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1. Introduction 
1.1 In his stimulating book Shadows of the Mind, Roger Penrose presents arguments, 
based on Gödel's theorem, for the conclusion that human thought is uncomputable. There 
are actually two separate arguments in Penrose's book. The second has been widely 
ignored, but seems to me to be much more interesting and novel than the first. I will 
address both forms of the argument in some detail. Toward the end, I will also comment 
on Penrose's proposals for a "new science of consciousness". 

2. The First Argument 
2.1 The best way to address Gödelian arguments against artificial intelligence is to ask: 
what would we expect, given the truth of Gödel's theorem, if our reasoning powers could 
be captured by some formal system F? One possibility is that F is essentially unsound, so 
that Gödel's theorem does not apply. But what if F is sound? Then we would expect that: 
(a) F could not prove its Gödel sentence G(F); 
(b) F could prove the conditional "If F is consistent, then G(F) is true"; 
(c) F could not prove that F is consistent. 
2.2 If our reasoning powers are capturable by some sound formal system F, then, we 
should expect that we will be unable to see that F is consistent. This does not seem too 
surprising, on the face of it. After all, F is likely to be some extremely complex system, 



perhaps as complex as the human brain itself, and there is no reason to believe that we 
can determine the consistency of arbitrary formal systems when those systems are 
presented to us. 
 
2.3 There does not seem to be anything especially paradoxical about this situation. Many 
arguments from Gödel's theorem, such as that given by Lucas, founder at just this point: 
they offer us no reason to believe that we can see the truth of our own Gödel sentence, as 
we may be unable to see the consistency of the associated formal system. How does 
Penrose's argument fare? 
 
2.4 Penrose is much more cautious in his phrasing. In Chapter 2, he argues carefully for 
the conclusion that our reasoning powers cannot be captured by a "knowably sound" 
formal system. This seems to be correct, and indeed mirrors the analysis above. If we are 
a sound formal system F, we will not be able to determine that F is sound. So far, this 
offers no threat to the prospects of artificial intelligence. The real burden of Penrose's 
argument is carried by Chapter 3, then, where he argues that the position that we are a 
formal system that is not "knowably sound" is untenable. 
 
2.5 One position that an advocate of AI might take is to argue that our reasoning is 
fundamentally unsound, even in an idealization. I will not take this path, however. For a 
start, I have some sympathy with Penrose's idea that we have an underlying sound 
competence, even if our performance sometimes goes astray. But further, it seems to me 
that to hold that this is the only problem in Penrose's argument would be to concede too 
much power to the argument. It would follow, for example, that there are parts of our 
arithmetical competence that no sound formal system could ever duplicate; it would seem 
that our unsoundness would be essential to our capacity to see the truth of Gödel 
sentences, for example. This would be a remarkably strong conclusion, and does not 
seem at all plausible to me. So I think that the deepest problems with Penrose's argument 
must lie elsewhere. 
 
2.6 I will concede to Penrose that we are fundamentally sound, then. As before, the 
natural position for an advocate of AI is that our powers are captured by some sound 
formal system F that cannot demonstrate that F is sound. What is Penrose's argument 
against this position? He has two sub-arguments here, depending on whether we can 
know that F is the formal system that captures our reasoning. 
 
2.7 If we could know that F captures our reasoning, Penrose's argument would be very 
straightforward:  
(1) We know that we are sound; 
(2) We know that F captures our reasoning;  
so (3) We know that F is sound. 
One might question premise (1) -- I will raise some problems with it later -- but it does 
have a certain plausible quality. Certainly, it seems antecedently more plausible than the 
much stronger position that we know that F is sound. But all this is irrelevant, as premise 
(2) is so implausible. There is very little reason to believe that if our reasoning is captured 
by F, then we could know that fact. 



