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Abstract
We consider a normal-form game in which there is a single exogenously given coali-
tion of cooperating players that can write a binding agreement on pre-selected actions.
The actions representing other dimensions of the strategy space remain under the
sovereign, individual control of the players. We consider a standard extension of the
Nash equilibrium concept denoted as a partial cooperative equilibrium as well as
an equilibrium concept in which the coalition of cooperators has a leadership posi-
tion. Existence results are stated and we identify conditions under which the various
equilibrium concepts are equivalent. We apply this framework to existing models
of multi-market oligopolies and international pollution abatement. In a multi-market
oligopoly, typically, a merger paradox emerges in the partial cooperative equilibrium.
The paradox vanishes if the cartel attains a leadership position. For international pol-
lution abatement treaties, cooperation by a sufficiently large group of countries results
in a Pareto improvement over the standard tragedy of the commons outcome described
by the Nash equilibrium.
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1 Introduction

We consider a game theoretic framework for understanding collaborative decision sit-
uations embedded in competitive environments. Often, these kinds of agreements on a
specific economic issue involve a single group of decisionmakers who cooperate. This
coalition writes a binding agreement concerning certain exogenously given jointly
decided actions, while the non-collaborative decision makers remain uninvolved.
Moreover, while decision makers subject to this binding agreement may cooperate
on certain issues, these same players may act non-cooperatively when interacting with
all other players along other dimensions. Examples where these tools are applicable
range from areas as diverse as environmental agreements (Barrett 1990; Carraro and
Siniscalco 1993), R&D collaborations (Yi and Shin 2000; Banal-Español et al. 2013),
and financial alliances between banks (White 1996; Popov andOngena 2011; In’t Veld
and van Lelyveld 2014).

A rigorous analysis of these games with partial cooperation calls for the develop-
ment of specifically tailored equilibrium concepts. Our notion of partial cooperative
equilibrium extends standard Nash best response rationality to our framework and is
similar to the coalition equilibrium concept of Ichiishi (1981). Here, the cooperating
players write a binding agreement with regard to a specific set of actions, and, simulta-
neously, act non-cooperatively with regard to their individualistic or “private” strategy.
The non-cooperators act independently from the cooperators and select a standard best
response strategy to all other players’ actions. By supplementing the strategy space
of the cooperators with a private strategy, this definition generalises the concept of a
partial cooperative game in Chakrabarti et al. (2011). Our partial cooperative equi-
librium existence result extends the existence theorems seminally stated in Mallozzi
and Tijs (2008a, 2009, 2012) for more restricted environments. Our result is based on
techniques seminally developed by Glicksberg (1952).

Next, we consider a leadership equilibrium concept, which postulates that the
cooperating coalition has a (Stackelberg) leadership position. Hence, after a bind-
ing agreement has been signed by the cooperative players, all players—cooperators as
well as non-cooperators—make independent decisions with regard to all other actions.

The underlying sequential decision process in a normal-form game was seminally
discussed and developed in Section 3.5 of Ray (2007). This structure was first imple-
mented to partial cooperative games by Mallozzi and Tijs (2008a) and subsequently
extended in Mallozzi and Tijs (2008b, 2012) and Chakrabarti et al. (2011). Our lead-
ership equilibrium notion builds on this work. Mallozzi and Tijs (2008a) proposed
this concept for the class of symmetric potential games. In a subsequent study, Mal-
lozzi and Tijs (2009) consider symmetric aggregative games. The situation when the
cooperating agents are faced with multiple Nash equilibria when interacting with the
non-cooperative agents is discussed in Mallozzi and Tijs (2008b). Chakrabarti et al.
(2011) extended this further to arbitrary non-cooperative games.

We design an extension to the leadership equilibrium notion along several dimen-
sions. First, we extend the strategy space for the cooperators, such that actions not
subject to coalitional decision-making are decided simultaneously by all players—
cooperators aswell as non-cooperators. Second,we consider a generalised aggregation
of the payoffs of the cooperators to evaluate coalitional decisions. A commonly applied
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aggregator is the utilitarian aggregator. The utilitarian aggregator is imposed, for
example, in the theory of (standard) partial cooperative games as seminally devel-
oped in Mallozzi and Tijs (2009). Alternative aggregators that can be handled by our
generalised framework are the Rawlsian aggregator (Rawls 1999) and the Nashian
aggregator (Nash 1950). Third, following Chakrabarti et al. (2011), we assume that in
the case of multiple Nash equilibria, the cooperators act optimistically and employ a
max–max strategy with regard to their payoffs. Finally, we study the existence prop-
erties of our notions in a much larger class of normal-form games.

We investigate two applications of our general framework. In the first application,
we borrow the model of cartel formation in a multi-market Cournot oligopoly from
Billand et al. (2014). Firms compete in two separatemarkets. Cooperators colludewith
regard to quantity choice in one market and not in the other. In the partial cooperative
equilibrium, cooperators are worse off than in the standard competitive Cournot–Nash
equilibrium due to themerger paradox (Salant et al. 1983) if themarket onwhich coop-
eration occurs is sufficiently large relative to the competitive market. If the market on
which firms cooperate is sufficiently small, however, it may be the case that partial
cooperation leads to strictly higher payoffs to all firms compared to the standard com-
petitive equilibrium. On the other hand, in the leadership equilibrium, cartel members
as well as regular competitors are better-off relative to the Nash equilibrium, achieving
a strict Pareto improvement, thereby restoring a clear incentive to establish a cartel in
such a multi-market oligopoly.

In the second application, we consider the effects of international pollution abate-
ment treaties. Such treaties are best described as partial cooperative agreements: A
single coalition of treaty countries writes a binding agreement on certain aspects of
the spectrum of economic controls at the disposal of a country’s government. The
1997 Kyoto treaty, for example, only regulated emissions of carbon dioxide (“carbon
production”) rather than the carbon consumption, which normally results from many
other economic variables (Helm 2012; Newell et al. 2013).

Our partial cooperative approach supplements Chander and Tulkens (1997)’smodel
of emissions control with an additional labour input besides the usual polluting factor.
Cooperators choose the amount of labour freely, but form a cooperative agreement
with regard to the amount of pollutants. In this context, there is no difference between
the partial cooperative equilibrium and the leadership one, but both differ from the
Nash outcome. Here, only cooperators reduce the amount of pollutants and the level of
reduction is greater, the larger is the number of cooperators. All non-treaty countries
act as free riders in these equilibrium situations.

2 Generalised partial cooperative games

We consider normal-form games in which an ex-ante postulated group of players
collaborates and writes binding agreements on a given subset of actions. All players
outside this coalition of cooperators are assumed to follow their individual objectives.

