for-adverbials quantify over subintervals, not subevents

Lucas Champollion

University of Pennsylvania / PARC
September 4, 2009

for-adverbials: a classic diagnostic of telicity

Temporal for-adverbials are incompatible with telic predicates:

- John ran towards the store for five minutes atelic
- *John ran (all the way) to the store for five minutes telic
(e.g. Vendler, 1957; Verkuyl, 1972; Zwarts, 2005)

Spatial for-adverbials exhibit a similar behavior:

- John ran towards the store for five miles
- *John ran (all the way) to the store for five miles

What this talk is and is not about

- This talk is about the following question:

Which aspectual property must predicates have in order to combine with for-adverbials?

- The traditional answer is: they must be atelic. But as we will see, this notion is imprecise. We will improve on it, without rejecting it. (Basically we'll end up with temporally vs. spatially telic.)
- This talk does not address the problem of aspectual composition (e.g. why is run towards the store atelic and run all the way to the store telic)
- But this talk is compatible with mereological theories of aspectual composition like Krifka (1998); Zwarts (2005)

What are subevents and subintervals?

- Both theories presuppose a mereological theory of events as in Krifka (1998).
- Actually, Dowty (1979) doesn't, but Moltmann (1991) reformulates him into such a thoery.
- An interval is just a stretch of time, or a path through space.
- An interval is always one-dimensional.
- Its shorter parts are called subintervals.
- e.g. "an hour", "two days", "five meters"
- An event is an entity that can be described as a state, activity, accomplishment or achievement.
- An event typically has an extent in space and/or a duration in time. So it can be four-dimensional.
- Its parts are called subevents. They typically have smaller extent and/or shorter duration.
- e.g. "build a house", "run", "know the answer"

What are subevents and subintervals?

- Both theories presuppose a mereological theory of events as in Krifka (1998).
- Actually, Dowty (1979) doesn't, but Moltmann (1991) reformulates him into such a thoery.
- An interval is just a stretch of time, or a path through space.
- An interval is always one-dimensional.
- Its shorter parts are called subintervals.
- e.g. "an hour", "two days", "five meters"
- An event is an entity that can be described as a state, activity, accomplishment or achievement.
- An event typically has an extent in space and/or a duration
in time. So it can be four-dimensional.
- Its parts are called subevents. They typically have smaller extent and/or shorter duration.
- e.g. "build a house", "run", "know the answer"

What are subevents and subintervals?

- Both theories presuppose a mereological theory of events as in Krifka (1998).
- Actually, Dowty (1979) doesn't, but Moltmann (1991) reformulates him into such a thoery.
- An interval is just a stretch of time, or a path through space.
- An interval is always one-dimensional.
- Its shorter parts are called subintervals.
- e.g. "an hour", "two days", "five meters"
- An event is an entity that can be described as a state, activity, accomplishment or achievement.
- An event typically has an extent in space and/or a duration in time. So it can be four-dimensional.
- Its parts are called subevents. They typically have smaller extent and/or shorter duration.
- e.g. "build a house", "run", "know the answer"

Previous answers

What constraint do for－adverbials impose on their predicate？
$\llbracket S$ for INTERVAL】 requires $\llbracket S \rrbracket$ to hold...

Dowty（1979）；Moltmann（1991）

．．．at each subinterval of INTERVAL：
【for five minutes】＝
$\lambda P \lambda e . \exists t[$ runtime $(e)=t \wedge$ duration－in－minutes $(t)=5$
$\wedge \forall t^{\prime}\left[t^{\prime}<t \wedge\right.$ moderate－size (t)
$\left.\left.\rightarrow \exists e^{\prime}\left[e^{\prime}<e \wedge P\left(e^{\prime}\right) \wedge \operatorname{runtime}\left(e^{\prime}\right)=t^{\prime}\right]\right]\right]$
Krika（1998）：Kratzer（2007）
of each（shorter）subevent of the event in question：
«for five minutes\｜＝
$\lambda P \lambda e$ ．$\exists t[r \operatorname{runtime}(e)=t \wedge$ duration－in－minutes $(t)=5$

