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We study the oscillatory behavior of differential equations with nonmonotone deviating arguments and nonnegative coefficients.
New oscillation criteria, involving limsup and liminf, are obtained based on an iterative method. Examples, numerically solved in
MATLAB, are given to illustrate the applicability and strength of the obtained conditions over known ones.

1. Introduction

In mathematics, delay differential equations (DDEs) are that
type of differential equations where the derivative of the
unknown function, at a certain time, is given in terms of
the values of the function, at previous times. DDEs are also
referred in the literature as time-delay systems, systems with
aftereffect or dead-time, hereditary systems, or equations
with delay arguments.

Mathematical modelling involving DDEs is widely used
for analysis and predictions in various areas of the life
sciences, for example, population dynamics, epidemiology,
immunology, physiology, neural networks. See, for example,
[1–10] and the references cited therein. The time delays add
to these models memory effects, taking into account the
dependence of the model’s present state on its past history
[9].The delay can be related to the duration of certain hidden
processes, like the stages of the life cycle, the time between
infection of a cell and the production of new viruses, the
duration of the infectious period, the immune period, and so
on.

In analogy, advanced differential equations (ADEs) are
used in many applied problems where the evolution rate
depends not only on the present, but also on the future.

While delays in DDEs represent the retrospective memory
of the past, advances in ADEs represent the prospective
memory of the future, accounting for the influence on the
system of potential future actions, which are available, at the
present time. For instance, population dynamics, economics
problems, ormechanical control engineering are typical fields
where such phenomena are thought to occur (see [11, 12] for
details).

The earliest delay model in mathematical biology is
Hutchinson’s equation, in 1948 [6]. Hutchinson modified the
classical logistic equation, with a delay term to incorporate
hatching andmaturation periods into the model and account
for oscillations, in the population of Daphnia,

𝑦󸀠 (𝑡) = 𝑟𝑦 (𝑡) (1 − 𝑦 (𝑡 − 𝜏)𝐾 ) , (1)

where 𝑦(𝑡) denotes the size of the population, in the present
time 𝑡, 𝑦󸀠(𝑡) describes the change of this size, at time 𝑡, 𝑦(𝑡−𝜏)
is the size, in some past time 𝑡 − 𝜏, 𝜏 > 0 is the delay,
representing the time for new eggs to hatch, and 𝑟 is the
reproduction rate of the population, while 𝐾 is the carrying
capacity, for the population.
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Many physiological processes, including the concentra-
tion of red blood cells, the concentration of CO2 in the blood,
causing the observed periodic oscillations in the breathing
frequency, and the production of new blood cells, in the bone
marrow, exhibit oscillations and several DDE models have
been proposed to model these processes.

Below, we present two applications indicating the rel-
evance of the DDEs we study in this paper to real world
problems. The two examples are taken from the areas of
physiology and population dynamics.

Application 1 (blood cells production [9]). The production of
red and white blood cells, in the bonemarrow, is regulated by
the level of oxygen, in the blood.A reduction in the number of
cells in the blood, as a result of the loss of cells, causes the level
of oxygen in the blood to decrease. When the level of oxygen
in the blood decreases, a substance is released that in turn
leads to the release of blood elements, from the bonemarrow.
Thus, the concentration 𝑐(𝑡)of cells in the blood stream, at any
time 𝑡, changes according to the loss of cells and the release
of new cells, from the bone marrow. But the bone marrow
responds to a reduction in the number of blood cells and the
decrease in the level of oxygen, with a delay that is in the
order of 6 days. That means the release of new cells, into the
blood stream, at time 𝑡, depends on the cell concentration, at
an earlier time, namely, 𝑡 − 𝜏, where 𝜏 is the delay with which
the bonemarrow responds to a reduced level of oxygen in the
blood.The simplest model of the concentration of the cells in
the blood stream can be described by the DDE

𝑐󸀠 (𝑡) = 𝜆𝑐 (𝑡 − 𝜏) − 𝛾𝑐 (𝑡) , (2)

where 𝜆 represents the flux of cells into the blood stream, 𝛾
is the death rate, and 𝜏 is the delay. All of them are positive
constants.The solutions of the above equation exhibit similar
oscillations to the actual oscillatory pattern observed in the
concentration of cells in the blood stream.

Application 2. Imagine a biological population composed of
adult and juvenile individuals. Let 𝑁(𝑡) denote the density
of adults at time 𝑡. Assume that the length of the juvenile
period is exactly ℎ units of time for each individual. Assume
that adults produce offspring at a per capita rate 𝛼 and that
their probability per unit of time of dying is 𝜇. Assume that a
newborn survives the juvenile period with probability 𝜌 and
put 𝑡 = 𝛼𝜌. Then the dynamics of𝑁 can be described by the
differential equation

𝑁󸀠 (𝑡) = −𝜇𝑁 (𝑡) + 𝑟𝑁 (𝑡 − ℎ) (3)

which involves a nonlocal term, 𝑟𝑁(𝑡 − ℎ) meaning that
newborns become adults with some delay. So the time
variation of the population density𝑁 involves the current as
well as the past values of𝑁.

The use of DDEs, from the initial application, in popula-
tion dynamics, has spread to every area of the life sciences:
immunology, physiology, epidemiology, and cell growth.The
original delay logistic equation has led to several new DDE
forms, likeVolterra’s integrodifferential equations and neutral

DDEs [9], and several newmodels, from the delayedHopfield
model, in neural networks to the SIRmodel, in epidemiology
[7].More recently, the idea of state dependent delays has been
introduced, involving “a delay that itself is governed by a
differential equation that represents adaptation to the system’s
state” [9].

From the above review of DDEs, in the biological sci-
ences, it is apparent that if DDEs are so extensively used in
this area, this is because the dynamics of those equations,
namely, the stability and oscillatory properties of the solu-
tions of those equations, replicate the stability and oscillatory
patterns, we actually observe in processes, in those areas.
Thus, the study of the stability and oscillatory behavior of the
solutions of DDEs has become the principal subject of the
research on those equations. For more advanced treatises on
oscillation theory, the reader is referred to [13–33].

In the paper, we consider a differential equation with
delay argument of the form

𝑥󸀠 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) = 0, 𝑡 ≥ 𝑡0, (E)
where 𝑝 is a function of nonnegative real numbers and 𝜏 is a
function of positive real numbers such that

𝜏 (𝑡) < 𝑡, 𝑡 ≥ 𝑡0,
lim
𝑡→∞

𝜏 (𝑡) = ∞. (4)

By a solution of (E) we understand a continuously differ-
entiable function defined on [𝜏(𝑇0),∞) for some 𝑇0 ≥ 𝑡0
and such that (E) is satisfied for 𝑡 ≥ 𝑇0. Such a solution is
called oscillatory if it has arbitrarily large zeros, and otherwise
it is called nonoscillatory. An equation is oscillatory if all its
solutions oscillate.

A parallel problem to that of establishing oscillation
criteria for the solutions of equation (E) is the one concerning
the solutions of the advanced differential equation (ADE)

𝑥󸀠 (𝑡) − 𝑞 (𝑡) 𝑥 (𝜎 (𝑡)) = 0, 𝑡 ≥ 𝑡0, (E󸀠)
where 𝑞 is a function of nonnegative real numbers and 𝜎 is a
function of positive real numbers such that

𝜎 (𝑡) > 𝑡, 𝑡 ≥ 𝑡0. (5)

The objective of this paper is to consider the oscillatory
dynamics of both delay and advanced differential equations,
from the perspective of the qualitative analysis of those
equations. In that framework, (i) we formulate new iterative
oscillation conditions, for testing whether all solutions of a
DDE of the form of (E) or an ADE of the form of (E󸀠) are
oscillatory, (ii) we show that these tests significantly improve
on all the previous, iterative, and noniterative oscillation
criteria which, briefly, are reviewed in the Historical and
Chronological Review, in Section 2, requiring fewer iterations
to determine whether an equation of the considered form is
oscillatory, and (iii) these criteria apply to amore general class
of equations, having nonmonotone arguments 𝜏(𝑡) or 𝜎(𝑡), in
contrast to the large majority of the other studies where the
criteria apply to equations with nondecreasing arguments.
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From this point onward, we will use the notation

𝛼 fl lim inf
𝑡→∞

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠,

𝛽 fl lim inf
𝑡→∞

∫𝜎(𝑡)
𝑡
𝑞 (𝑠) 𝑑𝑠,

𝐷 (𝜔) fl {{{{{{{
0, if 𝜔 > 1𝑒 ,1 − 𝜔 − √1 − 2𝜔 − 𝜔22 , if 𝜔 ∈ [0, 1𝑒 ] ,

LD fl lim sup
𝑡→∞

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠,
where 𝜏 (𝑡) is nondecreasing,

LA fl lim sup
𝑡→∞

∫𝜎(𝑡)
𝑡
𝑞 (𝑠) 𝑑𝑠,
where 𝜎 (𝑡) is nondecreasing.

