
MCTAG is NP-complete 1

Lexicalized non-local MCTAG with dominance links is NP-complete1

Lucas Champollion

Dept. of Linguistics
University of Pennsylvania

USA
champoll@ling.upenn.edu

Abstract

An NP-hardness proof for nonlocal MCTAG by Ram-
bow and Satta (1992), based on Dahlhaus and Warmuth
(1986), is extended to some restrictions of that formalism.
It is found that there are NP-hard grammars among nonlo-
cal MCTAGs even if the following restrictions are imposed:
every tree in every tree set has a lexical anchor; every tree
set may contain at most two trees; in every such tree set,
there is a dominance link between the foot node of one tree
and the root node of the other tree and this dominance
link must be obeyed in the derived tree. This is the ver-
sion of MCTAG used in Becker, Joshi, and Rambow (1991).
The lexicalization restriction makes the grammar class NP-
complete.

1 Introduction

In trying to model the syntax of natural language within the Tree
Adjoining Grammar (TAG) formalism (Joshi, Levy, and Takahashi,
1975), it has been found early on (Kroch and Joshi, 1987) that
there are constructions in natural language which cannot be given
the right structural descriptions using standard TAG. Various ex-
tensions to standard TAG have been investigated to answer the
question of how much additional generative power is needed to de-
scribe natural language.

Joshi (1985) proposed that the class of grammars that is needed
to describe natural languages might be characterized as the class
of mildly context-sensitive grammars (MCSG), which include for-
malisms that are semilinear, allow only a limited number of cross-
ing dependencies, and are parsable in polynomial time. Among the

1I am grateful to Joan Chen-Main, Laura Kallmeyer, Timm Lichte, Wolf-
gang Maier, Alexander Perekrestenko, the Penn CLUNCH and XTAG groups,
and especially to Aravind K. Joshi for helpful discussion and encouragement.
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TAG extensions investigated, a promising candidate for a linguisti-
cally adequate MCSG seemed to be set-local multicomponent TAG
(MCTAG), which is more powerful than TAG but is still mildly
context-sensitive. In an MCTAG, instead of auxiliary trees being
single trees we have auxiliary sets, where a set consists of one or
more (but still a fixed number of) auxiliary trees. Adjunction is
defined as the simultaneous adjunction of all trees in a set to dif-
ferent nodes. In a tree-local MCTAG, all trees from one set S must
be simultaneously adjoined into the same elementary tree T . In
a set-local MCTAG, all trees from one set S must be simultane-
ously adjoined into trees that all belong to the same set S2. (If this
requirement is dropped altogether, we obtain non-local MCTAG.)
MCTAGs were first discussed by Joshi (1985) and later defined pre-
cisely by Weir (1988). For lack of space, this paper omits the formal
definitions of MCTAGs; the reader is referred to Weir (1988).

In contrast, Becker, Joshi, and Rambow (1991) argue that long-
distance scrambling in German is even beyond the power of LCFRS,
a formalism which was introduced in Weir (1988) and which re-
mains the best known formal characterization of the only roughly
defined MCSG class. LCFRS are equally powerful to set-local
MCTAG, in the sense that for each set-local MCTAG, there is a
strongly equivalent LCFRS. This means that if one accepts Becker,
Joshi, and Rambow (1991)’s argument, then set-local MCTAG, as
well as a number of equivalent or less powerful formalisms such as
head grammars (Pollard, 1984) and combinatory categorial gram-
mars (Steedman, 1988) that can be classified as LCFRS (Joshi,
Vijay-Shanker, and Weir, 1991), are no longer in the game.2

Despite these results, one can still hope to find a language class
that is adequate for natural language and has the property of being
parsable in polynomial time.3 This excludes, for example, nonlo-
cal MCTAG, because there are nonlocal MCTAGs that generate
languages for which the word recognition problem is NP-complete.

2However, there is some reason to believe that German scrambling is in
fact more restricted than described in Becker, Joshi, and Rambow (1991) and
that scrambling might not be beyond LCFRS after all (see section 6). For
a polynomially parsable TAG variant claimed to assign the right structural
descriptions to German scrambling, see Kallmeyer (2005b); cf. also Lichte (to
appear).