 
2.8 It might seem plausible that we could know that F underlies our processing -- why 
couldn't we just investigate our underlying brain processes? But to do this would be to 
change the game. It is of no help to Penrose if we can know using external resources 
(such as perceptual inputs) that F captures our reasoning. For to use external resources 
would be to go beyond the resources provided by F itself. And there would be no 
contradiction in the supposition that F could know, using external resources, that F is 
consistent, and therefore that G(F) is true. A contradiction would only arise if F could 
know this wholly under its own steam. 
 
2.9 For this argument to be at all relevant, then, we would need to know that F captures 
our reasoning powers wholly using our internal resources -- that is, the resources that F 
itself provides. But there is not the slightest reason to believe that we could do this. If we 
are a formal system, we certainly cannot determine which formal system we are on the 
basis of introspection! So again, the advocate of artificial intelligence is in no danger. She 
need simply hold the unsurprising position that we are a formal system F, but that we 
can't tell through introspection that we are F. 
 
2.10 To make his case, Penrose needs to argue that if we are a sound formal system F, 
then we could determine that F is sound, independently of any knowledge that we are F. 
That is, he needs to make the case that if F is presented to us, we could determine that it 
is sound through an analysis of F alone. This is the burden that Penrose tries to meet in 
section 3.3. It is this section that effectively carries all the crucial weight; if it does not 
succeed, then this line of Penrose's argument simply fails. 
 
2.11 How does Penrose argue that we could see that F is sound? He argues in 3.3 that we 
can see F as a system of axioms and inference rules. Clearly, we can see that each of the 
axioms is true: if F can see their truth, so can we. Further, Penrose argues, we must be 
able to see that each of the basic inference rules is valid, as it is extremely implausible 
that our reasoning could rely on inference rules that we regard as "fundamentally 
dubious". And if we know that the axioms are true and that the inference rules are valid, 
then we know that F is sound. 
 
2.12 But why should we accept that F consists of a set of axioms and inference rules? F, 
after all, is supposed to potentially correspond to any sort of computational system -- it 
might be a simulation of the whole of the human brain, for example. This will not look 
anything like a neat logical system: we will not be able to decompose it into an 
underlying set of "axioms" and "rules of procedure". Rather, it will be a big 
computational system that churns away on a given statement as input, and eventually 
outputs "yes" or "no". 
 
2.13 It is true that for any Turing machine that accepts a certain class of statements, we 
can find a corresponding axiom-plus-rules system that accepts the same class (or at least 
the closure of that class under logical consequence). There is a lemma by Craig to this 
effect; without it applications of Gödel's theorem to draw conclusions about Turing 
machines would not even get off the ground. But the "axiom-plus-rules" system that we 



end up with may be extraordinarily complex. In particular, the "inference rules" may be 
just about as complex as the original system -- perhaps equivalent to a complex 
connectionist procedure for generating further theorems. And as before, there is no reason 
why we should be able to see that this sort of "rule" should be valid, any more than we 
could see from an analysis that an overall computational brain process is sound. This is 
not to say that we think we are relying on "fundamentally dubious" procedures -- it is just 
that the procedures that govern the dynamics of our brain are too complex for us to 
analyse them as sound or otherwise. 
 
2.14 In this section, Penrose seems to assume that the relevant class of computational 
systems are all something akin to theorem-provers in first-order logic, but of course there 
is no reason to make such an assumption. For his argument to have its full generality, 
proving that our physical processes could not even be simulated computationally, it must 
apply to any sort of computational process. Even within the realm of existing AI research, 
there are many computational procedures, such as connectionist networks, which are not 
decomposable into axioms and rules of inference. 
 