(6)

2. Historical and Chronological Review

2.1. DDEs. The first systematic study for the oscillation of all
solutions of equation (E) was made by Myškis in 1950 [31],
when he proved that every solution of (E) oscillates, if

lim sup
𝑡→∞

[𝑡 − 𝜏 (𝑡)] < ∞,
lim inf
𝑡→∞

[𝑡 − 𝜏 (𝑡)] lim inf
𝑡→∞

𝑝 (𝑡) > 1𝑒 .
(7)

In 1972, Ladas et al. [27] proved that if

LD > 1, (8)

then all solutions of (E) are oscillatory.
In 1982, Koplatadze and Chanturiya [24] improved (7) to

𝛼 > 1𝑒 . (9)

Regarding the constant 1/𝑒 in (9), it should be remarked that
if the inequality

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠 ≤ 1𝑒 (10)

holds eventually, then, according to [24], (E) has a nonoscil-
latory solution.

It is apparent that there is a gap between conditions (8)
and (9), when

lim
𝑡→∞

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠 (11)

does not exist. How to fill this gap is an interesting problem
which has been investigated by several authors. For example,

in 2000, Jaroš and Stavroulakis [23] proved that if 𝜆0 is the
smaller root of the equation 𝜆 = 𝑒𝛼𝜆 and

LD > 1 + ln 𝜆0𝜆0 − 𝐷 (𝛼) , (12)

then all solutions of (E) oscillate.
Nowwe come to the general case where the argument 𝜏(𝑡)

is nonmonotone. Set

ℎ (𝑡) fl sup
𝑠≤𝑡
𝜏 (𝑠) , 𝑡 ≥ 𝑡0. (13)

Clearly, the function ℎ(𝑡) is nondecreasing and 𝜏(𝑡) ≤ ℎ(𝑡) <𝑡, for all 𝑡 ≥ 𝑡0.
In 1994, Koplatadze and Kvinikadze [25] proved that if

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

ℎ(𝑠)
𝑝 (𝑢) 𝜓𝑗 (𝑢) 𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛼) ,
(14)

where

𝜓1 (𝑡) = 0,
𝜓𝑗 (𝑡) = exp(∫𝑡

𝜏(𝑡)
𝑝 (𝑢) 𝜓𝑗−1 (𝑢) 𝑑𝑢) , 𝑗 ≥ 2, (15)

then all solutions of (E) oscillate.
In 2011, Braverman and Karpuz [14] proved that if

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) 𝑑𝑢)𝑑𝑠 > 1, (16)

then all solutions of (E) oscillate, while in 2014, Stavroulakis
[32] improved (16) to

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) 𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛼) .
(17)

In 2016, El-Morshedy and Attia [30] proved that if

lim sup
𝑡→∞

[
[∫
𝑡

𝑔(𝑡)
𝑝𝑛 (𝑠) 𝑑𝑠

+ 𝐷 (𝛼) exp(∫𝑡
𝑔(𝑡)

𝑛−1∑
𝑗=0

𝑝𝑗 (𝑠) 𝑑𝑠)]] > 1,
(18)

where 𝑝0(𝑡) = 𝑝(𝑡) and
𝑝𝑛 (𝑡)
= 𝑝𝑛−1 (𝑡) ∫𝑡

𝑔(𝑡)
𝑝𝑛−1 (𝑠) exp(∫𝑡

𝑔(𝑠)
𝑝𝑛−1 (𝑢) 𝑑𝑢)𝑑𝑠,

𝑛 ≥ 1,
(19)
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then all solutions of (E) are oscillatory. Here, 𝑔(𝑡) is a nonde-
creasing continuous function such that 𝜏(𝑡) ≤ 𝑔(𝑡) ≤ 𝑡, 𝑡 ≥𝑡1, for some 𝑡1 ≥ 𝑡0. Clearly, 𝑔(𝑡) is more general than ℎ(𝑡)
defined by (13).

Recently, Chatzarakis [15, 16] proved that if, for some 𝑗 ∈
N,

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝𝑗 (𝑢) 𝑑𝑢)𝑑𝑠 > 1 (20)

or

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝𝑗 (𝑢) 𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛼) ,
(21)

where

𝑝𝑗 (𝑡)
= 𝑝 (𝑡) [1 + ∫𝑡

𝜏(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝𝑗−1 (𝑢) 𝑑𝑢)𝑑𝑠] , (22)

with 𝑝0(𝑡) = 𝑝(𝑡), then all solutions of (E) are oscillatory.
Lately, Chatzarakis [17] studied a more general form of(E); namely,

𝑥󸀠 (𝑡) + 𝑚∑
𝑖=1

𝑝𝑖 (𝑡) 𝑥 (𝜏𝑖 (𝑡)) = 0, 𝑡 ≥ 𝑡0, (23)

and established sufficient oscillation conditions. Those con-
ditions can lead to (20) and (21) when𝑚 = 1.
2.2. ADEs. ByTheorem 2.4.3 [29], if

LA > 1, (24)

then all solutions of (E󸀠) are oscillatory.
In 1984, Fukagai and Kusano [21] proved that if

𝛽 > 1𝑒 , (25)

then all solutions of (E󸀠) are oscillatory, while if
∫𝜎(𝑡)
𝑡
𝑞 (𝑠) 𝑑𝑠 ≤ 1𝑒 for all sufficiently large 𝑡, (26)

then (E󸀠) has a nonoscillatory solution.
Assume that the argument 𝜎(𝑡) is not necessarily mono-

tone. Set

𝜌 (𝑡) = inf
𝑠≥𝑡
𝜎 (𝑠) , 𝑡 ≥ 𝑡0. (27)

Clearly, the function 𝜌(𝑡) is nondecreasing and 𝜎(𝑡) ≥ 𝜌(𝑡) >𝑡, for all 𝑡 ≥ 𝑡0.
In 2015, Chatzarakis and Öcalan [18] proved that if

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 > 1, (28)

or

lim inf
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 > 1𝑒 , (29)

then all solutions of (E󸀠) are oscillatory.
Recently, Chatzarakis [15, 16] proved that if, for some 𝑗 ∈

N,

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞𝑗 (𝑢) 𝑑𝑢)𝑑𝑠 > 1, (30)

or

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞𝑗 (𝑢) 𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛽) ,
(31)

where
𝑞𝑗 (𝑡)
= 𝑞 (𝑡) [1 + ∫𝜎(𝑡)

𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞𝑗−1 (𝑢) 𝑑𝑢)𝑑𝑠] ,

𝑗 ≥ 1
(32)

with 𝑞0(𝑡) = 𝑞(𝑡), then all solutions of (E󸀠) oscillate.
Lately, Chatzarakis [17] studied a more general form of(E󸀠), namely,

𝑥󸀠 (𝑡) − 𝑚∑
𝑖=1

𝑞𝑖 (𝑡) 𝑥 (𝜎𝑖 (𝑡)) = 0, 𝑡 ≥ 𝑡0, (33)

and established sufficient oscillation conditions. Those con-
ditions can lead to (30) and (31) when𝑚 = 1.
3. Main Results

3.1. DDEs. In our main results, we state theorems, establish-
ing new sufficient oscillation conditions. For the proofs of
those theorems, we use the following lemmas.