Throughout, let C = {1, . . . , k} be a given and pre-determined coalition of coop-
erators, where k � 2. Furthermore, let N = {1, . . . , n} with n � 1 be the set of
non-cooperative players. Thus, the population of all players is given by C ∪ N , con-

123



458 S. Chakrabarti et al.

sisting of k cooperating players and n individualistic players. We indicate a generic
member of the coalition of cooperators by i ∈ C , while a generic non-cooperative
player is denoted by j ∈ N . We consider three separate types of actions:

• Each individual i ∈ C controls the selection of a private action xi ∈ Xi , where
Xi �= ∅ denotes i’s private action set. We let X = ∏

i∈C Xi be the private action
tuple set of the coalition of cooperators C .

• The coalition of cooperators C selects cooperatively a collective action y ∈ Y �=
∅.1

• Finally, each non-cooperator j ∈ N selects an individual action z j ∈ Z j �= ∅.
We denote Z = ∏

j∈N Z j the non-empty action tuple set of the group of non-
cooperators N .

Given the three types of actions, we now denote by

a = (x, y, z) ∈ A ≡ X × Y × Z (1)

a general action tuple, where A is the space of all feasible action tuples.
In addition, following accepted conventions, for every cooperator i ∈ C and private

action tuple x ∈ X , we denote by x−i = (x1, . . . , xi−1, xi+1, . . . , xk) the actions
assigned to all other cooperators in C . Similarly, for every non-cooperator j ∈ N
and action tuple z ∈ Z , we denote by z− j = (z1, . . . , z j−1, z j+1, . . . , zn) the actions
assigned to all other non-cooperators in N .

Moreover, each cooperating player i ∈ C is endowed with a payoff function
ui : A → R and non-cooperator j ∈ N is similarly endowed with a payoff func-
tion v j : A → R. We denote by u = (u1, . . . , uk) the list of payoff functions over
all cooperators, and by v = (v1, . . . , vn) the list of payoff functions for all non-
cooperators.

The collective decisions of the coalition of cooperators C are guided by some
aggregation of the payoffs of its members (Negishi 1963). Formally, we introduce
an aggregator as a function � : R

k → R, such that the coalition of cooperators C
evaluates each action tuple a = (x, y, z) ∈ A = X × Y × Z through the aggregated
payoff function U : A → R defined by the following:

U (a) = U (x, y, z) = �(u1(x, y, z), . . . , uk(x, y, z) ) . (2)

We say that the aggregator� is Paretian if it is non-decreasing inui , i ∈ C . Throughout,
we refer to two common Paretian aggregators. The Rawlsian aggregator is given by
�r (u1, . . . , uk) = min{u1, . . . , uk}, while the utilitarian aggregator is defined as
�u(u1, . . . , uk) = ∑k

i=1 ui .
Clearly, the collective payoff function U is founded on the aggregator � and the

payoff functions u1, . . . , uk of its members.

1 This generalises Mallozzi and Tijs (2008a) and Chakrabarti et al. (2011), in which the set of collective
actions, Y , is modelled as a k-dimensional vector space with Y = ∏

i∈C Yi . In this case, yi ∈ Yi denotes the
individual player’s i ∈ C strategic (sub-)action as part of the collective action y ∈ Y . In many applications,
it is additionally assumed that, for every cooperator i ∈ C , the action set Yi is, in fact, some subset of a
Euclidean space.
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Definition 2.1 A generalised partial cooperative game is a list � = 〈C, N , X ,Y , Z ,

u, v,�〉.
Note, here as well, that the case where Y is a singleton set reverts any generalised
partial cooperative game to a standard (k + n)-player normal-form game.

2.1 Partial cooperative equilibrium

This equilibrium notion extends Nash’s best response rationality to all decisions,
namely the individual and private actions of the players as well as the collective action
of the coalition of cooperators. The latter evaluates the outcomes of their selection
through the aggregated payoff function U based on the aggregator �.

Definition 2.2 An action tuple a∗ = (x∗, y∗, z∗) ∈ A is called a partial cooperative
equilibrium in � = 〈C, N , X ,Y , Z , u, v,�〉 if it satisfies the following conditions:

(i) For every cooperating player i ∈ C , it holds that

ui (x
∗, y∗, z∗) � ui (xi , x

∗−i , y
∗, z∗) (3)

for every private action xi ∈ Xi .
(ii) For the coalition of cooperators C , it holds that

U (x∗, y∗, z∗) � U (x∗, y, z∗) (4)

for every collective action y ∈ Y , where U is given by (2).
(iii) In addition, for every non-cooperator j ∈ N , it holds that

v j (x
∗, y∗, z∗) � v j (x

∗, y∗, z j , z∗− j ) (5)

for every individual action z j ∈ Z j .

Next, we investigate the existence of partial cooperative equilibria in arbitrary gener-
alised partial cooperative games.

Theorem 2.3 Let � = 〈C, N , X ,Y , Z , u, v,�〉 be a generalised partial cooperative
game, such that

(i) All action sets Xi (i ∈ C), Z j ( j ∈ N ) and Y are compact and convex subsets
of Euclidean spaces.

(ii) The payoff function ui is continuous on Xi×Y , quasi-concave on Xi , and concave
on Y for every cooperator i ∈ C, and the payoff function v j is continuous and
quasi-concave on Z j for every non-cooperator j ∈ N,2

(iii) The aggregator � is continuous, Paretian, and quasi-concave on R
k .

Then � admits at least one partial cooperative equilibrium.

For a proof of Theorem 2.3, we refer to the appendix of this paper.

2 Let A be convex. A function f : A → R is concave if for all λ ∈ (0, 1) and a′, a′′ ∈ A : f (λ ·
a′ + (1 − λ) · a′′) � λ · f (a′) + (1 − λ) · f (a′′), and f is quasi-concave if for all λ ∈ (0, 1) and
a′, a′′ ∈ A : f (λ · a′ + (1 − λ) · a′′) � min{ f (a′), f (a′′)}.
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2.2 Leadership equilibrium

Next, we implement a sequential structure on the decision-making process in gener-
alised partial cooperative games.Weconsider an internal two-tier hierarchical structure
inwhich the coalition of cooperatorsC has a leadership position in the decision-making
process. Thus, in the first instance,C writes a binding agreement resulting in the selec-
tion of some collective action y ∈ Y , and, subsequently, all cooperators i ∈ C and all
non-cooperating players j ∈ N respond to that selection by selecting private actions
xi ∈ Xi , respectively z j ∈ Z .

The leadership equilibrium concept reflects a standard backward induction logic
in which the coalition of cooperators C acts as a Stackelberg leader. The coalition of
cooperators C is assumed to act from an optimistic point of view in this procedure
and considers only outcomes from the second-stage interaction between all agents that
correspond to the best possible outcome for them collectively.

To define the leadership equilibrium concept properly, we have to introduce some
hypotheses on the fundamentals.

Axiom 2.4 Consider a generalised partial cooperative game � = 〈C, N , X ,Y , Z , u,

v,�〉. We assume that the following properties hold:

(i) For every i ∈ C , it holds that Xi is a compact and convex subset of some
Euclidean space.