Previous answers

What constraint do for－adverbials impose on their predicate？

$\llbracket S$ for INTERVAL】 requires $\llbracket S \rrbracket$ to hold \ldots

Dowty（1979）；Moltmann（1991）

．．．at each subinterval of INTERVAL：
【for five minutes】＝
$\lambda P \lambda e . \exists t[r u n t i m e(e)=t \wedge$ duration－in－minutes $(t)=5$
$\wedge \forall t^{\prime}\left[t^{\prime}<t \wedge\right.$ moderate－size (t)
$\left.\left.\rightarrow \exists e^{\prime}\left[e^{\prime}<e \wedge P\left(e^{\prime}\right) \wedge \operatorname{runtime}\left(e^{\prime}\right)=t^{\prime}\right]\right]\right]$

Krifka（1998）；Kratzer（2007）

．．．of each（shorter）subevent of the event in question：
【for five minutes】＝
$\lambda P \lambda e . \exists t[r u n t i m e(e)=t \wedge$ duration－in－minutes $(t)=5$
$\wedge\left[\forall e^{\prime}\left[e^{\prime}<e \wedge \operatorname{runtime}\left(e^{\prime}\right)<\operatorname{runtime}(e)\right.\right.$ \wedge moderate－size $\left(\right.$ runtime $\left.\left.\left.\left(e^{\prime}\right)\right)\right] \rightarrow P\left(e^{\prime}\right)\right]$ ］

Contribution of this talk

$\llbracket S$ for INTERVAL』 requires $\llbracket S \rrbracket$ to hold ...

Dowty (1979); Moltmann (1991)

at each subinterval of
INTERVAL

Krifka (1998); Kratzer (2007)

of each (shorter) subevent of the event in question $\&$

- As long as only one dimension is considered, the two options are hard to tell apart.
- Unlike previous work, this talk considers several dimensions at once: time, space
- Quantification over subintervals checks for atelicity along only one dimension - exactly what is needed
- Quantification over subevents (shorter or not) checks for atelicity along all dimensions - too strict!

Outline of the talk

- Give two qualifications that both theories need in order to get off the ground
- See how the theories work by looking at cases where both work well
- Look at cases where the subevent theory fails
- Refute arguments that led Krifka (1998) to adopt it

Qualification I: The minimal-parts problem (Dowty, 1979)

Example

The couple waltzed for an hour.

- Waltzing involves sequences of three steps
- Unclear whether x waltzes is true at intervals < 3 steps
- Also unclear whether events of performing those steps count as subevents of a waltzing event
- So, can't use the problem to decide between both accounts

Qualification II: Not literally universal quantification

Example

- Last week, Tai always ate Chinese food with CHOPSTICKS.
- Last week, Tai always ate CHINESE FOOD with chopsticks.
- For a week, Tai ate Chinese food with CHOPSTICKS.
- For a week, Tai ate CHINESE FOOD with chopsticks.
- Does not entail that Tai did nothing but eating throughout a week (Rooth, 1992; von Fintel, 1994, MacDonald and Ürögdi today)
- As with other quantfiers, unfocused material gets copied into the restrictor of the universal quantifier of for an hour
- Won't use this to decide between theories

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK
How the subinterval theory explains this judgment

- Take an event that qualifies as "run towards the store"

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
time

= an event of running towards the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
time $=5$ minutes

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subintervals

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

4 Take all the moderately sized subintervals
(5) For each subinterval, consider the corresponding subevent

= an event of running towards the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

4 Take all the moderately sized subintervals
(5) For each subinterval, consider the corresponding subevent
(6) Check if they each qualify as "run towards the store"

= an event of running towards the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

run towards the store for five minutes - OK

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

4 Take all the moderately sized subintervals
(5) For each subinterval, consider the corresponding subevent
(6) Check if they each qualify as "run towards the store"

= an event of running towards the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

*run all the way to the store for five minutes - Bad
How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
$=$ an event of running
all the way to the store all the way to the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

> *run all the way to the store for five minutes - Bad

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
time

$=$ an event of running
all the way to the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

> *run all the way to the store for five minutes - Bad

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

$$
\text { time }=5 \text { minutes }
$$

$=$ an event of running all the way to the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

*run all the way to the store for five minutes - Bad
How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subintervals

$$
\begin{aligned}
& =\text { an event of running } \\
& \text { all the way to the store }
\end{aligned}
$$