2.15 (I suspect that even an advocate of logic-based AI might have a response to make 
here. It might be held, for example, that we may occasionally use certain complex 
inference rules (when we generate Gödel sentences by transfinite counting, for example), 
whose validity is not obvious to us on analysis, without this in any way impugning the 
reliability of our reasoning. We might soundly "use" a procedure despite its resistance to 
our analysis. This indeed is just what we might expect around the "outer limits" of 
Gödelization, which after all is really where Penrose's argument gains its force. There is 
no difficulty in the idea that the reasoning methods we use in everyday mathematics can 
be seen to be sound -- Penrose's arguments really apply at the level of our unusual 
"Gödelizing" procedures, which rely on our ability to count transfinite ordinals. But to be 
able to see that some Gödelizing rule is valid would be akin to making that last step in a 
Gödelization procedure, the one that is just complex enough to be beyond us. But I leave 
these difficult issues aside for now.)  

2.16 It is section 3.3 that carries the burden of this strand of Penrose's argument, but 
unfortunately it seems to be one of the least convincing sections in the book. By his 
assumption that the relevant class of computational systems are all straightforward 
axiom-and-rules system, Penrose is not taking AI seriously, and certainly is not doing 
enough to establish his conclusion that physics is uncomputable. I conclude that none of 
Penrose's argument up to this point put a dent in the natural AI position: that our 
reasoning powers may be captured by a sound formal system F, where we cannot 
determine that F is sound. 

3. Penrose's Second Argument 
3.1 Hiding at the back of Chapter 3, however, Penrose has a new argument that escapes 
many of these problems. It is unfortunate that this argument was so deeply buried; most 
commentators seem to have missed it. Unlike the previous argument, this argument does 
not depend on the claim that we if we are a sound formal system F, we would be able to 



see that F is sound. Because of this, it is a more novel and interesting argument, and more 
worthy of attention. 
 
3.2 The argument is developed in a roundabout way (which may have led some readers 
astray), but is summarized in the fantasy dialogue with a robot mathematician in 3.23. 
The argument is given in a somewhat indirect form, involving complex procedures by 
which a given formal system might have evolved, but its basic structure is very simple. In 
a simplified and somewhat loose form, the argument goes as follows: 
(1) Assume my reasoning powers are captured by some formal system F (to put this more 
briefly, "I am F"). Consider the class of statements I can know to be true, given this 
assumption. 
 
(2) Given that I know that I am F, I know that F is sound (as I know that I am sound). 
Indeed, I know that the larger system F' is sound, where F' is F supplemented by the 
further assumption "I am F". (Supplementing a sound system with a true statement yields 
a sound system.)  
 
(3) So I know that G(F') is true, where this is the Gödel sentence of the system F'. 
 
(4) But F' could not see that G(F') is true (by Gödel's theorem). 
 
(5) By assumption, however, I am now effectively equivalent to F'. After all, I am F 
supplemented by the knowledge that I am F. 
 
(6) This is a contradiction, so the initial assumption must be false, and F must not have 
captured my powers of reasoning after all. 
 
(7) The conclusion generalizes: my reasoning powers cannot be captured by any formal 
system. 
3.3 Strictly speaking, the conclusion that must be drawn is that I cannot know that I am 
identical to a formal system F; in showing that I can see the truth of G(F'), we assumed 
not just that I am F but that I know I am F. But this is still a strong conclusion. For 
example, it would rule out even the possibility that we could empirically discover that we 
were identical to some system F -- if we were to "discover" this, the reasoning would lead 
us to a contradiction. So even this would be threatening to the prospects of AI. 
 
3.4 The power of this argument stems from the fact that is does not depend on one's 
ability to determine that a system F is sound, or to determine that we are F. Rather, it 
relies on the assumption that one is F to reach the relevant conclusions, thus contradicting 
the assumption. On the face of it one might have thought that making such an assumption 
would show only that the larger system F' could prove the Gödel sentence of the smaller 
system F, but the insight of the argument is that things can be bootstrapped into a 
situation where F' sees its own Gödel sentence, leading to trouble. 
 