3LCFRS do not include all languages that are polynomially parsable. For
example, the positive version of Range Concatenation Grammars covers exactly
the class of polynomially recognizable languages, but it is more powerful than
LCFRS because its languages are not semilinear. (Boullier, 1998)
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This result is from Rambow and Satta (1992) and Rambow (1994)
and is the basis for the work in this paper.

One of the first proposals to deal with the German scrambling
data used nonlocal MCTAG with dominance links (MCTAG-DL)
(Becker, Joshi, and Rambow, 1991). In this modification of non-
local MCTAG, an additional requirement is added: in the final
derived tree, the foot node of one of the components of an auxil-
iary set has to dominate the root node of the other component in
the same auxiliary set. (This also means that there are no more
than two trees in each auxiliary set.)4

MCTAG-DL have already been used by Kroch and Joshi (1987)
for the analysis of extraposition in English. But unlike Becker,
Joshi, and Rambow (1991), they impose the additional constraint
of tree-locality. Dominance links in connection with tree-locality or
set-locality can be simulated by choosing appropriate node labels
(Kallmeyer, 2005a). Therefore, dominance links do not increase
the generative power of the grammar in this case. For this reason,
I am only interested in nonlocal MCTAG-DL in this paper.

While nonlocal multi-component rewriting systems tend to be
NP-complete (see Rambow (1994), p. 62 for an overview), there
are exceptions.5 However, in this paper it is shown that the word
recognition problem for MCTAG-DL is in fact NP-hard. There-
fore, if as is generally assumed, P 6= NP , then MCTAG-DL is
not a LCFRS and not mildly context-sensitive. The conjecture by
Rambow (1994) that dominance links do not decrease the weak
generative power of MCTAG is therefore confirmed. This is the
main result of this paper.

It is generally accepted that only the lexicalized variants of
TAGs are suitable candidates for encoding natural language. Sch-
abes (1990) defines a lexicalized grammar as a grammar in which
every elementary structure is associated with a lexical item, and

4Under an alternative definition, dominance links are an optional feature
that may or may not be present in the grammar. In that sense, every nonlocal
MCTAG is a MCTAG-DL, and therefore MCTAG-DL is of course NP-hard.
In this paper, however, I only consider MCTAG-DL in which dominance links
are obligatorily present in each auxiliary set.

5An example of this is Rambow’s nonlocal V-TAG, which is like non-local
MCTAG-DL except that elements of a tree set need not be used simultaneously
in the derivation. Lexicalized V-TAG with integrity constraints (that block
dominance links going through them) is polynomial and used by Rambow
to model scrambling. However, unlike most other TAG variants it does not
reduce island constraints to first principles, but stipulates them as integrity
constraints; see Kallmeyer (2005b) for discussion.
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every lexical item is associated with a finite set of elementary struc-
tures. From a theoretical perspective, lexicalization is justified by
the assumption that grammatical structure is projected from (i.e.
listed in) the lexicon. From a practical perspective, the interest
stems from the considerable importance of word-based corpora in
natural language processing. (Rambow, Vijay-Shanker, and Weir,
2001)

While standard TAGs are closed under lexicalization (Schabes,
1990), it is not known whether this also applies to nonlocal MC-
TAG. So it would be conceivable that lexicalized nonlocal MCTAG
are mildly context-sensitive. However, it is shown below that lexi-
calized nonlocal MCTAG is in fact NP-complete. Moreover, even if
both restrictions (dominance links and lexicalization) are applied to
nonlocal MCTAG at the same time, it still remains NP-complete.

2 Nonlocal MCTAG is NP-hard

This section presents a detailed proof of the NP-hardness of stan-
dard nonlocal MCTAG with adjunction constraints (MCTAG from
now on). This is essentially the proof that was reported by Dahlhaus
and Warmuth (1986) for scattered grammars. It was noted by
Rambow and Satta (1992) and Rambow (1994) that the proof car-
ries over to certain MCTAGs in principle, but they do not actually
perform the construction of the NP-hard grammar. I flesh out the
proof that they had in mind in detail here, as we are going to need
it later.