Lemma 3 (see [19, Lemma 2.1.1]). Assume that ℎ(𝑡) is defined
by (13). Then

𝛼 fl lim inf
𝑡→∞

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠 = lim inf

𝑡→∞
∫𝑡
ℎ(𝑡)
𝑝 (𝑠) 𝑑𝑠. (34)

Lemma 4 (see [19, Lemma 2.1.3]). Assume that ℎ(𝑡) is defined
by (13), 𝛼 ∈ (0, 1/𝑒], and 𝑥(𝑡) is an eventually positive solution
of (E). Then

lim inf
𝑡→∞

𝑥 (𝑡)𝑥 (ℎ (𝑡)) ≥ 𝐷 (𝛼) . (35)

Lemma 5 (see [26]). Assume that ℎ(𝑡) is defined by (13), 𝛼 ∈(0, 1/𝑒], and 𝑥(𝑡) is an eventually positive solution of (E). Then

lim inf
𝑡→∞

𝑥 (ℎ (𝑡))𝑥 (𝑡) ≥ 𝜆0, (36)

where 𝜆0 is the smaller root of the equation 𝜆 = 𝑒𝛼𝜆.
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Theorem 6. Let ℎ(𝑡) be defined by (13) and for some 𝑗 ∈ N
lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 1,
(37)

where

𝑃𝑗 (𝑡) = 𝑝 (𝑡) [1 + ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗−1 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠]

(38)

with 𝑃0(𝑡) = 𝜆0𝑝(𝑡), and let 𝜆0 be the smaller root of the
equation 𝜆 = 𝑒𝛼𝜆. Then all solutions of (E) oscillate.
Proof. Assume, for the sake of contradiction, that there exists
a nonoscillatory solution 𝑥(𝑡) of (E). Since −𝑥(𝑡) is also a
solution of (E), we can confine our discussion only to the
case where the solution 𝑥(𝑡) is eventually positive.Then there
exists a real number 𝑡1 > 𝑡0 such that 𝑥(𝑡), 𝑥(𝜏(𝑡)) > 0 for all𝑡 ≥ 𝑡1. Thus, from (E) we have

𝑥󸀠 (𝑡) = −𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ≤ 0 ∀𝑡 ≥ 𝑡1, (39)

which means that 𝑥(𝑡) is an eventually nonincreasing func-
tion of positive numbers. Taking into account the fact that𝜏(𝑡) ≤ ℎ(𝑡), (E) implies that

𝑥󸀠 (𝑡) + 𝑝 (𝑡) 𝑥 (ℎ (𝑡)) ≤ 0, 𝑡 ≥ 𝑡1. (40)

Observe that (36) implies that, for each 𝜖 > 0, there exists a
real number 𝑡𝜖 such that

𝑥 (ℎ (𝑡))𝑥 (𝑡) > 𝜆0 − 𝜖 ∀𝑡 ≥ 𝑡𝜖 ≥ 𝑡1. (41)

Combining inequalities (40) and (41), we obtain

𝑥󸀠 (𝑡) + 𝑝 (𝑡) (𝜆0 − 𝜖) 𝑥 (𝑡) ≤ 0, 𝑡 ≥ 𝑡𝜖, (42)

or

𝑥󸀠 (𝑡) + 𝑃0 (𝑡, 𝜖) 𝑥 (𝑡) ≤ 0, 𝑡 ≥ 𝑡𝜖, (43)

where

𝑃0 (𝑡, 𝜖) = 𝑝 (𝑡) (𝜆0 − 𝜖) . (44)

Applying the Grönwall inequality in (43), we conclude that

𝑥 (𝑠) ≥ 𝑥 (𝑡) exp(∫𝑡
𝑠
𝑃0 (𝜉, 𝜖) 𝑑𝜉) , 𝑡 ≥ 𝑠 ≥ 𝑡𝜖. (45)

Now we divide (E) by 𝑥(𝑡) > 0 and integrate on [𝑠, 𝑡], so
−∫𝑡
𝑠

𝑥󸀠 (𝑢)𝑥 (𝑢) 𝑑𝑢 = ∫
𝑡

𝑠
𝑝 (𝑢) 𝑥 (𝜏 (𝑢))𝑥 (𝑢) 𝑑𝑢, (46)

or

ln 𝑥 (𝑠)𝑥 (𝑡) = ∫
𝑡

𝑠
𝑝 (𝑢) 𝑥 (𝜏 (𝑢))𝑥 (𝑢) 𝑑𝑢, 𝑡 ≥ 𝑠 ≥ 𝑡𝜖. (47)

Since 𝜏(𝑢) < 𝑢, equality (47) gives
ln 𝑥 (𝑠)𝑥 (𝑡) = ∫

𝑡

𝑠
𝑝 (𝑢) 𝑥 (𝜏 (𝑢))𝑥 (𝑢) 𝑑𝑢

≥ ∫𝑡
𝑠
𝑝 (𝑢) 𝑥 (𝑢)𝑥 (𝑢) exp(∫

𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢

= ∫𝑡
𝑠
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢,

(48)

or

𝑥 (𝑠)
≥ 𝑥 (𝑡) exp(∫𝑡

𝑠
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (49)

Substituting 𝜏(𝑠) for 𝑠 in (49), we get

𝑥 (𝜏 (𝑠))
≥ 𝑥 (𝑡) exp(∫𝑡

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (50)

Integrating (E) from 𝜏(𝑡) to 𝑡, we have
𝑥 (𝑡) − 𝑥 (𝜏 (𝑡)) + ∫𝑡

𝜏(𝑡)
𝑝 (𝑠) 𝑥 (𝜏 (𝑠)) 𝑑𝑠 = 0. (51)

Combining (50) and (51), we obtain

𝑥 (𝑡) − 𝑥 (𝜏 (𝑡)) + 𝑥 (𝑡) ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0.
(52)

Multiplying inequality (52) by 𝑝(𝑡), we find
𝑝 (𝑡) 𝑥 (𝑡) − 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) + 𝑝 (𝑡) 𝑥 (𝑡) ∫𝑡

𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0,
(53)

which, in view of (E), becomes

𝑥󸀠 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡) + 𝑝 (𝑡) 𝑥 (𝑡) ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0.
(54)
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Hence, for sufficiently large 𝑡,
𝑥󸀠 (𝑡) + 𝑝 (𝑡) [1 + ∫𝑡

𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠]

⋅ 𝑥 (𝑡) ≤ 0,
(55)

or

𝑥󸀠 (𝑡) + 𝑃1 (𝑡, 𝜖) 𝑥 (𝑡) ≤ 0, (56)

where

𝑃1 (𝑡, 𝜖) = 𝑝 (𝑡) [1 + ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃0 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠] .

(57)

Clearly (56) resembles (43), if we replace 𝑃0 by 𝑃1. Thus,
integrating (56) on [𝑠, 𝑡] yields

𝑥 (𝑠) ≥ 𝑥 (𝑡) exp(∫𝑡
𝑠
𝑃1 (𝜉, 𝜖) 𝑑𝜉) . (58)

Repeating steps (45) through (50), we can see that 𝑥 satisfies
the inequality

𝑥 (𝜏 (𝑠))
≥ 𝑥 (𝑡) exp(∫𝑡

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃1 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (59)

Combining now (51) and (59), we obtain

𝑥 (𝑡) − 𝑥 (𝜏 (𝑡)) + 𝑥 (𝑡) ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃1 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0.
(60)

Multiplying inequality (60) by 𝑝(𝑡), as before, we find
𝑥󸀠 (𝑡) + 𝑝 (𝑡) [1 + ∫𝑡

𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃1 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠]

⋅ 𝑥 (𝑡) ≤ 0.
(61)

Therefore, for sufficiently large 𝑡, we have
𝑥󸀠 (𝑡) + 𝑃2 (𝑡, 𝜖) 𝑥 (𝑡) ≤ 0, (62)

where

𝑃2 (𝑡, 𝜖) = 𝑝 (𝑡) [1 + ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃1 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠] .

(63)

It becomes apparent, now, that, by repeating the above steps,
we can build inequalities on 𝑥󸀠(𝑡) with progressively higher
indices 𝑃𝑗(𝑡, 𝜖), 𝑗 ∈ N. In general, for sufficiently large 𝑡, the
positive solution 𝑥(𝑡) satisfies the inequality

𝑥󸀠 (𝑡) + 𝑃𝑗 (𝑡, 𝜖) 𝑥 (𝑡) ≤ 0, 𝑗 ∈ N, (64)

where

𝑃𝑗 (𝑡, 𝜖) = 𝑝 (𝑡) [1 + ∫𝑡
𝜏(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗−1 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠] .

