi
s : π ∈ P

}
≤

1 since π ∈ P and
∣
∣yi

∣
∣ = 1. ��

Figure 2 provides a graphical demonstration of an approximation of P in a
Marschak-Machina triangle. In Fig. 2, yi is a representative direction that is an element
of some ε-net, φi is the reported MWS for that direction and π1 yi

1 + π2 yi
2 = φi is

the supporting hyperplane of P in the direction −yi = (−yi
1,−yi

2, 0). P̂ is given by
polytope ABCDEF which is derived by taking the intersection of half-spaces defined
by supporting hyperplanes to P in directions constituting the ε-net. It is clear from
Fig. 2 that as ε gets smaller the number of elements yi of an ε-net increases and,
accordingly, one gets a smoother and closer approximation of P .

Operationally, one can envision our elicitation approach in the following fashion.
Starting from a position of certainty, one first specifies “assets” or lottery tickets that
conform to each of the N directions. One then uses an elicitation procedure to deter-
mine empirically the amount at which the respondent is willing to sell a “small” amount
of each of those assets. After this is done, these reports are used to construct P̂.

Expression (6) and Theorem 1 together show that the algorithm we propose can
be used to create an outer approximation to P that can be made to have an arbitrarily
small degree of approximation error by the definition of U. It follows immediately

123



278 R. Chambers, T. Melkonyan

iiii yyy 332211

O2

P

O1

O3

yi

Fig. 2 Approximation of P

that as U approaches T this approximation converges in the Hausdorff distance. We
state this fact as a corollary:

Corollary 2 lim
ε→0

P̂ = P.

By basic results from convex geometry, to minimize the computational complexity
of the algorithm for given ε, as reflected by the number N of elements in the ε-net,
one needs to choose elements (y1, . . . , yN ) of the ε-net to form vertices of a regular
polytope with distances between adjacent vertices equal to ε.3 Denoting the number
of elements in such a regular polytope by N (ε), it is straightforward to verify that
lim
ε→0

N (ε) = ∞. Thus, the number of MWS reports required to get an arbitrarily close

approximation to the actual set of beliefs approaches infinity.
However, when there is prior information on the underlying preferences, in cer-

tain cases, one can elicit beliefs in a finite number of steps. For example, when P∗,
obtained from P by

P∗ =
{

ρ : A ∈ �, ρ (A) =
∑

s∈A

πs, (π1, π2, . . . , πS) ∈ P
}

, (7)

is a core of a supermodular capacity, Chambers and Melkonyan (2005) observe that
exposed faces of P are parallel to the faces of the probability simplex. Selecting direc-
tions yi that exhaust the set of faces of the probability simplex (2S −2 reports of MWS),
they obtain an exact representation of P in a finite number of iterations. Closely related
to the algorithm of Chambers and Melkonyan (2005) is the observation of Dow and
Werlang (1992) that the divergence between MWS and the marginal willingness to pay
for an asset in the CEU model with a supermodular capacity measures the ambiguity
of the individual’s belief.

3 For methods to construct such polytopes and their properties, the reader is referred to Brondsted (1983).
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More generally, when P is a polytope with known directions of its faces, one can
elicit beliefs in a finite number of steps by selecting directions yi that correspond to
the faces of the polytope. As an example, consider the case where P∗, obtained from
P by (7), is a core of a simple capacity. A capacity, f, is simple if

f ({s}) = (1 − λ)g({s}) for all s ∈ �,

f ({i1, . . . , ik}) =
k∑

j=1
f ({i j }) when k < S,

f (�) = 1,

where g ≡ (g({1}), . . . , g({S})) ∈ � and λ ∈ [0, 1]. A simple capacity is supermod-
ular, and

P = {(1 − λ)g} + λ�}. (8)

P is, thus, the Minkowski sum of a singleton set {(1−λ)g} and the probability simplex
� scaled by λ. P is often referred to as λ-contaminated set of probabilities. Thus, P is
completely characterized by S parameters (λ, g({1}), . . . , g({S − 1})) . Moreover, P
is a simplex with faces that are parallel to those of simplex �. Choosing as directions
of movement (y1, . . . , yS) directions of the faces of probability simplex �, one can
elicit P , or equivalently parameters (λ, g({1}), . . . , g({S − 1})) , in S iterations.4