(ii) For every j ∈ N , it holds that Z j is a compact and convex subset of some
Euclidean space.

(iii) The set of collective actions Y is a compact subset of some Euclidean space.
(iv) For every cooperator i ∈ C , the payoff function ui : A → R is a continuous

function and the section ui (·, x−i , y, z) : Xi → R is quasi-concave on Xi for
all (x−i , y, z) ∈ X−i × Y × Z ;

(v) For every non-cooperator j ∈ N , the payoff function v j : a → R is a con-
tinuous function and the section v j (x, y, ·, z− j ) is quasi-concave on Z j for all
(x, y, z− j ) ∈ X × Y × Z− j .

(vi) The aggregator � is continuous on R
k .

The assumptions introduced in Axiom 2.4 are weaker than the ones imposed in The-
orem 2.3.

Under Axiom 2.4, we can now formulate some auxiliary notations that are required
for the definition of the leadership equilibrium concept. For any given collective action
y ∈ Y , we denote by �y = 〈C ∪ N , X × Z , wy〉 a standard normal-form game given
by player setC∪N and payoff functionsw

y
i for all players inC∪N that are described

as follows:

• First, for every cooperator i ∈ C , we consider the conditional payoff function
w

y
i : X × Z → R given by

w
y
i (x, z) = ui (x, y, z). (6)
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• Second, for every non-cooperating player j ∈ N , the given action set Z j as well
as a conditional payoff function w

y
j : X × Z → R is defined as follows:

w
y
j (x, z) = v j (x, y, z). (7)

The non-cooperative normal-form game �y = 〈C ∪ N , X × Z , wy〉 is denoted as the
conditional partial cooperative game for the collective action y ∈ Y . The set of Nash
equilibria of the conditional game �y is now denoted by Ey ⊂ X × Z . Under the
given hypotheses, this definition is non-trivial:

Lemma 2.5 Consider a generalised partial cooperative game� = 〈C, N , X ,Y , Z , u,

v,�〉 satisfying Axiom 2.4. Then, for every collective action y ∈ Y , the set of Nash
equilibria Ey of the conditional partial cooperative game �y = 〈C ∪ N , X × Z , wy〉
forms a non-empty, compact subset of the (Euclidean) strategy set X × Z.

Lemma 2.5 is an immediate corollary from themore general assertion stated as Lemma
A.2 in the Appendix of this paper.

We postulate that the cooperators have an optimistic outlook on their abilities to
gain from their leadership position.3 Using the definition of U given in (2) and the
assumptions made in Axiom 2.4, we let for every y ∈ Y ,

Us(y) = max
(x,z)∈Ey

U (x, y, z) (8)

�s = argmaxUs ≡
{

y′ ∈ Y

∣
∣
∣
∣U

s(y′) = max
y∈Y Us(y)

}

. (9)

The function Us assigns the maximum payoff level to the coalition of cooperators C
that can be achieved when the cooperators as well as the non-cooperators do a best
response in their respective private and individual actions to all players’ actions.4

The set �s ofUs-maximisers describes the best responses of the coalition of coop-
eratorsC to the other players’ actions. Indeed,�s is the collection of collective actions
that maximise the maximum payoff envelope functionUs over Y , i.e., these collective
actions are coalition C’s best responses given the collective payoff function Us .

We can now define the leadership equilibrium concept for � as follows:

Definition 2.6 Let � = 〈C, N , X ,Y , Z , u, v,�〉 be a generalised partial coopera-
tive game that satisfies Axiom 2.4. An action tuple (x�, y�, z�) ∈ A is a leadership
equilibrium in � if y� ∈ �s , such that Ey� �= ∅ and, furthermore, that

(x�, z�) ∈ argmax(x,z)∈Ey�
U (x, y�, z), (10)

where U is defined as in (2).

3 We remark that this optimistic outlook can be replaced by other approaches such as a minimax logic or
even a fully pessimistic outlook.
4 These concepts are, indeed, properly defined given the assumptions on ui , i ∈ C , and � stated in
Axiom 2.4 and the compactness of Ey from Lemma 2.5.
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The existence of a leadership equilibrium in a partial cooperative game can be estab-
lished under the assumed conditions.

Theorem 2.7 Let � = 〈C, N , X ,Y , Z , u, v〉 be a generalised partial cooperative
game that satisfies Axiom 2.4. Then, there exists at least one leadership equilibrium
in �.

For a proof of Theorem 2.7, we again refer to the Appendix.

2.3 Separability

A special class of generalised partial cooperative games is characterised by the sep-
aration of decisions concerning: on one hand, the collective actions (y) and, on the
other hand, the private (x) as well as individual (z) actions. Formally, a generalised
partial cooperative game � = 〈C, N , X ,Y , Z , u, v,�〉 is called separable if � = �u

is the utilitarian aggregator and for every i ∈ C and (x, y, z) ∈ X × Y × Z :
ui (x, y, z) = ûi (x, z) + ũi (y), (11)

where ûi : X × Z → R and ũi : Y → R are partial payoff functions.
Separability guarantees that the two notions of equilibrium defined here for the

class of generalised partial cooperative games coincide. Indeed, in a separable game,
the collective decision of coalitionC concerning the collective actions y is completely
described by the maximisation of Ũ = ∑

i∈C ũi and, therefore, is strictly indepen-
dent of the selection of individual actions of the cooperators i ∈ C . This implies
immediately the following assertion.

Proposition 2.8 Let � be a separable generalised partial cooperative game satisfying
Axiom 2.4. Then, the notion of leadership equilibrium is equivalent to that of the
partial cooperative equilibrium concept in� in the sense that every partial cooperative
equilibrium is a leadership equilibrium.

In a separable partial cooperative game with multi-dimensional collective actions in
the sense that Y = ∏

i∈C Yi for appropriately chosen Yi , one can also introduce the
notion of a standard Nash equilibrium. This notion is rather useful in the analysis of
the effects of collective decision-making on certain specified actions.

Definition 2.9 An action tuple (x ′, y′, z′) is a Nash equilibrium in a separable partial
cooperative game � with Y = ∏

i∈C Yi if, for every cooperator i ∈ C , the pair (x ′
i , y

′
i )

maximises ui (·, x ′−i , ·, y′−i , z
′) over Xi ×Yi , and for every non-cooperator j ∈ N , the

individual action z′j maximises v j (x ′, y′, ·, z′− j ) over Z j .

In general, the class of Nash equilibria is different from the class of Partial Cooper-
ative and Leadership equilibria in these separable games. This is shown through the
following example, which considers a separable generalised partial cooperative game
with two collaborators.

Example 2.10 Consider a separable partial cooperative game � with C = {1, 2} and
N arbitrary. We only specify the payoffs resulting from the collective actions and let

ũ1(y1, y2) = −(y1 − 1)2 + 2y2 − 3
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ũ2(y1, y2) = 2y1 − 3 − (y2 − 1)2.