(65)

Proceeding to final step, we recall that ℎ(𝑡), defined by (13), is
a nondecreasing function. Since 𝜏(𝑠) ≤ ℎ(𝑠) ≤ ℎ(𝑡), we have
𝑥 (𝜏 (𝑠)) ≥ 𝑥 (ℎ (𝑡))
⋅ exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (66)

Hence

𝑥 (𝑡) − 𝑥 (ℎ (𝑡)) + 𝑥 (ℎ (𝑡)) ∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0,
(67)

or

𝑥 (ℎ (𝑡)) [∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

− 1] < 0.
(68)

Thus

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

− 1 < 0.
(69)

Taking the limit as 𝑡 → ∞, we have

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1.
(70)
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Since 𝜖may be taken arbitrarily small, this inequality contra-
dicts (37).

This completes the proof of the theorem.

Theorem 7. Let ℎ(𝑡) be defined by (13) and 𝛼 ∈ (0, 1/𝑒]. If for
some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛼) ,
(71)

where 𝑃𝑗 is defined by (38), then all solutions of (E) oscillate.
Proof. Assume 𝑥 is an eventually positive solution of (E).
Clearly, (67) is satisfied for sufficiently large 𝑡. Thus,

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1 − 𝑥 (𝑡)𝑥 (ℎ (𝑡)) ,
(72)

which implies that

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1 − lim inf
𝑡→∞

𝑥 (𝑡)𝑥 (ℎ (𝑡)) .
(73)

Using Lemmas 3 and 4, it is evident that inequality (35) is
satisfied. Thus, (73) leads to

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1 − 𝐷 (𝛼) .
(74)

Since 𝜖may be taken arbitrarily small, this inequality contra-
dicts (71).

This completes the proof of the theorem.

Theorem 8. Let ℎ(𝑡) be defined by (13) and 𝛼 ∈ (0, 1/𝑒]. If for
some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 1𝐷 (𝛼) ,
(75)

where 𝑃𝑗 is defined by (38), then all solutions of (E) oscillate.
Proof. Assume 𝑥 is an eventually positive solution of (E).
Then, as in the proof of Theorem 6, for sufficiently large 𝑡,
we conclude that

𝑥 (𝜏 (𝑠))
≥ 𝑥 (𝑡) exp(∫𝑡

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (76)

Integrating (E) from ℎ(𝑡) to 𝑡 and using (76), we obtain

𝑥 (𝑡) − 𝑥 (ℎ (𝑡)) + ∫𝑡
ℎ(𝑡)
𝑝 (𝑠) 𝑥 (𝑡)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0,
(77)

or

− 𝑥 (ℎ (𝑡)) + ∫𝑡
ℎ(𝑡)
𝑝 (𝑠) 𝑥 (𝑡)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< 0.
(78)

Hence

𝑥 (ℎ (𝑡)) [ 𝑥 (𝑡)𝑥 (ℎ (𝑡)) ∫
𝑡

ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

− 1] < 0,
(79)

which yields, for all sufficiently large 𝑡,
∫𝑡
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫𝑡

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< 𝑥 (ℎ (𝑡))𝑥 (𝑡)

(80)
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and consequently

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ lim sup
𝑡→∞

𝑥 (ℎ (𝑡))𝑥 (𝑡) .
(81)

Taking into account the fact that (35) is satisfied, inequality
(81) leads to

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫𝑡
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1𝐷 (𝛼) ,
(82)

which contradicts (75), when 𝜖 → 0.
This completes the proof of the theorem.

Theorem 9. Let ℎ(𝑡) be defined by (13) and 𝛼 ∈ (0, 1/𝑒]. If for
some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 1 + ln 𝜆0𝜆0 − 𝐷 (𝛼) ,
(83)

where 𝑃𝑗 is defined by (38) and 𝜆0 is the smaller root of the
equation 𝜆 = 𝑒𝛼𝜆, then all solutions of (E) oscillate.
Proof. Let 𝑥 be an eventually positive solution of (E). As in
the proof ofTheorem 8, we can show that (76) holds; namely,

𝑥 (𝜏 (𝑠))
≥ 𝑥 (𝑡) exp(∫𝑡

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (84)

Since 𝜏(𝑠) ≤ ℎ(𝑠), inequality (84) gives
𝑥 (𝜏 (𝑠)) ≥ 𝑥 (ℎ (𝑠))
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢) . (85)

By Lemma 5, for each 𝜖 > 0, there exists a real number 𝑡𝜖 such
that

𝑥 (ℎ (𝑡))𝑥 (𝑡) > 𝜆0 − 𝜖 ∀𝑡 ≥ 𝑡𝜖 ≥ 𝑡1. (86)

Note that, by the nondecreasing nature of the function𝑥(ℎ(𝑡))/𝑥(𝑠) in 𝑠, it holds
1 = 𝑥 (ℎ (𝑡))𝑥 (ℎ (𝑡)) ≤ 𝑥 (ℎ (𝑡))𝑥 (𝑠) ≤ 𝑥 (ℎ (𝑡))𝑥 (𝑡) ,

𝑡𝜖 ≤ ℎ (𝑡) ≤ 𝑠 ≤ 𝑡.
(87)

In particular, for 𝜖 ∈ (0, 𝜆0 − 1), by continuity, we conclude
that there exists a real number 𝑡∗ ∈ (ℎ(𝑡), 𝑡] satisfying

1 < 𝜆0 − 𝜖 = 𝑥 (ℎ (𝑡))𝑥 (𝑡∗) . (88)

Integrating (E) from 𝑡∗ to 𝑡 and using (85), we obtain

𝑥 (𝑡) − 𝑥 (𝑡∗) + 𝑥 (ℎ (𝑡)) ∫𝑡
𝑡∗
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 0,
(89)

or

∫𝑡
𝑡∗
𝑝 (𝑠) exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢)

⋅ exp(∫𝑢
𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 𝑥 (𝑡∗)𝑥 (ℎ (𝑡)) − 𝑥 (𝑡)𝑥 (ℎ (𝑡)) .
(90)

Using (88) andLemma4,we deduce that, for the 𝜖 considered,
there exists a real number 𝑡󸀠𝜖 ≥ 𝑡𝜖 such that

∫𝑡
𝑡∗
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< 1𝜆0 − 𝜖 − 𝐷 (𝛼) + 𝜖
(91)

for 𝑡 ≥ 𝑡󸀠𝜖.
Dividing (E) by𝑥(𝑡), integrating from ℎ(𝑡) to 𝑡∗, and using

(85), we deduce that

∫𝑡∗
ℎ(𝑡)
𝑝 (𝑠)
⋅ 𝑥 (ℎ (𝑠))𝑥 (𝑠) exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ −∫𝑡∗
ℎ(𝑡)

𝑥󸀠 (𝑠)𝑥 (𝑠) 𝑑𝑠.
(92)



Complexity 9

Clearly, by means of (36), 𝑥(ℎ(𝑠))/𝑥(𝑠) > 𝜆0−𝜖, for 𝑠 ≥ ℎ(𝑡) ≥𝑡󸀠𝜖. Hence, for all sufficiently large 𝑡, we conclude that
(𝜆0 − 𝜖)∫𝑡

∗

ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< −∫𝑡∗
ℎ(𝑡)

𝑥󸀠 (𝑠)𝑥 (𝑠) 𝑑𝑠
(93)

or

∫𝑡∗
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< − 1𝜆0 − 𝜖 ∫
𝑡∗

ℎ(𝑡)

𝑥󸀠 (𝑠)𝑥 (𝑠) 𝑑𝑠 = 1𝜆0 − 𝜖 ln
𝑥 (ℎ (𝑡))𝑥 (𝑡∗)

= ln (𝜆0 − 𝜖)𝜆0 − 𝜖 ;

(94)

that is,

∫𝑡∗
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

< ln (𝜆0 − 𝜖)𝜆0 − 𝜖 .
(95)

Using (91) along with (95), we get

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≤ 1 + ln (𝜆0 − 𝜖)𝜆0 − 𝜖 − 𝐷 (𝛼) + 𝜖,
(96)

which contradicts (83), when 𝜖 → 0.
This completes the proof of the theorem.