3.5 As far as I can determine, this argument is free of the obvious flaws that plague other 
Gödelian arguments, such as Lucas's argument and Penrose's earlier arguments. If it is 



flawed, the flaws lie deeper. It is true that the argument has a feeling of achieving its 
conclusion as if by magic. One is tempted to say: "why couldn't F itself engage in just the 
same reasoning?". But although there are various directions in which one might try to 
attack the argument, no knockdown refutation immediately presents itself. For this 
reason, the argument is quite challenging. Compared to previous versions, this argument 
is much more worthy of attention from supporters of AI. 
 
3.6 On reflection, I have come to believe that the greatest vulnerability in this argument 
lies in the assumption that we know (unassailably) that we are consistent. This 
assumption seems relatively innocuous, compared to the previous strong claim that we 
could determine that F is consistent; on the face of it, it does not seem vastly stronger 
than the assumption that we are consistent. But I think that in fact, it is this assumption, 
and not the assumption that we know we are F, that carries the central responsibility for 
generating the contradiction. (I have largely become convinced of this through 
discussions with Daryl McCullough, and the central argument below, an adaptation of a 
result of Löb's, was suggested by him.)  

3.7 The best way to see this is to show that the assumption that we know we are 
consistent already leads to a contradiction in its own right, even without the further 
assumption that we know we are F. Specifically, we can argue that any system that 
"unassailably" believes in its own consistency will in fact be led to a contradiction (under 
certain plausible further assumptions). This can be done as follows. 

 
3.8 In these matters, we are concerned with a system's reasoning about its own beliefs, as 
well as about mathematics. So we can assume it has a symbol B, representing belief, 
where B(n) corresponds to the statement that it believes the statement with Gödel number 
n. (Below, I abbreviate by writing "B(A)" instead of "B(`A')", where `A' is the Gödel 
number of A.) And let us write "|- A" if the system has the power to "unassailably" assert 
A. (By using this notation I do not intend to beg the question about whether the system is 
computational!) Then the following assumptions are reasonable (suppressing universal 
qualifiers): 

(1) If |- A, then |- B(A). 
(2) |- B(A_1) & B(A_1 -> A2) -> B(A2)  
(3) |- B(A) -> B(B(A))  

3.9 (1) says that if the system has the power to assert A, it has the power to assert B(A). 
(2) says essentially that the system knows it has the power to reason by modus ponens. 
(3) says, in effect, that the system knows (1). All of these assumptions seem 
unproblematic. To these we add the key assumption: 
(4) |- not B(false)  
which says that the system asserts that it is not inconsistent. It turns out that these 
assumptions, along with the assumption that the system has the resources to do Peano 
arithmetic, lead to a contradiction. 
 
3.10 To see this, we simply construct a sentence G such that 



(5) |- G -> not B(G). 
This is a standard diagonal construction, and does not rely on any assumptions about the 
system's computability. We define the function "diag" in Peano arithmetic so that 
diag(`C(x)') is `C(`C(x)')' for any predicate C. (For clarity, I reintroduce the `' notation for 
Gödel numbering.) Then let G be the sentence $not B(diag(`not B(diag(x))'))$. It is 
straightforward to show that G -> not B(`G'). As long as the system has at least the 
capacities of Peano arithmetic, it can replicate this reasoning, so that |- G -> not B(`G'). 
 