An alternative and equivalent approach to elicit parameters (λ, g({1}), . . . , g
({S − 1})) is to first elicit the ‘degree of confidence’ λ and then the anchor probability
g. For the former, elicit from the decisionmaker her MWP and MWS an arbitrarily
chosen asset v ≡ {v1, . . . , vS} with max{v1, . . . , vS} > min{v1, . . . , vS}. Denoting
these reports by MW P(v) and MW S(v) and using (3), (4) and (8), we obtain

MW P(v) = inf
{
π′v :π ∈ {(1 − λ)g} + λ�}} = (1 − λ)g′v + λ min {v1, . . . , vS}

and

MW S(v) = sup
{
π′v :π ∈ {(1 − λ)g} + λ�}} = (1 − λ)g′v + λ max {v1, . . . , vS} .

It follows immediately from the above two expressions that

λ = MW S(v) − MW P(v)

max {v1, . . . , vS} − min {v1, . . . , vS} .

Given the knowledge of λ, one can determine the anchor probability g by eliciting the
decisionmaker’s MWP (or MWS) for S − 1 elementary lotteries, i.e., assets with one
of the components equal to 1 and the rest equal to 0.

4 We thank Chris Chambers for making this observation.
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Fig. 3 Illustration of
inconsistent support function
measurements
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3.2 Approximation with noise

In many laboratory and natural experiments, MWS’s (or MWP’s) reports are presum-
ably observed with noise that can be attributed purely to sampling error and that does
not emerge from the characteristics of the underlying preferences. In the presence of
such exogenous sampling error, reports of MWS may not be consistent in the sense
that there might be no convex set P that could have all the MWS reports as support
function measurements. Figure 3 provides a demonstration of this possibility. There,
support function measurements hi (for i = 1, . . . , 4) are mutually consistent, but h5 is
not. That is, there does not exist a convex set that has hi (for i = 1, . . . , 5) as support
function measurements.

The possibility of inconsistent observations on MWS leads naturally to the exami-
nation of conditions that ensure consistency of MWS as an observation on a support
function. Karl et al. (1995) provide necessary and sufficient conditions for consistency
of support function measurements. Some new terminology is necessary.

K ⊆ �� is a cone if it is closed under positive scalar multiplication, i.e., λK ⊆ K
for any λ > 0. C

(
h1, h2, . . . , hn

) = {∑n
i=1 λi hi : λi ≥ 0 for i ∈ {1, 2, . . . , n},

λi > 0 for at least one i
}

is called a positive cone of the vectors
(
h1, h2, . . . , hn

)
. A

cone is full if it is not contained in a proper subspace.

Theorem 3 (Karl, Kulkarni, Verghese, and Willsky) The set of support function mea-
surements

(
h1, h2, . . . , hN

)
for a set of directions (y1, . . . , yN ), that form an ε-net

for some ε ∈ (0, 1), is consistent if and only if the following determinantal condition
is satisfied for all (S + 1)− tuples of vectors

(
yi1 , . . . , yiS+1

)
with one belonging to

the full positive cone of the others:
∣
∣
∣
∣
∣
∣
∣
∣
∣

hi1
(
yi1

)′

hi2
(
yi2

)′
...

...

hiS+1
(
yiS+1

)′

∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣
∣

1
(
yi1

)′

1
(
yi2

)′
...

...

1
(
yiS+1

)′

∣
∣
∣
∣
∣
∣
∣
∣
∣

≥ 0. (9)
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Condition (9) is a requirement that support function measurement hi (for all i =
1, . . . , N ) passes through the intersection of the half-spaces defined by all other sup-
port function measurements h j for j �= i. In the 2-dimensional case depicted in Fig.
2, one such requirement is that h5 passes through the polytope ABCD.

For the relatively small dimensional problems that characterize many experimental
settings, S is reasonably small (frequently only two or three). In such cases, verifica-
tion of (9) is straightforward. However, in more complicated settings, verification of
(9) can be computationally burdensome. Karl et al. (1995) demonstrate that condition
(9) needs to be verified only for (S + 1)−tuples of vectors

(
yi1 , . . . , yiS+1

)
that form

appropriately defined “neighborhoods”. This local test for consistency is considerably
more efficient than the global test in Theorem 3. In order to economize on space and
notation, we refer the reader to Karl et al. (1995) for details.