Theorem 10. Let ℎ(𝑡) be defined by (13). If for some 𝑗 ∈ N
lim inf
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 1𝑒 ,
(97)

where 𝑃𝑗 is defined by (38), then all solutions of (E) oscillate.

Proof. For the sake of contradiction, let 𝑥 be a nonincreasing
eventually positive solution and 𝑡1 > 𝑡0 be such that 𝑥(𝑡) > 0
and 𝑥(𝜏(𝑡)) > 0 for all 𝑡 ≥ 𝑡1. We note that wemay obtain (85)
as in the proof of Theorem 9.

Dividing (E) by 𝑥(𝑡) and integrating from ℎ(𝑡) to 𝑡, we
have

ln(𝑥 (ℎ (𝑡))𝑥 (𝑡) ) = ∫
𝑡

ℎ(𝑡)
𝑝 (𝑠) 𝑥 (𝜏 (𝑠))𝑥 (𝑠) 𝑑𝑠 ∀𝑡 ≥ 𝑡2 ≥ 𝑡1, (98)

from which, in view of 𝜏(𝑠) ≤ ℎ(𝑠) and (85), we get

ln(𝑥 (ℎ (𝑡))𝑥 (𝑡) ) ≥ ∫
𝑡

ℎ(𝑡)
𝑝 (𝑠)

⋅ 𝑥 (ℎ (𝑠))𝑥 (𝑠) exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠.

(99)

Since 𝑥 is nonincreasing and ℎ(𝑠) < 𝑠, inequality (99)
becomes

ln(𝑥 (ℎ (𝑡))𝑥 (𝑡) ) ≥ ∫
𝑡

ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠.

(100)

From (97), it is clear that there exists a constant 𝑐 > 0 such
that

∫𝑡
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

≥ 𝑐 > 1𝑒 .
(101)

Choose 𝑐󸀠 such that 𝑐 > 𝑐󸀠 > 1/𝑒. For every 𝜖 > 0, such that𝑐 − 𝜖 > 𝑐󸀠, we have
∫𝑡
ℎ(t)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 𝑐 − 𝜖 > 𝑐󸀠 > 1𝑒 .
(102)

Combining inequalities (100) and (102), we obtain

ln(𝑥 (ℎ (𝑡))𝑥 (𝑡) ) > 𝑐󸀠, (103)

or
𝑥 (ℎ (𝑡))𝑥 (𝑡) > 𝑒𝑐󸀠 > 𝑒𝑐󸀠 > 1, (104)

which yields

𝑥 (ℎ (𝑡)) > (𝑒𝑐󸀠) 𝑥 (𝑡) . (105)
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Following the above steps, we can inductively show that, for
any positive integer 𝑘,

𝑥 (ℎ (𝑡))𝑥 (𝑡) > (𝑒𝑐󸀠)𝑘 for sufficiently large 𝑡. (106)

Since 𝑒𝑐󸀠 > 1, there is a natural number 𝑘 ∈ N, satisfying𝑘 > 2[ln 2 − ln 𝑐󸀠]/(1 + ln 𝑐󸀠) such that for 𝑡 sufficiently large

𝑥 (ℎ (𝑡))𝑥 (𝑡) > (𝑒𝑐󸀠)𝑘 > ( 2𝑐󸀠 )
2 . (107)

Further (cf. [13, 24]), for sufficiently large 𝑡, there exists a real
number 𝑡𝑚 ∈ (ℎ(𝑡), 𝑡), such that

∫𝑡𝑚
ℎ(𝑡)
𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 𝑐󸀠2 ,
∫𝑡
𝑡
𝑚

𝑝 (𝑠) exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

> 𝑐󸀠2 .

(108)

Integrating (E) from ℎ(𝑡) to 𝑡𝑚, using (85) and the fact that𝑥(𝑡) > 0, we obtain
𝑥 (ℎ (𝑡)) > 𝑥 (ℎ (𝑡𝑚)) ∫𝑡𝑚

ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑠)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠,

(109)

which, in view of the first inequality in (108), implies that

𝑥 (ℎ (𝑡)) > 𝑐󸀠2 𝑥 (ℎ (𝑡𝑚)) . (110)

Similarly, integrating (E) from 𝑡𝑚 to 𝑡, using (85) and the fact
that 𝑥(𝑡) > 0, we have
𝑥 (𝑡𝑚) > 𝑥 (ℎ (𝑡)) ∫𝑡

𝑡
𝑚

𝑝 (𝑠)
⋅ exp(∫ℎ(𝑠)

𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉, 𝜖) 𝑑𝜉) 𝑑𝑢)𝑑𝑠,

(111)

which, in view of the second inequality in (108), yields

𝑥 (𝑡𝑚) > 𝑐󸀠2 𝑥 (ℎ (𝑡)) . (112)

Combining inequalities (110) and (112), we deduce that

𝑥 (ℎ (𝑡𝑚)) < 2𝑐󸀠 𝑥 (ℎ (𝑡)) < ( 2𝑐󸀠 )
2 𝑥 (𝑡𝑚) , (113)

which contradicts (107).
The proof of the theorem is complete.

3.2. ADEs. Analogous oscillation conditions to those
obtained for the delay equation (E) can be derived for the
(dual) advanced differential equation (E󸀠) by following
similar arguments with the ones employed for obtaining
Theorems 6−10.
Theorem 11. Let 𝜌(𝑡) be defined by (27) and for some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝜌(𝑡)
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

> 1,

(114)

where

𝑄𝑗 (𝑡) = 𝑞 (𝑡) [1 + ∫𝜎(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝑡
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗−1 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠]

(115)

with 𝑄0(𝑡) = 𝜆0𝑞(𝑡), and let 𝜆0 be the smaller root of the
equation 𝜆 = 𝑒𝛽𝜆. Then all solutions of (E󸀠) oscillate.
Theorem 12. Let 𝜌(𝑡) be defined by (27) and 𝛽 ∈ (0, 1/𝑒]. If
for some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝜌(𝑡)
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

> 1 − 𝐷 (𝛽) ,

(116)

where 𝑄𝑗 is defined by (115), then all solutions of (E󸀠) oscillate.
Theorem 13. Let 𝜌(𝑡) be defined by (27) and 𝛽 ∈ (0, 1/𝑒]. If
for some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝑡
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

> 1𝐷 (𝛽) ,
(117)

where 𝑄𝑗 is defined by (115), then all solutions of (E󸀠) oscillate.
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Theorem 14. Let 𝜌(𝑡) be defined by (27) and 𝛽 ∈ (0, 1/𝑒]. If
for some 𝑗 ∈ N

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝜌(𝑠)
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

> 1 + ln 𝜆0𝜆0 − 𝐷 (𝛽) ,
(118)

where 𝑄𝑗 is defined by (115) and 𝜆0 is the smaller root of the
equation 𝜆 = 𝑒𝛽𝜆, then all solutions of (E󸀠) oscillate.
Theorem 15. Let 𝜌(𝑡) be defined by (27). If for some 𝑗 ∈ N

lim inf
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝜌(𝑠)
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

> 1𝑒 ,
(119)

where 𝑄𝑗 is defined by (115), then all solutions of (E󸀠) oscillate.
3.3. Differential Inequalities. A slight modification in the
proofs of Theorems 6−15 leads to the following results about
differential inequalities.

Theorem 16. Assume that all the conditions of
Theorem 6 [11], 7 [12], 8 [13], 9 [14], or 10 [15] hold. Then(𝑖) the delay [advanced] differential inequality

𝑥󸀠 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ≤ 0
[𝑥󸀠 (𝑡) − 𝑞 (𝑡) 𝑥 (𝜎 (𝑡)) ≥ 0] ,

𝑡 ≥ 𝑡0
(120)

has no eventually positive solutions;(𝑖𝑖) the delay [advanced] differential inequality
𝑥󸀠 (𝑡) + 𝑝 (𝑡) 𝑥 (𝜏 (𝑡)) ≥ 0
[𝑥󸀠 (𝑡) − 𝑞 (𝑡) 𝑥 (𝜎 (𝑡)) ≤ 0] ,

𝑡 ≥ 𝑡0
(121)

has no eventually negative solutions.