3.11 G is effectively a sentence that says "I do not believe G", much like a standard 
Gödelian construction, but without any assumptions about computability. It is not hard to 
see how the contradiction arises. The system knows that if it believes G, it is unsound; so 
it knows that if it is sound, it does not believe G. But this is to say that it knows that if it 
is sound, G is true. By assumption, it knows that it is sound, so it knows that G is true. So 
now it must be unsound, as it has fallen into a contradiction. This reasoning is easily 
formalized: 
(6) |- B(G) -> B(not B(G)) [from (5), (1), (2)]  
(7) |- B(G) -> B(B(G)) [from (3)]  
(8) |- B(G) -> B(false) [from (6), (7), (2)]  
(9) |- B(false) -> B(G) [from (2), along with |- B(false -> G)]  
(10) |- G -> not B(false) [from (5), (8), (9)]  
(11) |- B(G) [from (10), (4), (1)]  
(12) |- B(false) [from (12), (9)] 
3.12 We can see, then, that the assumption that we know we are sound leads to a 
contradiction. One might try to pin the blame on one of the other assumptions, but all 
these seem quite straightforward. Indeed, these include the sort of implicit assumptions 
that Penrose appeals to in his arguments all the time. Indeed, one could make the case 
that all of premises (1)-(4) are implicitly appealed to in Penrose's main argument. For the 
purposes of the argument against Penrose, it does not really matter which we blame for 
the contradiction, but I think it is fairly clear that it is the assumption that the system 
knows that it is sound that causes most of the damage. It is this assumption, then, that 
should be withdrawn. 

 
3.13 Penrose has therefore pointed to a false culprit. When the contradiction is reached, 
he pins the blame on the assumption that our reasoning powers are captured by a formal 
system F. But the argument above shows that this assumption is inessential in reaching 
the contradiction: A similar contradiction, via a not dissimilar sort of argument, can be 
reached even in the absence of that assumption. It follows that the responsibility for the 
contradiction lies elsewhere than in the assumption of computability. It is the assumption 
about knowledge of soundness that should be withdrawn. 

 
3.14 Still, Penrose's argument has succeeded in clarifying some issues. In a sense, it 
shows where the deepest flaw in Gödelian arguments lies. One might have thought that 
the deepest flaw lay in the unjustified claim that one can see the soundness of certain 
formal systems that underlie our own reasoning. But in fact, if the above analysis is 
correct, the deepest flaw lies in the assumption that we know that we are sound. All 



Gödelian arguments appeal to this premise somewhere, but in fact the premise generates 
a contradiction. Perhaps we are sound, but we cannot know unassailably that we are 
sound. 

4. The Missing Science Of Consciousness? 
4.1 A reader who is not convinced by Penrose's Gödelian arguments is left with little 
reason to accept his claims that physics is noncomputable and that quantum processes are 
essential to cognition, although these speculations are interesting in their own right. But 
even if one accepts that human behavior can be accounted for computationally, there is 
still the question of human consciousness, which after all is Penrose's ultimate target. 
 
4.2 Penrose is clear that the puzzle of consciousness is one of his central motivations. 
Indeed, one reason for his skepticism about AI is that it is so hard to see how the mere 
enaction of a computation should give rise to an inner subjective life. Why couldn't all 
the computation go in the dark, without consciousness? So Penrose postulates that we to 
appeal to physics instead, and suggests that the locus of consciousness may be a quantum 
gravity process in microtubules. But this seems to suffer from exactly the same problem. 
Why should quantum processes in microtubules give rise to consciousness, any more 
than computational processes should? Neither suggestion seems appreciably better off 
than the other. 
 
4.3 Although Penrose's quantum-gravity proposal might at least conceivably help explain 
certain elements of human behavior (if behavior turned out to be uncomputable, for 
example), it simply seems to be the wrong sort of thing to explain human consciousness. 
Indeed, Penrose nowhere claims that it does, and by the end of the book the "Missing 
Science of Consciousness" seems as far off as it ever was. As things stand, even by the 
end of Penrose's book, we seem to be left in Penrose's position D: these physical theories 
leave consciousness entirely unexplained. 
 
4.4 This might seem odd, given that Penrose says he embraces position C, but in fact C 
and D are quite compatible. This is because Penrose's four positions run together a 
number of separate issues. For convenience, I repeat the positions here: 
A: All thinking is computation; in particular, feelings of conscious awareness are evoked 
merely by the carrying out of appropriate computations. 
 
B: Awareness if a feature of the brain's physical action; and whereas any physical action 
can be simulated computationally, computational simulation cannot by itself evoke 
awareness. 
 