The subinterval theory (Dowty, 1979; Moltmann, 1991)

> *run all the way to the store for five minutes - Bad

How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subintervals
(3) For each subinterval, consider the corresponding subevent

$=$ an event of running all the way to the store

The subinterval theory (Dowty, 1979; Moltmann, 1991)

*run all the way to the store for five minutes - Bad
How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subintervals
(3) For each subinterval, consider the corresponding subevent
© Check if they each qualify as "run all the way to the store"

The subinterval theory (Dowty, 1979; Moltmann, 1991)

*run all the way to the store for five minutes - Bad
How the subinterval theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subintervals
(3) For each subinterval, consider the corresponding subevent
© Check if they each qualify as "run all the way to the store"

= an event of running all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
= an event of running towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
time
$=$ an event of running
towards the store towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

$$
\text { time }=5 \text { minutes }
$$

= an event of running
towards the store towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(4) Take all the moderately sized subevents of the event

= an event of running towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subevents of the event

- Krifka takes only those whose duration is less than 5 min.

$=$ an event of running towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK
How the subevent theory explains this judgment

- Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subevents of the event
- Krifka takes only those whose duration is less than 5 min.
© Check if they each qualify as "run towards the store"

The subevent theory (Krifka, 1998; Kratzer, 2007)

run towards the store for five minutes - OK

How the subevent theory explains this judgment

- Take an event that qualifies as "run towards the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subevents of the event
- Krifka takes only those whose duration is less than 5 min.
(0. Check if they each qualify as "run towards the store"

$=$ an event of running towards the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

> *run all the way to the store for five minutes - Bad

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"

The subevent theory (Krifka, 1998; Kratzer, 2007)

> *run all the way to the store for five minutes - Bad

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
time
= an event of running all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

> *run all the way to the store for five minutes - Bad

How the subevent theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval

$$
\text { time }=5 \text { minutes }
$$

$$
=\text { an event of running }
$$ all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

*run all the way to the store for five minutes - Bad
How the subevent theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(1) Take all the moderately sized subevents of the event

$=$ an event of running all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

*run all the way to the store for five minutes - Bad
How the subevent theory explains this judgment
(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(Take all the moderately sized subevents of the event

- Krifka takes only those whose duration is less than 5 min.

$=$ an event of running all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

*run all the way to the store for five minutes - Bad

How the subevent theory explains this judgment

(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subevents of the event

- Krifka takes only those whose duration is less than 5 min .
(0. Check if they each qualify as "run all the way to the store"

= an event of running all the way to the store

The subevent theory (Krifka, 1998; Kratzer, 2007)

*run all the way to the store for five minutes - Bad

How the subevent theory explains this judgment

(1) Take an event that qualifies as "run all the way to the store"
(2) Measure it along the dimension "time"
(3) Check that its duration is a five-minute interval
(9) Take all the moderately sized subevents of the event

- Krifka takes only those whose duration is less than 5 min .
© Check if they each qualify as "run all the way to the store"

= an event of running all the way to the store

The crucial difference

Subinterval theory

Subdivide the event so that for each moderately sized part of the arrow there is a part of the event

The crucial difference

Subinterval theory

Subdivide the event so that for each moderately sized part of the arrow there is a part of the event

The crucial difference

Subinterval theory

Subdivide the event so that for each moderately sized part of the arrow there is a part of the event

The crucial difference

Subinterval theory

Subdivide the event so that for each moderately sized part of the arrow there is a part of the event

Subevent theory

Subdivide the event into moderately sized parts, ignoring the arrow

The crucial difference

Subinterval theory

Subdivide the event so that for each moderately sized part of the arrow there is a part of the event

Subevent theory

Subdivide the event into moderately sized parts, ignoring the arrow

Both theories can be extended to the spatial case

*run all the way to the store for five miles - bad

- The subinterval theory divides the event into subevents along a spatial instead of a temporal dimension
- The subevent theory still performs a check on all moderately sized subevents (as before)
- So far, the results seem to be the same in all cases.
extent along path $=5$ miles

| 1 mile |
| :---: | :---: | :---: | :---: | :---: |
| run all the run all the run all the run all the run all theway to therateresto theway to thestoreway to thestorestore | | | | |
| | | | | |
| | | | | |

$=$ an event of running all the way to the store

Beyond previous analyses

 Putting space and time together

 Putting space and time together}

- Moltmann (1991) adopts the subinterval theory. She notes that it predicts that spatial for-adverbials don't require events to be homogeneous with respect to the relation 'is a temporal part of', and vice versa.
- We will use this observation to distinguish between subinterval and subevent theories.