Remark 17. The oscillation criteria established in this paper
all depend on 𝜆0 (see, e.g., (37) and (71)) in contrast to the
conditions obtained in [15, 16] and in [17, for m = 1]. In fact,
the left-hand side of conditions (37) and (71) depends on 𝜆0,
which is not the casewith the left-hand side of conditions (20)
and (21). Since 𝜆0 > 1 when 𝛼 ∈ (0, 1/𝑒], it is obvious that

𝑃0 (𝑡) = 𝜆0𝑝 (𝑡) > 𝑝 (𝑡) = 𝑝0 (𝑡) . (122)

Consequently, the left-hand side of conditions (37) and
(71) is greater than the corresponding parts of (20) and
(21), respectively. This is the reason why the conditions in
this paper improve on all known conditions mentioned in
Section 2.

4. Examples and Comments

The oscillation tests we have proposed and established, in the
main results, involve an iterative procedure. We iteratively
compute limsup and liminf on the terms 𝑃𝑗(𝑡) and𝑄𝑗(𝑡), 𝑗 ∈
N of a recurrent relation defined on the coefficients and the
deviating argument of an equation of the form (E) or (E󸀠)
to determine whether that equation is oscillatory. But this
computation cannot be performed on paper, but by means
of a program, numerically computing limsup and liminf.
The examples below illustrate the significance of our results
and indicate the high level of improvement in the oscillation
criteria. The calculations were performed using MATLAB
code.

Example 1. Consider the delay differential equation

𝑥󸀠 (𝑡) + 325𝑥 (𝜏 (𝑡)) = 0, 𝑡 ≥ 0, (123)

with (see Figure 1(a))

𝜏 (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑡 − 1, if 𝑡 ∈ [8𝑘, 8𝑘 + 2]
−4𝑡 + 40𝑘 + 9, if 𝑡 ∈ [8𝑘 + 2, 8𝑘 + 3]
5𝑡 − 32𝑘 − 18, if 𝑡 ∈ [8𝑘 + 3, 8𝑘 + 4]
−4𝑡 + 40𝑘 + 18, if 𝑡 ∈ [8𝑘 + 4, 8𝑘 + 5]
5𝑡 − 32𝑘 − 27, if 𝑡 ∈ [8𝑘 + 5, 8𝑘 + 6]
−2𝑡 + 24𝑘 + 15, if 𝑡 ∈ [8𝑘 + 6, 8𝑘 + 7]
6𝑡 − 40𝑘 − 41, if 𝑡 ∈ [8𝑘 + 7, 8𝑘 + 8] ,

(124)

where 𝑘 ∈ N0 and N0 is the set of nonnegative integers.
By (13), we see (Figure 1(b)) that

ℎ (𝑡) =

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

𝑡 − 1, if 𝑡 ∈ [8𝑘, 8𝑘 + 2]
8𝑘 + 1, if 𝑡 ∈ [8𝑘 + 2, 8𝑘 + 195 ]5𝑡 − 32𝑘 − 18, if 𝑡 ∈ [8𝑘 + 195 , 8𝑘 + 4]8𝑘 + 2, if 𝑡 ∈ [8𝑘 + 4, 8𝑘 + 295 ]5𝑡 − 32𝑘 − 27, if 𝑡 ∈ [8𝑘 + 295 , 8𝑘 + 6]8𝑘 + 3, if 𝑡 ∈ [8𝑘 + 6, 8𝑘 + 446 ]6𝑡 − 40𝑘 − 41, if 𝑡 ∈ [8𝑘 + 446 , 8𝑘 + 8] .

(125)

It is obvious that

𝛼 = lim inf
𝑡→∞

∫𝑡
𝜏(𝑡)
𝑝 (𝑠) 𝑑𝑠 = lim inf

𝑡→∞
∫8𝑘+2
8𝑘+1

325𝑑𝑠
= 0.12

(126)
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Figure 1: The graphs of 𝜏(𝑡) and ℎ(𝑡).

and therefore, the smaller root of 𝑒0.12𝜆 = 𝜆 is 𝜆0 = 1.14765.
Observe that the function 𝐹𝑗 : R0 → R+ defined as

𝐹𝑗 (𝑡) = ∫𝑡
ℎ(𝑡)
𝑝 (𝑠)

⋅ exp(∫ℎ(𝑡)
𝜏(𝑠)
𝑝 (𝑢) exp(∫𝑢

𝜏(𝑢)
𝑃𝑗 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

(127)

attains its maximum at 𝑡 = 8𝑘+44/6, 𝑘 ∈ N0, for every 𝑗 ∈ N.
Specifically,

𝐹1 (𝑡 = 8𝑘 + 446 ) = ∫
8𝑘+44/6

8𝑘+3
𝑝 (𝑠)

⋅ exp(∫8𝑘+3
𝜏(𝑠)

𝑝 (𝑢) exp(∫𝑢
𝜏(𝑢)
𝑃1 (𝜉) 𝑑𝜉) 𝑑𝑢)𝑑𝑠

(128)

with

𝑃1 (𝜉) = 𝑝 (𝜉) [1 + ∫𝜉
𝜏(𝜉)
𝑝 (V)

⋅ exp(∫𝜉
𝜏(V)
𝑝 (𝑤) exp(∫𝑤

𝜏(𝑤)
𝜆0𝑝 (𝑧) 𝑑𝑧) 𝑑𝑤)𝑑V] .

(129)

Using MATLAB, we obtain

𝐹1 (𝑡 = 8𝑘 + 446 ) ≃ 1.0417 (130)

and therefore

lim sup
𝑡→∞

𝐹1 (𝑡) ≃ 1.0417 > 1. (131)

Hence, condition (37) of Theorem 6 is satisfied, for 𝑗 = 1.
Consequently, all solutions of (123) are oscillatory.

Observe, however, that

LD = lim sup
𝑘→∞

∫8𝑘+44/6
8𝑘+3

335𝑑𝑠 = 0.52 < 1,
𝛼 = 0.12 < 1𝑒 ,

0.52 < 1 + ln 𝜆0𝜆0 − 𝐷 (𝛼) ≃ 0.9831.
(132)

Note that the functionΦ𝑗 defined by

Φ𝑗 (𝑡) = ∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

ℎ(𝑠)
𝑝 (𝑢) 𝜓𝑗 (𝑢) 𝑑𝑢)𝑑𝑠,

𝑗 ≥ 2,
(133)

attains its maximum at 𝑡 = 8𝑘 + 44/6, 𝑘 ∈ N0, for every 𝑗 ≥ 2.
Specifically,

Φ2 (8𝑘 + 446 )
= ∫8𝑘+44/6
8𝑘+3

𝑝 (𝑠) exp(∫8𝑘+3
ℎ(𝑠)

𝑝 (𝑠) 𝜓2 (𝑢) 𝑑𝑢)𝑑𝑠
= ∫8𝑘+44/6
8𝑘+3

325 exp(∫
8𝑘+3

ℎ(𝑠)

325 exp(∫
𝑢

𝜏(𝑢)

325 ⋅ 0 𝑑𝑤)𝑑𝑢)𝑑𝑠
= ∫8𝑘+44/6
8𝑘+3

325 exp(∫
8𝑘+3

ℎ(𝑠)

325 ⋅ 1 𝑑𝑢)𝑑𝑠
= 325 ⋅ [∫

8𝑘+19/5

8𝑘+3
exp( 325 ∫

8𝑘+3

8𝑘+1
𝑑𝑢)𝑑𝑠
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+ ∫8𝑘+4
8𝑘+19/5

exp( 325 ∫
8𝑘+3

5𝑠−32𝑘−18
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+29/5
8𝑘+4

exp( 325 ∫
8𝑘+3

8𝑘+2
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+6
8𝑘+29/5

exp( 325 ∫
8𝑘+3

5𝑠−32𝑘−27
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+44/6
8𝑘+6

exp( 325 ∫
8𝑘+3

8𝑘+3
𝑑𝑢)𝑑𝑠] ≃ 0.57983.