C: Appropriate physical action evokes awareness, but this physical action cannot even be 
properly simulated computationally. 
 
D: Awareness cannot be explained by physical, computational, or any other scientific 
terms. 



4.5 Note that A, B, and C all concern how awareness is evoked , but D concerns how 
awareness is explained. These are two very different issues. To see the contrast, note that 
almost everybody would accept that the brain evokes awareness -- if we were to construct 
a duplicate brain, there would be conscious experience associated with it. But it is far 
from clear that a physical description of the brain can explain awareness -- many people 
have argued that given any physical account of brain processes, the question of how those 
processes evoke conscious experience will be unanswered by the physical account. 
 
4.6 To really clarify the positions in the vicinity, we have to distinguish three questions: 
(1) What does it take to simulate our physical action ? 
(2) What does it take to evoke conscious awareness? 
(3) What does it take to explain conscious awareness? 
 
4.7 In answer to each question, one might say that (a) Computation alone is enough, (b) 
Physics is enough, but physical features beyond computation are required, or (c) Not 
even physics is enough. Call these positions C, P, and N. So we have a total of 27 
positions, that one might label CCC, CPN, and so on. 
 
4.8 Question (1) is the question Penrose is concerned with for most of the book, and the 
issue that separates B and C above. He argues for position P-- over C--. Descartes might 
have argued for N--, but few would embrace such a position these days. 
 
4.9 Question (2) is the issue at the heart of Searle's Chinese room argument, and the issue 
that separates A from B and C above. Searle argues for -P- over -C-, and Penrose is 
clearly sympathetic with this position. Almost everyone would accept that a physical 
duplicate of me would "evoke" consciousness, so position -N- is not central here. 
 
4.10 Question (3) is the central question about the explanation of consciousness (a 
question that much of my own work is concerned with). Penrose's positions A, B, and C 
are neutral on this question, but D is solely concerned with it; so in a sense, D is 
independent of the rest. Many advocates of AI might hold --C, some neurobiologists 
might hold --P, whereas my own position is --N. 
 
4.11 The four positions Penrose describes come down to CC- (A), CP- (B), PP- (C), and -
-N (D). Penrose seems to think that in arguing for position C (PP-) he is arguing against 
position D (--N), but it is clear from this analysis that this is not so. In the end, nothing in 
Penrose's book bears on question (3), which is a pity, though it is certainly 
understandable. It would be very interesting to hear Penrose's position on just how 
physical theories might or might not explain human consciousness. 
 
4.12 Indeed, one might even combine positions A and D, as I do, embracing CCN. On 
this position, human-like behavior can be produced computationally, and indeed enacting 
the right computation will give rise to consciousness, but neither a computational account 
nor a physical account alone will explain consciousness. It might seem odd that 
computation should evoke but not explain consciousness, but this is no more odd than the 
corresponding position that neurophysiology might evoke but not explain consciousness. 



In either case, consciousness emerges from some underlying basis, but we need a further 
element in the theory to explain just how and why it emerges. 
 
4.13 One can have a lot of fun cataloging positions (Dennett is CCC; Searle may be CPP; 
Eccles is NNN; Penrose is PPP; I am CCN; some philosophers and neuroscientists are 
CPN or PPN; note that all these are "non-decreasing" in C->P->N, as we might expect), 
but this is enough for now. The main point is that Penrose's treatment runs together 
question (3) with questions (1) and (2), so that in the end the question of how 
consciousness might be explained is left to one side. 
 
4.14 A true science of consciousness will have to address all of these questions, and 
especially question (3). Penrose has produced an enormously enjoyable and challenging 
book, but it seems to me that for all his hard work, the science of consciousness is still 
missing.<1>

Notes 
<1> This review is an elaboration of my review of Penrose's book in Scientific American, 
June 1995, pp. 117-18. 
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