Beyond previous analyses

Putting space and time together

John pushed carts all the way to the store.
True in these two scenarios (among others):

All-at-once scenario

- Just one trip to the store
- All carts in question at once
- Takes 5 minutes in total

Little-by-little scenario

- Several trips back and forth
- A few carts at a time
- Takes 5 minutes in total

Where spatial and temporal for-adverbials differ

- John pushed carts all the way to the store for fifty meters.
- All-at-once: Little-by-little: \&

Where spatial and temporal for-adverbials differ

- John pushed carts all the way to the store for fifty meters.
- All-at-once: Little-by-little: \sum
- John pushed carts all the way to the store for five minutes.
- All-at-once: \sum Little-by-little:

Where spatial and temporal for-adverbials differ

- John pushed carts all the way to the store for fifty meters.

We will focus on the contrast in the little-by-little scenario.

The subinterval theory predicts the contrast

Judgment to be predicted
John pushed carts all the way to the store for five minutes. - OK

Subinterval theory
Assume that events are closed under sum (standard assumption, e.g. Bach, 1986; Krifka, 1998).

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 1: Take a sum event that qualifies as "push carts all the way to the store"

- We choose the sum event that represents the little-by-little scenario
extent along path

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 2: Measure it along the dimension "time"

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 3: Check that its duration is a five-minute interval

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 4: Take all the moderately sized subintervals of that interval

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 5: For each subinterval, consider the corresponding subevent

The subinterval theory predicts the contrast

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subinterval theory

Step 6: Check if each of them qualifies as "push carts all the way to the store"
... correctly predicts the sentence is $\mathbf{O K}$

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory
Assume that events are closed under sum (standard assumption, e.g. Bach, 1986; Krifka, 1998).

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 1: Take a sum event that qualifies as "push carts all the way to the store"

- We choose the sum event that represents the little-by-little scenario
extent along path

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 2: Measure it along the dimension "space"
extent along path

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 3: Check that its spatial extent is a fifty-meter interval
extent along path $=50 \mathrm{~m}$

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 4: Take all the moderately sized subintervals of that interval
extent along path $=50 \mathrm{~m}$

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 5: For each subinterval, consider the corresponding subevent
səłnu!̣u $\mathcal{G}=$ әu!̣

The subinterval theory predicts the contrast

Judgment to be predicted

*John pushed carts all the way to the store for 50 meters. - Bad

Subinterval theory

Step 6: Check if each of them qualifies as "push carts all the way to the store"
... correctly predicts the sentence is unacceptable
extent along path $=50 \mathrm{~m}$

The subevent theory fails

Judgment to be predicted
John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Assume that events are closed under sum (standard assumption, e.g. Bach, 1986; Krifka, 1998).

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 1: Take a sum event that qualifies as "push carts all the way to the store"

- We choose the sum event that represents the little-by-little scenario
extent along path $=50 \mathrm{~m}$

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 2: Measure it along the dimension "time"

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 3: Check that its duration is a five-minute interval

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 4: Take all the moderately sized subevents of the event

- Krifka takes only those whose duration is less than 5 min.

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 5: Check if each subevent qualifies as "push carts all the way to the store"

The subevent theory fails

Judgment to be predicted

John pushed carts all the way to the store for five minutes. - OK

Subevent theory

Step 5: Check if each subevent qualifies as "push carts all the way to the store"
... wrongly predicts the sentence is unacceptable

Other cases in which the subevent theory fails

Example

Snow fell throughout the area for two straight days. - OK (attested example, via Web search)

Subinterval theory says: OK

 because at each time there is a subevent of which P holds
Subevent theory says: bad

because P fails to hold of any subevent that doesn't extend throughout the whole area