Then, in the Nash equilibrium for this game, we have that y′
1 = y′

2 = 1 regardless of
the payoff functions and the strategies of all other players. On the other hand, in the
partial cooperative equilibrium, (y1, y2) maximises

Ũ (y1, y2) = ũ1(y1, y2) + ũ2(y1, y2) = −(y1 − 2)2 − (y2 − 2)2.

This implies that, in the PCE, we arrive at y∗
1 = y∗

2 = 2, again regardless of the actions
of all other players in the game.

We refine the notion of separability further to arrive at some further conclusions
concerning the equivalence of Nash equilibria and the other equilibrium concepts.
Specifically, a generalised partial cooperative game � = 〈C, N , X ,Y , Z , u, v,�〉 is
called homogeneous if � is separable, such that Y = ∏

i∈C Yi is multi-dimensional
and for every cooperator i ∈ C and every action tuple (x, y, z) ∈ X × Y × Z :

ui (x, y, z) = ûi (x, z) + ũ(y), (12)

where ûi : X × Z → R and ũ : Y → R.
We can now state the following assertion without proof. A proof is based on the

insight that the determination of the collective action y ∈ Y = ∏
i∈C Yi is not only

completely separated from the determination of the other actions (x, z) ∈ X × Z ,
but that it is essentially based on the maximisation of the common payoff function ũ.
Thus, the optimal collective action coincides with the individually optimal choice of
yi ∈ Yi for every cooperator i ∈ C .

Proposition 2.11 Let � be a homogeneous generalised partial cooperative game.
Then, the notion of partial cooperative equilibrium is equivalent to that of Nash
equilibrium in � in the sense that every partial cooperative equilibrium is a Nash
equilibrium.

3 Two applications

In this section,we investigate two applications of generalised partial cooperative games
that clearly delineate the various equilibrium concepts. Both of these applications con-
sider a generalised partial cooperative game formulation that allows the development
of a standard Nash equilibrium. Hence, the concept of a standard Nash equilibrium is
well defined and can be computed. Thus, a complete comparison of these Nash equi-
libria with the twomain partial cooperative equilibrium concepts—partial cooperative
equilibrium and leadership equilibrium—can be developed.

3.1 Cartels in multi-market oligopolies

We first consider a cartel in a multi-market oligopoly. Firms are fully competitive in
one market, while a subset of firms forms a cartel in the second market only. We show
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that the cartel benefits in comparison with the standard Nash equilibrium outcome
if it has a clear leadership position: An improvement only occurs in the leadership
equilibrium, not in the partial cooperative equilibrium.

We limit our analysis to the case of three firms indexed by i = 1, 2, 3 that compete
in two related markets A and B.5 We assume that these firms engage in quantity-
setting, Cournotian competition. We denote by qi and Qi the quantities sold by firm i
on markets A and B, respectively. Furthermore, p and P represent the market prices
emerging in market A and B, respectively.

Focusing on the most interesting case, we suppose that competitors’ products are
strategic substitutes and there are diseconomies of scope across the twomarkets. More
specifically, demand in markets A and B for firm i is, respectively, represented by

p = α −
m∑

i=1

qi and P = β −
m∑

i=1

Qi ,

where α, β > 0 are demand parameters describing the total market size for each of
the two goods A and B.

We assume a well-established, widely adopted production technology imposing a
simple, identical quadratic cost function on the three firms, given by

C(q, Q) = 1
2 (q + Q)2. (13)

Therefore, the profit of firm i is determined as

πi = p · qi + P · Qi − C(qi , Qi ) = p · qi + P · Qi − 1
2 (q + Q)2. (14)

It can be shown that, in this linear quadratic formulation, the resulting second-order
conditions are always satisfied if α and β are not too different. Hence, one obtains a
unique interior maximum through the first-order conditions.

Formulation as a generalised partial cooperative game

We set up a generalised partial cooperative game that describes cartel formation in this
multi-market Cournot oligopoly. We consider the formation of the cartel C = {1, 2}
only in market B, while full competition is retained in market A. Here, firm 3 remains
an independent producer.6

In this multi-market framework, y = (Q1, Q2) forms the collective action of the
cartel C = {1, 2}, while quantities (q1, q2) set in the A-market constitute private
actions for the two cartel members i = 1, 2. Firm 3 acts completely independently in
both markets and set all output levels (q3, Q3) as individual actions.

5 Throughout, we use the notation of Billand et al. (2014).
6 We remark that our analysis can be extended to an arbitrary number of competitors and cartel members.
This generalization, however, leads to rather cumbersome expressions that add rather little to the conclusions
from our analysis. The case for any number of competitors is available upon request from the authors.
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The generalised partial cooperative game is completed with the selection of the
utilitarian aggregator �u(π1, π2) = π1 + π2 to direct the collective decisions of the
cartel C = {1, 2}.7

Equilibrium analysis

In this setting, we discuss the Nash equilibrium, the partial cooperative equilibrium,
and the leadership equilibrium in this model of cartel formation in a multi-market
oligopoly.

We take Nash equilibrium as a benchmark with respect to which we compare the
results of the two partial cooperative analysis. If all three firms act competitively and
(qi , Qi ), i = 1, 2, 3, are set independently, then a straightforward analysis shows that
a unique symmetric Nash equilibrium exists if α

5 < β < 5α. This equilibrium is given
by

qNE
1 = qNE

2 = qNE
3 = 5α − β

24
≡ qNE

QNE
1 = QNE

2 = QNE
3 = 5β − α

24
≡ QNE .

In the symmetric Nash equilibria, all firms earn equal profits:

πNE
1 = πNE

2 = πNE
3 = 17α2 + 17β2 − 2αβ

288
≡ πNE .

Partial cooperative and leadership equilibria

Next,we investigate the partial cooperative and leadership equilibria in this generalised
partial cooperative game.

Proposition 3.1 Given a multi-sided oligopoly with firm profit functions given by (14),
then

• A Partial cooperative equilibrium exists and is unique if α
5 < β < 5α and is given

by

qPE
1 = qPE

2 = 20α − 2β

98
; qPE

3 = 21α − 7β

98
;

QPE
1 = QPE

2 = 15β − 3α

98
; QPE

3 = 25β − 5α

98
.

• A unique leadership equilibrium exists and is given by

qLE
1 = qLE

2 = 205α − 37β

968
; qLE

3 = 197α − 45β

968
;

7 Wemention here that replacing the utilitarians aggregator by the Rawlsian aggregator�r = min{π1, π2}
would not affect the analysis of this particular application. In particular, this is due to the symmetry of the
described situation.
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QLE
1 = QLE

2 = 193β − 49α

968
; QLE

3 = 19β − 3α

88
.