I now present a polynomial reduction from the NP-complete
problem 3-Partition to a specific MCTAG.

3-Partition.

Instance. A set of 3k natural numbers ni, and a bound B.

Question. Can the numbers be partitioned into k subsets of
cardinality 3, each of which sums to B?

An instance of 3-Partition can be described as the sequence
〈n1, . . . , n3k, B〉, or equivalently the string xan1xan2 . . . xan3k(ybB)k

where a, b, x, y are arbitrary symbols. (In this string, x and y
are only used as separators. It will be seen later why the end
of the string was chosen to be repeated k times.) I will pro-
vide below a nonlocal MCTAG G1 that has the property that
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〈n1, . . . , n3k, B〉 is an instance of 3-Partition if and only if the string
xan1xan2 . . . xan3k(ybB)k is accepted by G1.

3-Partition is strongly NP-complete, which means that it re-
mains NP-complete even if the numbers ni are encoded in unary
(Garey and Johnson, 1979). Since the length of the string given
above is polynomial in the length of a unary encoding of the in-
stance, any instance of 3-Partition can be transformed into an in-
stance of the word problem of G in polynomial time.

I now exhibit the MCTAG G1 (see Figure 2), which is closely
based on the growing scattered grammar G in Dahlhaus and War-
muth (1986), section 5. (The productions of G are displayed in
Figure 2 as well.) To simplify the construction, assume that 3-
Partition is restricted in the way that there are at least three num-
bers ni (i.e. that k ≥ 1) and that each of the numbers ni is greater
or equal to two. As usual, I indicate obligatory adjunction sites
with OA and null-adjunction sites with NA. Foot nodes are al-
ways null-adjunction sites and are therefore not explicitly marked
as such. There are no substitution sites in G1.

G1 produces only strings of the form xan1xan2 . . . xan3kybm1yam2

. . . ybmk . In addition, all the strings it produces each contain an
equal number of a’s and b’s, because each tree or tree set that is
adjoined adds an equal number of a’s and b’s to the derivation.

To get an idea of how the grammar works, note that all termi-
nals are introduced to the left of the spine of their auxiliary tree,
so whatever is introduced towards the top of the derived tree will
appear towards the left of the string. In all derived trees, any of X

and X will always dominate any of Y , Y and Ŷ , and any of x and
a will c-command and precede any of y and b.

At all times there is at most one of {X, X} in the derivation.
Assuming w.l.o.g. that βcreate−triple is always used as early as pos-
sible, all derivations allowed by G1 follow the same general pattern:

step 1 Initialize the derivation by αstart.

step 2 Create k triples by using βcreate−triple as many times as needed.

step 3 Pick the X and some Y (resp. Ŷ ) and use βconsume−y (resp.
βconsume−ŷ) to generate xa on the left and yb (resp. b) on the
right. This introduces X on the left and Y on the right.

step 4 Optionally use βfill−triple to add an equal number of a’s and b’s
to the left and right.

step 5 Finally replace X by a and Y by b. Either βclose−triple or βend can
be used for this. The only difference consists in whether another X
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is introduced. But there is no real choice here: If there are any Y ’s
or Ŷ ’s left on the right, they need to be consumed by introducing
an X on the left and then going through step 3 through step

5 again with that X. If not, no X can be introduced or the
derivation would get stuck.

This way, the grammar produces a sequence of blocks of a’s
followed by a sequence of blocks of b’s. The sizes of the blocks
of a’s correspond to the numbers ni. While X is deriving xani

followed by X , either some Y derives ybni or some Ŷ derives bni .
There is a block of b’s for each n, but the blocks of b’s are permuted
and grouped in threes. While the grammar produces more words
than the ones that correspond to solutions of 3-Partition, those
words in which each group of three sums to B are exactly the ones
that correspond to some solution.

The behavior of G1 can be mimicked by a “multicomponent
CFG”, i.e. an unordered scattered grammar (USCG) (Dahlhaus
and Warmuth, 1986). The productions of this USCG are repro-
duced in Figure 1, along with a sample derivation. A corresponding
derivation is also available in G1. For ease of reference, each rule
is also reproduced in Figure 2 next to the tree that corresponds to
it.