(134)

Thus

lim sup
𝑡→∞

Φ2 (𝑡) ≃ 0.57983 < 1 − 𝐷 (𝛼) ≃ 0.99174. (135)

Also

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝 (𝑢) 𝑑𝑢)𝑑𝑠

= lim sup
𝑘→∞

∫8𝑘+44/6
8𝑘+3

325 exp(∫
8𝑘+3

𝜏(𝑠)

325𝑑𝑢)𝑑𝑠
= 325 ⋅ lim sup

𝑡→∞
[∫8𝑘+4
8𝑘+3

exp( 325 ∫
8𝑘+3

5𝑠−32𝑘−18
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+5
8𝑘+4

exp( 325 ∫
8𝑘+3

−4𝑠+40𝑘+18
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+6
8𝑘+5

exp( 325 ∫
8𝑘+3

5𝑠−32𝑘−27
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+7
8𝑘+6

exp( 325 ∫
8𝑘+3

−2𝑠+24𝑘+15
𝑑𝑢)𝑑𝑠

+ ∫8𝑘+44/6
8𝑘+7

exp( 325 ∫
8𝑘+3

6𝑠−40𝑘−41
𝑑𝑢)𝑑𝑠] ≃ 0.7043

< 1,
0.7043 < 1 − 𝐷 (𝛼) ≃ 0.99174.

(136)

In addition,

lim sup
𝑡→∞

∫𝑡
ℎ(𝑡)
𝑝 (𝑠) exp(∫ℎ(𝑡)

𝜏(𝑠)
𝑝1 (𝑢) 𝑑𝑢)𝑑𝑠 ≃ 0.8052

< 1,
0.8052 < 1 − 𝐷 (𝛼) ≃ 0.99174.

(137)

That is, none of conditions (8), (9), (12), (14) (for 𝑗 = 2), (16),
(17), (20) (for 𝑗 = 1), and (21) (for 𝑗 = 1) is satisfied.
Comment. The improvement of condition (37) over the
corresponding condition (8) is significant, approximately
100.33%. We get this measure by comparing the values, in
the left-hand side of those conditions. Also, the improvement
over conditions (14), (16), and (20) is very satisfactory,

around 79.66%, 47.9%, and 29.37%, respectively. In addition,
condition (37) is satisfied from the first iteration, while
conditions (14), (20), and (21) need more than one iteration.

Example 2 (taken and adapted from [17]). Consider the
advanced differential equation

𝑥󸀠 (𝑡) − 3332500𝑥 (𝜎 (𝑡)) = 0, 𝑡 ≥ 0, (138)

with (see Figure 2(a))

𝜎 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

5𝑘 + 3, if 𝑡 ∈ [5𝑘, 5𝑘 + 1]
4𝑡 − 15𝑘 − 1, if 𝑡 ∈ [5𝑘 + 1, 5𝑘 + 2]
−3𝑡 + 20𝑘 + 13, if 𝑡 ∈ [5𝑘 + 2, 5𝑘 + 3]
5𝑡 − 20𝑘 − 11, if 𝑡 ∈ [5𝑘 + 3, 5𝑘 + 4]
−𝑡 + 10𝑘 + 13, if 𝑡 ∈ [5𝑘 + 4, 5𝑘 + 5] ,

(139)

where 𝑘 ∈ N0 and N0 is the set of nonnegative integers.
By (27), we see (Figure 2(b)) that

𝜌 (𝑡) =
{{{{{{{{{{{{{{{{{{{{{

5𝑘 + 3, if 𝑡 ∈ [5𝑘, 5𝑘 + 1]
4𝑡 − 15𝑘 − 1, if 𝑡 ∈ [5𝑘 + 1, 5𝑘 + 1.25]
5𝑘 + 4, if 𝑡 ∈ [5𝑘 + 1.25, 5𝑘 + 3]
5𝑡 − 20𝑘 − 11, if 𝑡 ∈ [5𝑘 + 3, 5𝑘 + 3.8]
5𝑘 + 8, if 𝑡 ∈ [5𝑘 + 3.8, 5𝑘 + 5] .

(140)

It is obvious that

𝛽 = lim inf
𝑡→∞

∫5𝑘+4
5𝑘+3

3332500𝑑𝑠 = 0.1332 (141)

and therefore, the smaller root of 𝑒0.1332𝜆 = 𝜆 is 𝜆0 = 1.16839.
Observe, that the function 𝐺𝑗 : R0 → R+ defined as

𝐺𝑗 (𝑡) = ∫𝜌(𝑡)
𝑡
𝑞 (𝑠)

⋅ exp(∫𝜎(𝑠)
𝜌(𝑡)
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄𝑗 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

(142)

attains its maximum at 𝑡 = 5𝑘 + 3.8, 𝑘 ∈ N0, for every 𝑗 ∈ N.
Specifically,

𝐺1 (𝑡 = 5𝑘 + 3.8) = ∫5𝑘+8
5𝑘+3.8

𝑞 (𝑠)
⋅ exp(∫𝜎(𝑠)

5𝑘+8
𝑞 (𝑢) exp(∫𝜎(𝑢)

𝑢
𝑄1 (𝜉) 𝑑𝜉)𝑑𝑢)𝑑𝑠

(143)

with

𝑄1 (𝜉) = 𝑞 (𝜉) [1 + ∫𝜎(𝜉)
𝜉
𝑞 (V)

⋅ exp(∫𝜎(V)
𝜉
𝑞 (𝑤) exp(∫𝜎(𝑤)

𝑤
𝜆0𝑞 (𝑧) 𝑑𝑧)𝑑𝑤)𝑑V] .

(144)
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Figure 2: The graphs of 𝜎(𝑡) and 𝜌(𝑡).

Using MATLAB, we obtain

𝐺1 (𝑡 = 5𝑘 + 3.8) ≃ 0.9915. (145)

Therefore
lim sup
𝑡→∞

𝐺1 (𝑡) ≃ 0.9915 > 1 − 𝐷 (𝛽) ≃ 0.9896. (146)

Hence, condition (116) of Theorem 12 is satisfied, for 𝑗 = 1.
Consequently, all solutions of (138) oscillate.

Observe, however, that

LA = lim sup
𝑘→∞

∫5𝑘+8
5𝑘+3.8

3332500𝑑𝑠 = 0.55944 < 1,
𝛽 = 0.1332 < 1𝑒 ,
lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠

= lim sup
𝑘→∞

∫5𝑘+8
5𝑘+3.8

𝑞 (𝑠) exp(∫𝜎(𝑠)
5𝑘+8

𝑞 (𝑢) 𝑑𝑢)𝑑𝑠
= lim sup
𝑘→∞

[∫5𝑘+4
5𝑘+3.8

𝑞 (𝑠)
⋅ exp(∫5𝑠−20𝑘−11

5𝑘+8
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 + ∫5𝑘+5

5𝑘+4
𝑞 (𝑠)

⋅ exp(∫−𝑠+10𝑘+13
5𝑘+8

𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 + ∫5𝑘+6
5𝑘+5

𝑞 (𝑠)
⋅ exp(∫5𝑘+8

5𝑘+8
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 + ∫5𝑘+7

5𝑘+6
𝑞 (𝑠)

⋅ exp(∫4𝑠−15𝑘−16
5𝑘+8

𝑞 (𝑢) 𝑑𝑢)𝑑𝑠 + ∫5𝑘+8
5𝑘+7

𝑞 (𝑠)
⋅ exp(∫−3𝑠+20𝑘+33

5𝑘+8
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠] ≃ 0.6672 < 1,

lim inf
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞 (𝑢) 𝑑𝑢)𝑑𝑠

= lim inf
𝑡→∞

∫5𝑘+4
5𝑘+3

𝑞 (𝑠) exp(∫𝜎(𝑠)
5𝑘+4

𝑞 (𝑢) 𝑑𝑢)𝑑𝑠
≃ 0.1893 < 1𝑒 ,

lim sup
𝑡→∞

∫𝜌(𝑡)
𝑡
𝑞 (𝑠) exp(∫𝜎(𝑠)

𝜌(𝑡)
𝑞1 (𝑢) 𝑑𝑢)𝑑𝑠 ≃ 0.7196

< 1,
0.7196 < 1 − 𝐷 (𝛽) ≃ 0.9896.