Deriving the above results involves straightforward albeit tedious calculations and thus
are not presented here.8 We compute that

π PE
1 = π PE

2 = 1125α2 + 1077β2 − 78αβ

19208
and

π PE
3 = 1188α2 + 1672β2 − 512αβ

19208

for the partial equilibrium case, and

π LE
1 = π LE

2 = 229α2 + 229β2 − 26αβ

3872
and

π LE
3 = 26673α2 + 29557β2 − 2314αβ

468512
.

for the leadership equilibrium.
For i = 1, 2, we conclude that

π LE
i � max

{
π PE
i , πNE

i

}
. (15)

We can now also investigate whether the merger paradox, seminally stated for Cournot
competition in Salant et al. (1983) emerges in any of these environments. The merger
paradox would occur if cartel formation in this multi-market setting results into losses
to its members. Clearly, (15) implies that there are no grounds for merger paradox
to emerge if the cartel obtains a leadership position in the multi-market oligopoly,
and, that instead there may be market conditions that make it a feature of the partial
cooperative equilibrium when π PE

i < πNE
i for the cartel members i = 1, 2. Here,

that is the case for β > 317
409α ≈ 0.775α. Thus, the merger paradox occurs if market

B is sufficiently larger than the competitive market A. On the other hand, forming a
cartel on a relatively smaller market may result in a strict Pareto improvement. We
compute that this is particularly the case for 1951

3875α < β < 317
409α.

We can illustrate this point more clearly by presenting the equilibrium outcome
for specific values of the market parameters. For example, if α = 5 and β = 3, we
arrive at π PE

1 = π PE
2 = 1.9080 > πNE = 1.9028 as well as π PE

3 = 1.9298 >

πNE = 1.9028. Here, a leadership role improves the profit position for the cartel,
although the independent producer firm 3 still outperforms its competitors. To be
precise, we compute that π LE

1 = π LE
2 = 1.9101 > π PE

1 = π PE
2 > πNE , while

π PE
3 > π LE

3 = 1.9170 > πNE .

8 Detailed derivations are available from the authors upon request.

123



Partial cooperation in strategic multi-sided decision situations 467

3.2 International pollution abatement

Our second application concerns an international environmental protection situation in
which certain countries write an international pollution abatement treaty, while other
countries do not participate in such a collective control of their emissions. Our analysis
builds on the seminal contribution byChander andTulkens (1997)who, for the purpose
of their analysis, developed the notion of the γ -core for partition function form games.
We remark here that their notion of partial agreement equilibrium corresponds to our
notion of partial cooperative equilibrium.

We amend their analysis by supplementing the cooperators’ strategy space with an
additional dimension along which binding agreements and cooperation are not possi-
ble. Therefore, we include an input factor—denoted as labour—that treaty countries
choose independently, similarly to non-cooperators.

There are two types of countries, namely those that cooperate on writing an inter-
national emissions control treaty—denoted byC = {1, . . . , k}with k � 2—and those
that act independently—denoted by N = {1, . . . , n}with n � 1. All countries produce
two non-tradable goods, 1 and 2, only. Treaty country i ∈ C produces and consumes
quantities q1i and q2i , while non-treaty country j ∈ N produces and consumes q1 j
and q2 j , respectively.

Good 1 is “clean” in the sense that its production leaves no emissions footprint.
Good 2 is “dirty” in the sense that its production requires an input that leaves an
emissions footprint. For all countries, the production technology is the same. For
generic country h ∈ C ∪ N , the production functions for the two goods are given by
q1h = √

L1h and q2h = √
dhL2h , where L1h � 0 and L2h � 0 are, respectively, the

amounts of labour expended in the production of goods 1 and 2, and dh � 0 is the
“dirty input” in the production of good 2.

We further assume that every country h ∈ C ∪ N is endowed with the same total
labour input equal to L . Thus, L1h + L2h ≤ L . Throughout, we assume that L > 1.

The utility function of a representative consumer of country h ∈ C ∪ N is now
given by

uh(q1h, q2h,�) = q1h + q2h − 1
2� (16)

with

� =
k∑

i=1

di +
n∑

j=1

d j (17)

q1h = √
L1h (18)

q2h = √
dhL2h (19)

L1h + L2h � L. (20)
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Here, � represents the emissions associated with the production of good 2 across
the global community.9 Note that this payoff function is separable in the production
variables (q1h, q2h) on one hand and the emission decisions {dh}h∈C∪N on the other.
This implies that the generalised partial cooperative game considered here is separable
and Proposition 2.8 applies.

In terms of the notation employed, y = (d1, . . . , dk) is the multi-dimensional
collective action of all treaty countries in C , representing the treaty written between
the countries in C to control emissions. Throughout, we postulate that the coalition of
treaty countriesC is guided by utilitarian principles and uses the utilitarian aggregator
�u = ∑

i∈C ui to guide its collective decisions.

Equilibrium analysis

We can approach this model as a normal-form strategic game as well as a generalised
partial cooperative game. We first determine its Nash equilibrium that we use as a
benchmark. This represents a situation in which all countries in C act independently
and do not write a treaty to control their emissions. This results into a standard tragedy
of the commons problem which is given by the maximisation of the objective function
(16) subject to the constraints listed in (17)–(20).

Indeed, in theNash equilibrium for each countryh ∈ C∪N , we derive that LNE
1h = 1

and LNE
2h = dNE

h = L − 1, resulting into uNE
h = L − 1

2 (k + n)(L − 1).10

Partial cooperative and leadership equilibria

First, note that the formulated generalised partial cooperative game is separable and
that Proposition 2.8 now implies that the partial cooperative equilibria are equal to the
leadership equilibria in this model. We, therefore, limit our discussion to the partial
cooperative equilibria only.

In the case of cooperation, the coalition of treaty countries C signs a binding
agreement y = (d1, . . . , dk) and each country h ∈ C ∪ N chooses independently
the amount of labour that it allocates to the production of each of the two goods
(L1h, L2h). Moreover, each non-treaty country j ∈ N makes a decision on the dirty
input d j .

The coalition of treaty countries C determines y = (d1, . . . , dk) by solving to the
following maximisation problem:

max
d1,...,dk

∑

i∈C

⎛

⎝
√

L − L2i + √
di L2i − 1

2

⎛

⎝
k∑

i=1

di +
n∑

j=1

d j

⎞

⎠

⎞

⎠ .

9 Tobring to the fore themechanismof partial cooperation,we take countries to be completely homogeneous
and goods to be non-tradable. As a consequence, all countries remain in a state of autarky.
10 Obviously, uNE < 0 if the total number of countries k + n � 3 (� 4) and the total in-country labour
input L > 3 (> 2). In that case, the negative impact of pollution overtakes the positive utility from the
consumption of the two goods.
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This yields that for every i ∈ C : di = L2i

k2
. This now results in the following conclu-

sions:11

Proposition 3.2 There are two cases for which a complete description of the partial
cooperative equilibrium of the pollution abatement model can be determined:

(a) 1 < L � k2 : For each treaty country, i ∈ C : LPE
1i = L and LPE

2i = dPE
i = 0.