I now give the formal NP-hardness proof.6 Suppose we are
given a solution of the instance of 3-Partition, i.e. disjoint sets
A1, . . . , Ak, each of which contains 3 ni’s that add to B. It will be
shown that the word w = xan1xan2 . . . xan3k (ybB)k that describes
the instance of 3-Partition is in L(G1).

For any derived MCTAG tree t, do a left-to-right preorder
traversal of t concatenating all the node labels and skipping any
saturated non-terminals, and call the resulting string the unsatu-
rated yield of t. Define a relation “⇒” (“is rewritten to”) as holding
between two strings s1 and s2 wrt. an MCTAG G iff there exist
trees t1, t2 with unsaturated yields s1, s2 such that t2 can be ob-
tained from t1 in a single (possibly multicomponent) substitution
or adjunction step. We write G ⇒ s iff G contains an initial tree t

rooted in the start symbol of G such that there is a string st that
is the unsaturated yield of t and st ⇒ s.7 As usual, we write

∗

⇒ for

6From Dahlhaus and Warmuth (1986), with a few extensions.
7This notion is intended to capture the close relationship between an MC-

TAG G1 and its corresponding USCG. At any point in the derivation, the
unsaturated yield of an unfinished derived MCTAG tree will be identical with
the string that the USCG is rewriting.
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start S → XY Ŷ Ŷ

create-triple Y → Y Ŷ Ŷ Y

consume-y X → xaX, Y → ybY

consume-ŷ X → xaX, Ŷ → bY

fill-triple X → aX, Y → bY

close-triple X → aX, Y → b

end X → a, Y → b

init S

step 1 start X Y Ŷ Ŷ

step 2 create-triple X Y Ŷ Ŷ Y Ŷ Ŷ

step 3 consume-y xaX Y Ŷ Ŷ ybXŶ Ŷ

step 4 fill-triple xaaX Y Ŷ Ŷ ybbY Ŷ Ŷ

step 4 fill-triple xaaaX Y Ŷ Ŷ ybbbY Ŷ Ŷ

step 5 close-triple xaaaaX Y Ŷ Ŷ ybbbbŶ Ŷ

step 3 consume-ŷ xaaaa xaX Y bY Ŷ ybbbbŶ Ŷ

step 5 close-triple xaaaa xaX Y bŶ ybbbbŶ Ŷ

step 3 consume-ŷ xaaaa xa xaX Y bŶ ybbbbŶ bY

step 4 fill-triple xaaaa xa xaaX Y bŶ ybbbbŶ bbY

step 5 close-triple xaaaa xa xaaaX Y bŶ ybbbbŶ bbb

step 3 consume-ŷ xaaaa xa xaaa xaX Y bŶ ybbbbbY bbb

step 5 close-triple xaaaa xa xaaa xaaX Y bŶ ybbbbbbbbb

step 3 consume-y xaaaa xa xaaa xaa xaX ybY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaX ybbY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaX ybbbY bŶ ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaaX ybbbbY bŶ ybbbbbbbbb

step 5 close-triple xaaaa xa xaaa xaa xaaaaaX ybbbbbbŶ ybbbbbbbbb

step 3 consume-ŷ xaaaa xa xaaa xaa xaaaaa xaX ybbbbbbbY ybbbbbbbbb

step 4 fill-triple xaaaa xa xaaa xaa xaaaaa xaaX ybbbbbbbbY ybbbbbbbbb

step 5 end xaaaa xa xaaa xaa xaaaaa xaaa ybbbbbbbbb ybbbbbbbbb

Figure 1: Sample derivation of the 3-partition instance:
〈4, 1, 3, 2, 5, 3; B = 9〉 and productions of the USCG that corre-
sponds to G1.
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the reflexive and transitive closure of ⇒. Obviously, for all w ∈ Σ∗,
G derives w iff G

∗

⇒ w.