(147)

That is, none of conditions (24), (25), (28), (29), (30) (for 𝑗 =1), and (31) (for 𝑗 = 1) is satisfied.
Comment. The improvement of condition (116) over the
corresponding condition (24) is significant, approximately
77.23%. We get this measure by comparing the values, in the
left-hand side of those conditions. Also, the improvement
over conditions (28) and (30) is very satisfactory, around
48.61% and 37.78%, respectively. In addition, condition (116)
is satisfied from the first iteration, while conditions (30) and
(31) need more than one iteration.
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Remark 3. Similarly, one can provide examples, illustrating
the other main results.

5. Concluding Remarks

In the present paper, we have considered the oscillatory
dynamics of differential equations, having nonmonotone
deviating arguments and nonnegative coefficients. New suf-
ficient conditions have been established, for the oscillation of
all solutions of (E) and (E󸀠). These conditions include (37),
(71), (75), (83), and (97) and (114), (116), (117), (118), and
(119), for (E) and (E󸀠), respectively. Applying these conditions
involves a procedure that checks for oscillations by iteratively
computing limsup and liminf, on terms recursively defined
on the equation’s coefficients and deviating argument.

The main advantage of these conditions is that they
achieve a major improvement over all the related oscillation
conditions for (E) [(E󸀠)], in the literature. For example, con-
dition (37) [(114)] improves upon the noniterative conditions
that are reviewed in the introduction, namely, conditions (8)
[(24)], (12), (16)≡(20) (for 𝑗 = 1) [(28)≡(30) (for 𝑗 = 1)],
and (17)≡(21) (for 𝑗 = 1) [(31) (for 𝑗 = 1)]. That immediately
becomes evident by inspecting the left-hand side of (37)
[(114)] and the left-hand side of each of the above conditions.

The improvement of (37) [(114)] over the other iterative
conditions, namely, (14) (for j > 2), (20) (for 𝑗 > 1) [(30)
(for 𝑗 > 1)], and (21) (for 𝑗 > 1) [(31) (for 𝑗 > 1)], is that it
requires far fewer iterations to establish oscillation than the
other conditions.

This advantage, easily, can be verified computationally,
by running the MATLAB programs (see Appendix), for
computing limsup and liminf and comparing the number of
iterations required by each condition to establish oscillation.
Then we see that we achieve a significant improvement over
all known oscillation criteria.

Another advantage and a significant departure from the
large majority of the other studies is that the criteria in this
paper apply to a more general class of equations, having
nonmonotone arguments 𝜏(𝑡) or 𝜎(𝑡), in contrast to most
of the other oscillation criteria that apply to equations with
nondecreasing arguments.

Appendix

In this appendix, for completeness, we give the algorithm
on MATLAB software used in Example 1 for calculation of
lim sup𝑡→∞𝐹1(𝑡) ≃ 1.0417. For Example 2, the algorithm is
omitted since it is similar to the one in Example 1.

Algorithm for Example 1

clear; clc;
c = .12;𝑛 = 50;𝜆0 = 1.14765;
a5 = 19;
b5 = 70/3;
h5 = (b5 − a5)/𝑛;

for i5 = 1 : 1 : 𝑛 + 1;
x5 = a5 + (i5 − 1) ∗ h5;
a4 = TFunction(x5);
b4 = 19;
h4 = (b4 − a4)/𝑛;
for i4 = 1 : 1 : 𝑛 + 1;
x4 = a4 + (i4 − 1) ∗ h4;
a3 = TFunction(x4);
b3 = x4;
h3 = (b3 − a3)/𝑛;
for i3 = 1 : 1 : 𝑛 + 1;
x3 = a3 + (i3 − 1) ∗ h3;
a2 = TFunction(x3);
b2 = x3;
h2 = (b2 − a2)/𝑛;
for i2 = 1 : 1 : 𝑛 + 1;
x2 = a2 + (i2 − 1) ∗ h2;
a1 = TFunction(x2);
b1 = x3;
h1 = (b1 − a1)/𝑛;
for i1 = 1 : 1 : 𝑛 + 1;
x1 = a1 + (i1 − 1) ∗ h1;
f1(i1) = c ∗ exp(𝜆0 ∗ c ∗ (x1 − TFunction(x1)));
end
I1 = f1(1) + f1(𝑛 + 1);
for i1 = 2 : 2 : 𝑛;
I1 = I1 + f1(i1) ∗ 4;
end
for i1 = 3 : 2 : 𝑛 − 1;
I1 = I1 + f1(i1) ∗ 2;
end
I1 = I1 ∗ h1/3;
f2(i2) = c ∗ exp(I1);
end
I2 = f2(1) + f2(𝑛 + 1);
for i2 = 2 : 2 : 𝑛;
I2 = I2 + f2(i2) ∗ 4;
end
for i2 = 3 : 2 : 𝑛 − 1;
I2 = I2 + f2(i2) ∗ 2;
end
I2 = I2 ∗ h2/3;
f3(i3) = c ∗ (1 + I2);
end
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I3 = f3(1) + f3(𝑛 + 1);
for i3 = 2 : 2 : 𝑛;
I3 = I3 + f3(i3) ∗ 4;
end
for i3 = 3 : 2 : 𝑛 − 1;
I3 = I3 + f3(i3) ∗ 2;
end
I3 = I3 ∗ h3/3;
f4(i4) = c ∗ exp(I3);
end
I4 = f4(1) + f4(𝑛 + 1);
for i4 = 2 : 2 : 𝑛;
I4 = I4 + f4(i4) ∗ 4;
end
for i4 = 3 : 2 : 𝑛 − 1;
I4 = I4 + f4(i4) ∗ 2;
end
I4 = I4 ∗ h4/3;
f5(i5) = c ∗ exp(I4);
end
I5 = f5(1) + f5(𝑛 + 1);
for i5 = 2 : 2 : 𝑛;
I5 = I5 + f5(i5) ∗ 4;

end
for i5 = 3 : 2 : 𝑛 − 1;
I5 = I5 + f5(i5) ∗ 2;
end
I5 = I5 ∗ h5/3

Algorithms for functions 𝜏(𝑡) and ℎ(𝑡)
function[a] = TFunction(x)𝑟 = mod(𝑥, 8);
k = floor(𝑥/8);
if (𝑟 >= 0) && (𝑟 < 2)
a = x − 1;
end
if (𝑟 >= 2) && (𝑟 < 3)
a = −4 ∗ x + 40 ∗ k + 9;
end
if (𝑟 >= 3) && (𝑟 < 4)
a = 5 ∗ x − 32 ∗ k − 18;
end
if (𝑟 >= 4) && (𝑟 < 5)
a = −4 ∗ x + 40 ∗ k + 18;
end

if (𝑟 >= 5) && (𝑟 < 6)
a = 5 ∗ x − 32 ∗ k − 27;
end

if (𝑟 >= 6) && (𝑟 < 7)
a = −2 ∗ x + 24 ∗ k + 15;
end

if (𝑟 >= 7) && (𝑟 < 8)
a = 6 ∗ x − 40 ∗ k − 41;
end

end

function[a] = HFunction(x)
𝑟 = mod(𝑥, 8);
k = floor(𝑥/8);
if (𝑟 >= 0) && (𝑟 < 2)
a = x − 1;
end

if (𝑟 >= 2) && (𝑟 < 19/5)
a = 8 ∗ k + 1;
end

if (𝑟 >= 19/5) && (𝑟 < 4)
a = 5 ∗ x − 32 ∗ k − 18;
end

if (𝑟 >= 4) && (𝑟 < 29/5)
a = 8 ∗ k + 2;
end

if (𝑟 >= 29/5) && (𝑟 < 6)
a = 5 ∗ x − 32 ∗ k − 27;
end

if (𝑟 >= 6) && (𝑟 < 44/6)
a = 8 ∗ k + 3;
end

if (𝑟 >= 44/6) && (𝑟 < 8)
a = 6 ∗ x − 40 ∗ k − 41;
end

end
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