For each independent country i ∈ N : LPE
1 j = 1 and LPE

2 j = dPE
j = L − 1.

The total pollution in this equilibrium is determined as �PE = n(L − 1) and the
resulting utility levels as

uPE
i =

√
L − n

2 (L − 1)

uPE
j = (

1 − n
2

)
L + n

2 .

For all 1 < L � k2, the partial cooperative equilibrium is a strict Pareto improve-
ment over the Nash equilibrium.

(b) L > k2 : For each treaty country, i ∈ C : LPE
1i = k2, L PE

2i = L − k2 and dPE
i =

L−k2

k2
. For each independent country i ∈ N : LPE

1 j = 1 and LPE
2 j = dPE

j = L−1.
The total pollution in this equilibrium is determined as

�PE = (
n + 1

k

)
L − (k + n),

and the resulting utility levels as

uPE
i = L − k2

k
+ 1

2 (3k + n) − 1
2

(
n + 1

k

)
L

uPE
j = L − 1

2

(
n + 1

k

)
L + 1

2 (k + n).

For any L > k2, the partial cooperative equilibrium is a strict Pareto improvement
over the Nash equilibrium.

The conclusion from Proposition 3.2 is that treaty countries as well as independent
countries are better-off under pollution abatement treaties than under global non-
collaboration as described in the Nash equilibrium. Although, in Nash equilibrium, all
countries achieve the same utility levels, under partial cooperation, the independent
countries have a higher utility than the cooperators, since they act as free riders, enjoy-
ing the environmental pollution abatement imposed through the treaty. As expected,
total pollution always increases with the number of independent countries. An increase
in the number of treaty countries, on the other hand, decreases total pollution.

11 The computations and derivations are rather tedious and, therefore, relegated to the appendix of this
paper.
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4 Concluding remarks

In this paper, we introduce two equilibrium notions that are applicable to situations
of partial cooperation. We establish their existence properties in a general and widely
applicable setting.

First, as our concept of partial cooperative equilibrium builds on the standard notion
of Nash equilibrium, it is neutral to the assumption of observability of players’ strate-
gies, including the existence and composition of the coalition of cooperators.

Second, even though our results are derived in the context of a single group of
cooperators, our results on the partial cooperative equilibrium concept are generalis-
able to a setting with an arbitrary number of exclusive coalitions of cooperators. For a
partial cooperative equilibrium to exist in such more general settings, the conditions
on the aggregator function identified in Theorem 2.3 must apply to all coalitions of
cooperators.

In the context of leadership in partial cooperation, we present our results under the
assumption that the cooperators have a leadership role. A similar existence result can
be derived if, instead, one of the non-cooperators acts as the Stackelberg leader. To see
that, it is sufficient to recognise that once the first mover takes action, the players that
are moving next are de facto in a situation of partial cooperation, where the existence
of a fixed point is established in Theorem 2.3.

Finally, we point out the role of complete information in our set up. Here, as in the
standard Nash Equilibrium analysis, we take complete information to implicitly imply
common knowledge of payoffs. In the context of leadership equilibrium, we make an
implicit requirement that the collective action is observable by all players, too.

Possible extensions of our analysis

Despite its robustness, we acknowledge that our analysis is restrictive in the sense that
cooperation between the coalition members is ex-ante postulated and binding. In this
respect, ourwork is complementary to the large literature on the endogenous formation
of agreements based on the work of Ichiishi (1981), Bloch (1997), and Yi (1997).12

Whereas the focus of this literature is on the existence and stability of a stable coalition
structure given a payoff allocation, our contribution is on the equilibrium derivation
of payoffs in a strategic environment taking the coalition structure as given. While,
in these contexts, the existence of equilibria is not an issue, our contribution guides
future research on the entire class of games where equilibrium existence is guaranteed
by deriving very general conditions on the payoff functions. Clearly, further effort is
needed in the direction of studying the general properties of the simultaneous game
of coalition formation and partial cooperation.

In the context of the two specific applications developed here, an indication of
coalition stability can be derived from the comparison between the partial equilib-
rium payoffs and those in the Nash Equilibrium. If one takes Nash equilibrium to be
resulting when cooperation breaks down, then conditions under which partial (lead-

12 For an overview of this literature, we refer to Finus and Rundshagen (2009).
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ership) equilibrium payoffs for the cooperators are higher are suggestive of the range
of conditions necessary to sustain cooperative agreements.

The two applications discussed also underline both the significance and the rele-
vance of the equilibrium notions based on partial cooperation. In particular, in our first
application, we embed a standard framework of multi-market oligopolistic competi-
tion into our analysis of partial cooperation. By doing so, we generalise the analysis
in existing studies—e.g., Bernheim and Whinston (1990) and more recently Choi and
Gerlach (2013)—that analyse the profitability of cartels in multi-market context. In
this literature, cartels are of limited size and occur in the absence of outside competi-
tive pressures. Our analysis suggests that, when firms meet on two markets, cartels are
more likely to be stable on the relatively smaller market, or where the cartel can take a
leadership position relative to non-cartel members. To the best of our knowledge, we
are the first to point out the advantages that cartels attain in multi-market oligopolies
in the context of sequential decision-making.

Our second application concerning environmental agreements draws out the role of
separability in the analysis. As discussed in the introduction, partial cooperation in this
context has been studied since the 1990s. The main conclusion of our analysis—that
payoffs for the signatories are equal under partial cooperative equilibrium and under
leadership equilibrium—points to the fact that arguments that a success of partial
cooperation is dependent on taking a first-mover advantage are not always justifiable.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

A Appendix: Proofs of theorems and propositions

This appendix collects the proofs of the main existence theorems presented in Sect. 2
of this paper.

A.1 Proof of Theorem 2.3

For every cooperator i ∈ C , we define her best response correspondence as a mapping
γi : X−i × Y × Z → 2Xi given by

γi (x−i , y, z) = argmax
xi∈Xi

ui (xi , x−i , y, z) (21)

for any (x−i , y, z) ∈ X−i × Y × Z .
Similarly, for the coalition of cooperators C itself, we define the collective best

response correspondence δ : X × Z → 2Y by

δ(x, z) = argmax
y∈Y

U (x, y, z) (22)
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for any (x, z) ∈ X × Z , where U is the aggregated payoff function for C defined in
(2).

Furthermore, for every non-cooperator j ∈ N , we define her best response corre-
spondence ε j : X × Y × Z− j → 2Z j by

ε j (x, y, z− j ) = argmax
z j∈Z j

v j (x, y, z j , z− j ) (23)

for any (x, y, z− j ) ∈ X × Y × Z− j .
This allows us to introduce the joint best response correspondence B : A → 2A,

such that for any â = (x̂, ŷ, ẑ) ∈ A:

B
(
â
) =

⎧
⎨

⎩
(x, y, z) ∈ A

∣
∣
∣
∣
∣
∣

xi ∈ γi (x̂−i , ŷ, ẑ) for all i ∈ C,

y ∈ δ(x̂, ẑ), and
z j ∈ ε j (x̂, ŷ, ẑ− j ) for all j ∈ N

⎫
⎬

⎭
. (24)

It is clear that a fixed point of this best response correspondence—defined as some
a� ∈ A, such that a� ∈ B(a�)—corresponds to a partial cooperative equilibrium of
the generalised partial cooperative game �.