Clearly G1

∗

⇒ X(Y Ŷ Ŷ )k. Associate each set Aq, 1 ≤ q ≤ k,

with the qth group Y Ŷ Ŷ and associate each of the three elements
of the set with one of the three symbols Y , Ŷ , and Ŷ , respectively,
in the group. The association within each group is arbitrary. The
derivation X(Y Ŷ Ŷ )k ∗

⇒ w is organized in 3k phases. In the jth
phase, for 1 ≤ j < 3k, X is rewritten to xanj X and in parallel the
Y -symbol (resp. Ŷ -symbol) that is associated with nj is rewritten
to ybnj (resp. bnj ). In the 3kth phase X is rewritten to xan3k and
in parallel the Y -symbol (resp. Ŷ -symbol) that is associated with
n3k is rewritten to ybn3k (resp. bn3k). Since the numbers of Aq add

to B, each group Y Ŷ Ŷ derives ybB.

For the opposite direction (i.e. to prove that each w = xan1xan2

. . . xan3k(ybB)k, w ∈ L(G1), describes a solution of the instance of

3-Partition), assume now that G1

∗

⇒ w, where w = xan1xan2 . . .

xan3k(ybB)k. Normalize the derivation by adjoining all instances
of βcreate−triple as early as possible within the derivation of w. The
normalized derivation has the form:

G1

∗

⇒ X(Y Ŷ Ŷ )k ∗

⇒ w

The symbol X is rewritten to X and after a number of steps to
X again. More exactly, X produces xaniX at the jth phase, for
1 ≤ j < 3k, and xan3k in the last phase. Furthermore, in the ith
phase, for 1 ≤ i ≤ 3k, a particular Y (resp. Ŷ ) is rewritten to ybni

(resp. bni). Observe that each non-terminal Y is responsible for a
terminal y in w and the Y ’s produce exactly B b’s. Each group
thus corresponds to a different set of three numbers that adds to
B and there are k such sets. �

3 Restriction to dominance links

I now restrict the above proof to MCTAG-DL. This is done by mod-
ifying the grammar G1 to produce a strongly equivalent MCTAG-
DL G2. Since the two grammars have the same language, it follows
that MCTAG-DL is also NP-hard.

Proof. Call any element of {X, X} an X-like symbol and any el-
ement of {Y, Y , Ŷ } a Y-like symbol. Observe that in the tree αstart

in G1, and vacuously in all the other trees of the grammar, any
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X-like symbol dominates any Y-like symbol. Call any elementary
or derived tree with this property an X-over-Y tree.

Add dominance links between the X-like foot nodes and the
Y-like root nodes of the trees in each multicomponent set of G1.
Call the grammar obtained this way G2 (see Figure 3). A derived
tree that violates any of these dominance links would have a Y-like
root node dominate an X-like foot node and would therefore not
be X-over-Y. In other words, the dominance links will never rule
out an X-over-Y tree.

In every tree set in G1, the tree with the X-like foot node con-
tains only X-like non-terminals and the tree with the Y-like root
node contains only Y-like non-terminals. Therefore, if the tree set
is adjoined to a derived tree that is already X-over-Y, the resulting
derived tree will also be X-over-Y. Moreover, adjoining the sin-
gle auxiliary tree βcreate−triple to an X-over-Y derived tree always
produces an X-over-Y derived tree.

By induction, it follows that all the all the derived trees pro-
duced by G1 or G2 are X-over-Y. Hence the dominance links that
have been added to G1 can never be violated. Therefore G1 and
G2 are strongly equivalent. �

4 Restriction to lexicalized grammars

Here I modify the grammar G1 to get a lexicalized grammar G3

(see Figure 4) that accepts a slightly different language than G1

does. It is shown that this language is NP-hard as well.