Suppose that the MWS reports
(
φ1, φ2, . . . , φN

)
for an ε-net of directions

(y1, . . . , yN ) satisfy

φi = h(P, yi ) + θ i for i = 1, 2, . . . , N ,

where θ i ∼ N
(
0, σ 2

)
. Our objective is to construct a set P̂ that “best approximates”,

in a statistical sense, the unknown set of beliefs P . Following Gardner et al. (2006)
consider the following constrained least squares problem:

min
h1,...,hN

N∑

i=1

(
φi − hi

)2
(10)

subject to h1, . . . , hN are consistent.

Let ĥ1, . . . , ĥN denote the solution to (10) and let

P̂
(

ĥ1, . . . , ĥN
)

≡
{
π : π′yi ≤ ĥi for all i = 1, . . . , N

}
.

It follows immediately from Gardner et al. (2006) that

Theorem 4 If

φi = h(P, yi ) + θ i for i = 1, 2, . . . , N ,

with θ i ∼ N
(
0, σ 2

)
, then almost surely

lim
N→∞δ

(
P, P̂

(
ĥ1, . . . , ĥN

))
= 0.

A similar result holds for more general probability distributions of θ and alternative
distance functions (Gardner et al. 2006).
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4 Conclusion

We have used convex analysis in combination with results from geometric tomography,
pattern recognition, and signal processing to develop algorithms for exact and statisti-
cal approximation of beliefs in a broad class of state-independent preference structures.
Both exact and statistical approximation algorithms utilize reports of MWS (or MWP)
for an appropriately chosen set of stochastic assets.

When reports of MWS are observed without error, the MWS reports correspond
to the support hyperplanes to the actual set of probability distributions. Since any
convex set can be represented by the set of its supporting hyperplanes (Minkowski’s
theorem) one can obtain an arbitrary close polytopial approximation to the actual set
of probabilities by eliciting MWS’s for a “sufficiently dense” set of directions.

In the presence of noise, the “best” statistical approximation will depend, among
other things, on the distribution of the noise term. When the error term has a nor-
mal distribution, we consider the least squares estimator constrained by a consistency
condition. The latter is a requirement that the set of fitted hyperplanes constitute
supporting hyperplanes for some convex set. The resulting polytopial approximation
converges almost surely to the actual set of probabilities. This result is robust against
more general assumptions on the probability distribution.

Our analysis has been restricted to finite dimensional state spaces. This has been
done to permit us to apply existing results from the geometric tomography and image
processing literatures, which is largely focused on identifying bodies in finite dimen-
sional spaces, directly to our setting. While it limits the overall theoretical generality of
our results, we note that, as a practical matter, most empirical elicitation experiments
are focused on relatively low dimension finite state spaces. Our results are particularly
appropriate to that setting.

Although we have worked solely with approximations in terms of the Hausdorff
distance function, equivalent results hold for a number of other distance functions (see
Gardner et al. 2006). By using a Hausdorff metric, we are requiring that the approx-
imation and the actual beliefs be “close” in all directions. This is very important for
our application because otherwise (if for some directions the distance between the two
sets is not controlled) the predicted willingness to pay for an asset (willingness to sell)
and the actual willingness to pay for that asset (willingness to sell) can be arbitrarily
large. Moreover, as Gardner (1995) notes, the Hausdorff metric is the “default metric”
and “standard one in the study of convex bodies.” The Hausdorff metric is standard in
many areas including the theory of approximations, pattern recognition, robotics, and
a multitude of other disciplines. The Hausdorff metric is equivalent to a number of
other popular metrics when these are defined on the set of convex bodies. For example,
the Hausdorff metric is equivalent to the symmetric difference metric on the set of
convex bodies.

We note in closing that support functions are observed in many other areas of opera-
tions research and economics. Thus, the general methods used here should prove useful
in other applications and other fields. For example, a competitive firm’s profit is the
support function for the convex free disposal hull of its technology (e.g., Chambers
1988). It follows directly that analogues of the methods used here can be used to
approximate that hull of the technology.
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