We proceed by showing that B, indeed, possesses such a fixed point.
First, we show that the best response correspondences γi (i ∈ C), δ, and ε j ( j ∈ N )

are all non-empty valued.
Given that Xi is compact and ui continuous on Xi , for every i ∈ C , apply-

ing the Weierstrass Theorem implies that ui indeed admits a maximum and, thus,
γi (x−i , y, z) �= ∅ for all a = (x, y, z) ∈ A, where i ∈ C .

Next, since the aggregator � is continuous and all ui , i ∈ C , are continuous on Y ,
it follows that U is continuous on Y as well. From compactness of Y , it follows that
δ is, therefore, non-empty valued.

Finally, the compactness of Z j and continuity of v j on Z j , for all j ∈ N , implies
that ε j is non-empty valued as well for all j ∈ N .

Therefore, combining these facts, it follows that B is a non-empty valued corre-
spondence.

Next, we show that B is convex-valued.
First, we claim that each of the correspondences γi (i ∈ C), δ, and ε j ( j ∈ N ) is

convex-valued. To see this, consider γi for some i ∈ C . For any (x−i , y, z) ∈ X−i ×
Y × Z , γi (x−i , y, z) is the set of maxima of the quasi-concave function ui (·, x−i , y, z)
mapped onto the convex set Xi . Hence, γi (x−i , y, z) is, indeed, a convex set.

Similar arguments can be used to show that, for any (x, y, z− j ) ∈ X × Y × Z− j ,
the set ε j (x, y, z− j ) is convex.

Finally, consider δ. Since � is Paretian and quasi-concave, it aggregates quasi-
concave utility functions in a quasi-concave function.13 Therefore,U is quasi-concave
on Y .

Furthermore, for every (x, z) ∈ X × Z , δ(x, z) is the set of maxima of the quasi-
concave functionU (x, ·, z)mapped on a convex set Y , implying that δ(x, z) is, indeed,
convex.

13 We refer to Negishi (1963, Proposition1) for a concise proof of this result.
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This implies that B is, indeed, convex-valued.
Finally, we prove B is upper hemi-continuous.

Consider a sequence âp = (x̂ p, ŷp, ẑ p) converging to some â = (x̂, ŷ, ẑ), as well as a
sequence ãp = (x̃ p, ỹp, z̃ p) converging to some ã = (x̃, ỹ, z̃), such that (x̃ p, ỹp, z̃ p) ∈
B(x̂ p, ŷp, ẑ p) for all p ∈ N. We now prove that (x̃, ỹ, z̃) ∈ B(x̂, ŷ, ẑ), implying that
the correspondence B is closed and, thus, since A is compact, it follows that B is,
indeed, upper hemi-continuous.
By definition, it follows for all i ∈ C that for every xi ∈ Xi :

ui (x̃ p,i , x̂ p,−i , ŷp, ẑ p) − ui (xi , x̂ p,−i , ŷp, ẑ p) � 0. (25)

For every y ∈ Y :

U (x̂ p, ỹp, ẑ p) −U (x̂ p, y, ẑ p) � 0. (26)

Finally, for every j ∈ N and all z j ∈ Z j :

v j (x̂ p, ŷp, z̃ p, j , ẑ p,− j ) − v j (x̂ p, ŷp, z j , ẑ p,− j ) � 0. (27)

From these conclusions, it follows immediately that

ui (x̃i , x̂−i , ŷ, ẑ) − ui (xi , x̂−i , ŷ, ẑ) � 0 for every i ∈ C and xi ∈ Xi ; (28)

U (x̂, ỹ, ẑ) −U (x̂, y, ẑ) � 0 for every y ∈ Y ; (29)

v j (x̂, ŷ, z̃ j , ẑ− j ) − v j (x̂, ŷ, z j , ẑ− j ) � 0 for every j ∈ N and z j ∈ Z j . (30)

This proves that (x̃, ỹ, z̃) ∈ B(x̂, ŷ, ẑ).
Hence, we conclude that the correspondence B : A → 2A is a convex-valued and

upper hemi-continuous correspondence. FromKakutani’s fixed point theorem (Border
1985, page 72), it can be concluded that B admits a fixed point and, hence, a partial
cooperative equilibrium exists for the generalised partial cooperative game �.

A.2 Proof of Theorem 2.7

The proof of Theorem 2.7 is based on Berge’s Theorem. For completeness, we state
this fundamental result here.

Lemma A.1 (Berge 1997, page 115) Let M and N be two Euclidean spaces, and let
D : M → 2N be a non-empty and compact valued correspondence and f : M×N →
R be a upper semi-continuous function. Define the value function V : M → R by

V (m) = sup { f (n,m) | n ∈ D(m)}.

If D is upper hemi-continuous at m ∈ M, then the value function V is upper semi-
continuous at m.
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Next, consider a generalised partial cooperative game � = 〈C, N , X ,Y , Z , u, v,�〉.
First, we define the Nash correspondence which is equal to the feasibility corre-
spondence E defined in Sect. 2 of the paper. Formally, we introduce the mapping
E : Y → 2X×Z by E(y) = Ey for every collective action y ∈ Y . We show that, under
standard assumptions, this correspondence is non-empty and compact valued as well
as upper hemi-continuous.

Lemma A.2 Let, for the generalised partial cooperative game � = 〈C, N , X ,Y , Z ,

u, v〉, Xi be a compact and convex subset of someEuclidean space for every cooperator
i ∈ C and Z j be a compact and convex subset of some Euclidean space for every
non-cooperator j ∈ N. Assume that X, Y , and Z are all non-empty.

Let for all i ∈ C, ui : A → R be a continuous function and ui (·, x−i , y, z) : Xi →
R be quasi-concave for all (x−i , y, z) ∈ X−i ×Y × Z. Furthermore, let for all j ∈ N,
v j : A → R be a continuous function and v j (x, y, ·, z− j ) be quasi-concave for all
(x, y, z− j ) ∈ X × Y × Z− j .

Then, the correspondence E : Y → 2X×Z is non-empty and compact valued as
well as upper hemi-continuous.

Proof For an arbitrary collective action y ∈ Y , consider the reduced normal-form
game �y = 〈C ∪ N , X × Z , w〉 as given before. Assume that Xi is a compact and
convex subset of a Euclidean space for each i ∈ C , and Z j is a compact and convex
subset of a Euclidean space for all j ∈ N .