Proof. G3 only differs from G1 in the two trees αstart and
βcreate−triple, each of which has been added a new “dummy” ter-
minal symbol #. Since the terminals in the other trees are always
located to the left of the spine, the new symbols amass at the end
of the word. Thus each word w ∈ L(G1) can be uniquely related
to some word w′ ∈ L(G3) which is identical to w except for k+1
dummy terminals at the end of w′, where k is the number of times
that βcreate−triple has been used in the derivation. (The additional
dummy terminal comes from αstart.) Since k is also the number of
sets of three numbers an instance of 3-Partition, there is a straight-
forward polynomial time transformation between that instance and
the corresponding word of L3. �

Since both restrictions just presented can be applied to G1 at
the same time and do not interact, there obtains:
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Corollary. Lexicalized MCTAG with dominance links is NP-
hard. �

5 NP-completeness

While the previous sections have shown that the languages G1,
G2, and G3 are NP-hard, it has not yet been established that they
are NP-complete. This section accomplishes this by showing their
membership in NP. All lexicalized MCTAGs are also shown NP-
complete.

Note that the NP-hardness of some fixed member Gf of a gram-
mar class G (say MCTAG) implies that the universal recognition
problem for G (that is the problem of deciding for an arbitrary
grammar G ∈ G and word w if w ∈ L(G)) is also NP-hard (because
there is a trivial polynomial reduction from the fixed-recognition
problem to the universal recognition problem). Therefore, the
proof by Rambow and Satta (1992) presented above implies that
the universal recognition problem for MCTAG is NP-hard. How-
ever, the same is not true for NP-completeness, because there is
no guarantee that the universal recognition problem for G is in
NP. It can not even be concluded from Gf being NP-complete
that the word recognition problem for all members of G is at most
NP-complete. This means that some fixed nonlocal MCTAGs, for
example the ones that are used to model natural language syntax,
might be exponential. So, it is important to stress that Rambow
and Satta (1992)’s result does not mean that nonlocal MCTAGs as
a class are at most NP-complete (neither in the sense of the univer-
sal recognition problem nor in the sense that each MCTAG gram-
mar generates an at most NP-complete language), even though this
is how the result is usually cited.

To prove that every MCTAG grammar is at most NP-complete,
it would be necessary to show that a nondeterministic Turing ma-
chine can always guess the derivation of a word w in at most |w|k

steps, for some fixed k. Call the subclass of MCTAG grammars
for which this is the case MCTAG-NP. I leave open the question
whether MCTAG-NP = MCTAG. I show now that G1 and G2 are
MCTAG-NPs and therefore NP-complete.

Proof. It has been shown above that G1 and G2 are strongly
equivalent, so the proof only needs to be carried out once. Every
auxiliary tree set in G1 except the unary set βcreate−triple intro-
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duces terminals into the derivation. So for any word w, the length
of w is an upper bound on the amount of times each of these tree
sets can have occurred in the derivation. The initial tree αstart is
always used exactly once. Observe that the unary set βcreate−triple

is used exactly k times where k is the amount of blocks of b’s con-
tained in w. So the number of steps to derive w can be guessed in
linear time by a nondeterministic Turing machine. �

The same argument can be applied to show that each lexicalized
MCTAG is at most NP-complete.

Proof. By definition, every derivation step introduces termi-
nals. So it always takes at most |w| steps to derive w. �

Corollary. G3 is NP-complete. �

6 Conclusion and linguistic implications

Unless P=NP, lexicalized MCTAG with dominance links cannot
be parsed in polynomial time and is therefore outside LCFRS. The
conjecture by Rambow (1994) that dominance links do not decrease
the weak generative power of MCTAG is therefore confirmed. The
proposal by Becker, Joshi, and Rambow (1991) to model German
scrambling by nonlocal MCTAG-DL is undermined.

However, there exist alternative views on the complexity of
scrambling. Becker, Joshi, and Rambow (1991) had assumed that
any number n of verbal arguments can be scrambled at once and
that all scrambling orders are possible (the “double unbounded-
ness” of Rambow (1994)). This is hard to check empirically, as
sentences involving four or more scrambled arguments are usually
very hard to judge. There are exceptions, though: Some special
patterns (such as no permutation or an end-around permutation
of arguments, for example) are much easier to judge positively for
all n (Aravind Joshi, p.c.). Certain polynomially parsable TAG
variants exist that do not derive all scrambling orderings for large
n, but do derive these special patterns on which we do get clear
empirical judgments (Chen-Main and Joshi, 2007).