Other cases in which the subevent theory fails

Example

Snow fell throughout the area for two straight days. - OK (attested example, via Web search)

Other cases in which the subevent theory fails

Example

Wine flowed from the jar to the floor for five minutes. - OK (Beavers, 2008)

Subinterval theory says: OK because at each time there is a subevent of which P holds

Subevent theory says: bad

because P fails to hold of any subevent that doesn't extend along the whole path

Other cases in which the subevent theory fails

Example

Wine flowed from the jar to the floor for five minutes. - OK (Beavers, 2008)

Subevent theory says: bad because P fails to hold of any subevent that doesn't extend along the whole path

Why Krifka prefers the subevent theory

- There is some leeway in how for-adverbials can be understood.
- John and Mary sang for four hours is true in these two scenarios:

Occupy-the-room scenario

- Krifka accounts for this by deliberately leaving open how the function that maps events to their duration in hours is defined in detail when it comes to sums of events.

Krifka misses a generalization

Object- and event-related readings
As Krifka himself observes in a separate context (Krifka, 1992), measure expressions in nominal constituents can delimit either the noun phrase denotation or the sum event.

Example

Last year, 4000 ships passed through the lock.

- Object-related reading: If some ship took part in two subevents (i.e. it passed the lock twice), it is counted only once.
- Event-related reading: If some ship took part in two subevents (i.e. it passed the lock twice), it is counted twice.

John and Mary sang for 4 hours

follows the same pattern
There is no need to resort to a special mechanism to explain the leeway, contra Krifka. So it is not an argument for the subevent theory.

Example

John and Mary sang for four hours.

- Occupy-the-room reading: If some stretch of time was the duration of two subevents (e.g. by John and by Mary), it is counted only once.
- Paid-by-the-hour reading: If some stretch of time was the duration of two subevents (e.g. by John and by Mary), it is counted twice.

Beyond for an hour: Summary and outlook

- This talk has shown that for a minute/mile means roughly at all subintervals or at each subinterval of a minute/mile.
- "For" individuates subevents along the named dimension. The subevent theory doesn't get this.
- all and each are distributive quantifiers. This suggests applying methods from the study of distributivity to for.
- Telicity is usually thought of as a property of predicates (or events). Better to think of temporal telicity and spatial telicity etc. (in support of Gawron (2005))
- push carts all the way to the store for 5 min. / *for 50 meters

The End

Thank you!

Lucas Champollion
 University of Pennsylvania / PARC

lucas@web.de
Thanks to Danny Bobrow, Cleo Condoravdi, Lauri Karttunen, Beth Levin and Annie Zaenen for helpful feedback and discussion

Bach, E. (1986). The algebra of events. Linguistics and Philosophy, 15:5-16.
Beavers, J. (2008). Multiple incremental themes and Figure/Path relations. In Proceedings of SALT XVIII.

Dowty, D. (1979). Word meaning and Montague grammar. Dordrecht: Reidel, Germany.
von Fintel, K. (1994). Restrictions on quantifier domains. PhD thesis, University of Massachusetts, Amherst.

Gawron, M. (2005). Generalized paths. In Proceedings of SALT $X V$.

Kratzer, A. (2007). On the plurality of verbs. In Dölling, J., Heyde-Zybatow, T., and Schäfer, M., editors, Event structures in linguistic form and interpretation. Walter de Gruyter, Berlin.

Krifka, M. (1992). Thematic relations as links between nominal reference and temporal constitution. In Sag, I. A. and Szabolcsi, A., editors, Lexical Matters, pages 29-53. CSLI, Stanford.

Krifka, M. (1998). The origins of telicity. In Rothstein, S., editor, Events and grammar, pages 197-235. Kluwer Academic Publishers, Dordrecht/Boston/London.
Moltmann, F. (1991). Measure adverbials. Linguistics and Philosophy, 14:629-660.
Rooth, M. (1992). A theory of focus interpretation. NLS, 1:75-116.

Vendler, Z. (1957). Verbs and times. The philosophical review, 66:143-160.

Verkuyl, H. (1972). On the compositional nature of the aspects. Dordrecht: Reidel.

Zwarts, J. (2005). Prepositional aspect and the algebra of paths. Linguistics and Philosophy, 28:699-740.