Thus, it may be that the only data that would discriminate be-
tween polynomial-time and NP-complete variants of TAG grammar
(if Rambow’s V-TAG is disregarded – see fn.5) is unavailable for
judgments. This suggests that depending on which grammar for-
malisms we allow into the competition, the question whether nat-
ural language is in P might turn out to be empirically untestable.
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G2 = (NT, Σ, S, I, A) where

NT = {X, X, Y, Y , Ŷ }

Σ = {a, b, x, y}

I = {αstart}

A = {βcreate−triple, βconsume−y , βconsume−ŷ , βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

ǫ

S → XY Ŷ Ŷ βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

Y → Y Ŷ Ŷ Y

βconsume−y =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Y NA

yb Y
OA

Y ∗

9

>

>

>

=

>

>

>

;

X → xaX, Y → ybY

βconsume−ŷ =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Ŷ NA

b Y
OA

Ŷ ∗

9

>

>

>

=

>

>

>

;

X → xaX, Ŷ → bY

βfill−triple =

8

>

>

>

>

<

>

>

>

>

:

X
NA

a X
OA

X
∗

Y
NA

b Y
OA

Y
∗

9

>

>

>

>

=

>

>

>

>

;

X → aX, Y → bY

βclose−triple =

8

>

>

>

<

>

>

>

:

X
NA

a XOA

X
∗

Y
NA

b Y
∗

9

>

>

>

=

>

>

>

;

X → aX, Y → b

βend =

8

<

:

X
NA

a
X

∗

Y
NA

b Y
∗

9

=

;

X → a, Y → b

Figure 2: The MCTAG G1 with its corresponding USCG rules.
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G2 = (NT, Σ, S, I, A) where

NT = {X, X, Y, Y , Ŷ }

Σ = {a, b, x, y}

I = {αstart}

A = {βcreate−triple, βconsume−y , βconsume−ŷ , βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

ǫ

βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

βconsume−y =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Y NA

yb Y
OA

Y ∗

9

>

>

>

=

>

>

>

;

βconsume−ŷ =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Ŷ NA

b Y
OA

Ŷ ∗

9

>

>

>

=

>

>

>

;

βfill−triple =

8

>

>

>

>

<

>

>

>

>

:

X
NA

a X
OA

X
∗

Y
NA

b Y
OA

Y
∗

9

>

>

>

>

=

>

>

>

>

;

βclose−triple =

8

>

>

>

<

>

>

>

:

X
NA

a XOA

X
∗

Y
NA

b Y
∗

9

>

>

>

=

>

>

>

;

βend =

8

<

:

X
NA

a
X

∗

Y
NA

b Y
∗

9

=

;

Figure 3: The MCTAG with dominance links G2. (Identical to G1

except for the dominance links.)
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G3 = (NT, Σ, S, I, A) where

NT = {X, X, Y, Y , Ŷ }

Σ = {a, b, x, y,#}

I = {αstart}

A = {βcreate−triple, βconsume−y , βconsume−ŷ , βfill−triple, βclose−triple, βend}

αstart =

SNA

XOA

Y OA

Ŷ OA

Ŷ OA

#

βcreate−triple =

Y NA

Y OA

Ŷ OA

Ŷ OA

Y OA

Y ∗

#

βconsume−y =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Y NA

yb Y
OA

Y ∗

9

>

>

>

=

>

>

>

;

βconsume−ŷ =

8

>

>

>

<

>

>

>

:

XNA

xa X
OA

X∗

Ŷ NA

b Y
OA

Ŷ ∗

9

>

>

>

=

>

>

>

;

βfill−triple =

8

>

>

>

>

<

>

>

>

>

:

X
NA

a X
OA

X
∗

Y
NA

b Y
OA

Y
∗

9

>

>

>

>

=

>

>

>

>

;

βclose−triple =

8

>

>

>

<

>

>

>

:

X
NA

a XOA

X
∗

Y
NA

b Y
∗

9

>

>

>

=

>

>

>

;

βend =

8

<

:

X
NA

a
X

∗

Y
NA

b Y
∗

9

=

;

Figure 4: The lexicalized MCTAG G3. (Identical to G1 except that
new terminals have been added to αstart and to βcreate−triple.)