For any i ∈ C , the functionw
y
i is equal to a section of ui and, hence, by assumption

its section w
y
i (·, x−i , z) is quasi-concave on Xi .

For any j ∈ N , the function w
y
j is equal to a section of v j and, consequentially, by

assumption its section w
y
j (x, ·, z− j ) is quasi-concave on Z j .

Moreover, both w
y
i (i ∈ C) and w

y
j ( j ∈ N ) are continuous on X × Z .

Hence, we conclude that the game �y = 〈C ∪ N , X × Z , w〉 satisfies all conditions
of a standard Nash equilibrium existence theorem (Fudenberg and Tirole 1991, page
34) and, therefore, admits a Nash equilibrium. Thus, Ey �= ∅ for all y ∈ Y implying
that E : Y → 2X×Z is non-empty valued.

Next, we show that the correspondence E is closed, and since X × Z is compact,
E is upper hemi-continuous, as well. Consider a convergent sequence ŷp → ŷ and a
convergent sequence (x̂ p, ẑ p) → (x̂, ẑ), such that (x̂ p, ẑ p) ∈ E(ŷp). We prove that
(x̂, ẑ) ∈ E(ŷ).

Indeed, bydefinition, for all i ∈ C ,wehavew
y
i (x̂ p,i , x̂ p,−i , ẑ p)−w

y
i (xi , x̂ p,−i , ẑ p) �

0 for all xi ∈ Xi . Similarly, for all j ∈ N ,wy
j (x̂ p, ẑ p, j , ẑ p,− j )−w

y
j (x̂ p, z j , ẑ p,− j ) � 0

for all z j ∈ Z j . It follows immediately that bothw
y
i (·, ·, ·)−w

y
i (xi , ·, ·) : Xi × X−i ×

Z → R and w
y
j (·, ·, ·) − w

y
j (·, z j , ·) : X × Z j × Z− j → R are continuous functions.

Hence, for every i ∈ C , we have that wy
i (x̂i , x̂−i , ẑ) − w

y
i (xi , x̂−i , ẑ) � 0 and, for

all j ∈ N , we have w
y
j (x̂, ẑ j , ẑ− j )−w

y
j (x̂, z j , ẑ− j ) � 0. This implies (x̂, ẑ) ∈ E(ŷ).

Thus, E is, indeed, a closed correspondence.
Finally, take any y ∈ Y . We show that E(y) is compact. Since E is a closed

correspondence, it is, therefore, closed-valued. Hence, E(y) is a closed subset of a
compact set X × Z and, thus, E(y) is compact. ��
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Next, consider the functionUs : Y → R as defined in (8). From the continuity of�
and ui for each i ∈ C , we conclude thatU is continuous on A. Since, fromLemmaA.2,
the set Ey is compact for all y ∈ Y , it then follows that argmax(x,y)∈Ey

U (x, y, z)
exists for every y ∈ Y . Hence, Us is a well-defined function. It remains to show that
Us is an upper semi-continuous function.

Lemma A.3 Let the generalised partial cooperative game � = 〈C, N , X ,Y , Z ,

u, v,�〉 satisfy the requirements of Theorem 2.7. Then, the indirect utility function
Us is upper semi-continuous.

Proof In Lemma A.1, we make the substitutions, M = Y , N = X × Z , D = E ,
and f = U . We have proven in Lemma A.2 that E is, indeed, upper hemi-continuous
as well as non-empty and compact valued. Furthermore, by construction, the utility
function U is continuous and, thus, f = U is upper semi-continuous.

Finally, we can see that from Berge’s formulation that V = Us by construction. By
applying Lemma A.1, we conclude that Us is upper semi-continuous. ��
We are now in the position to complete the proof of Theorem 2.7.

From Lemma A.3,Us : Y → R is an upper semi-continuous function defined on a
compact set Y . Hence, it follows from standard results that �s is non-empty.

Take any y∗ ∈ �s . From Lemma A.2, Ey∗ is non-empty as well as compact. More-
over,U (·, y∗, ·) : X × Z → R is a continuous function. Hence, from the Weierstrass
Theorem:

� = argmax
(x,z)∈Ey∗

U (x, y∗, z) �= ∅.

Take any (x∗, z∗) ∈ �. Then, it is easy to establish that (x∗, y∗, z∗) constitutes a
leadership equilibrium in the generalised partial cooperative game �.

This completes the proof of Theorem 2.7.

A.3 Proof of Proposition 3.2

We proceed by straightforwardly compute the first-order conditions from the optimi-
sation problems for the treaty countries i ∈ C , the independent countries j ∈ N and
for C as a collective. First, notice that without loss of generality, we can replace the
inequality in (20) by an equality and re-write the constrained maximisation problem
given by Eqs. (16)–(20) as a straightforward maximisation of a single function with
two variables given by

max
L2h ,dh

uh =
√

L − L2h + √
dhL2h − 1

2

⎛

⎝
k∑

i=1

di +
n∑

j=1

d j

⎞

⎠ . (31)

The first-order conditions of (31) are given by:

∂uh
∂L2h

= − 1

2
√
L − L2h

+ dh
2
√
dhL2h

≡ 0 (32)
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∂uh
∂dh

= L2h

2
√
dhL2h

− 1
2 ≡ 0. (33)

We re-call that we already established that, for the treaty countries i ∈ C , the equilib-
rium level of individual country emissions is given by

di = L2i

k2
,

which, through substitution in (32), implies that

1

2
√
L − L2i

= 1
2k .

We first show assertion (b) for L > k2. Hence, LPE
2i = L − k2 > 0 and dPE

i = L−k2

k2
.

In turn, we then establish that LPE
1i = L − L2i = k2.

The first-order conditions for the independent countries j ∈ N now imply the
computed outcomes for theNash equilibrium, i.e., LPE

1 j = 1 and LPE
2 j = dPE

j = L−1.
Therefore,

�PE = k

(
L − k2

k2

)

+ n
(
L − 1

) = (n + 1
k )L − (k + n).

This implies now that

uPE
i = k + L − k2

k
− 1

2 (n + 1
k )L + 1

2 (k + n)

= 1
2 (k + n) − 1

2

(
n − 1

k

)
L

uPE
j = L − 1

2

(
n + 1

k

)
L + 1

2 (k + n).

Now, since �PE < �NE , we derive immediately that for every j ∈ N : uPE
j > uNE

j .

Furthermore, for i ∈ C , it holds that uPE
i > uNE

i if and only if

L − k2

k
+ 1

2 (3k + n) − 1
2

(
n + 1

k

)
L > L − 1

2 (k + n)L + 1
2 (k + n)

if and only if

L >
(
1 − k

2 + 1
2k

)
k L.

Obviously, L > 0, so the inequality simplifies to

(
1 − k

2 + 1
2k

)
k < 1 or (k − 1)2 > 0.
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This is obviously the case for any value of k in the assumed range k � 2, showing
assertion (b).

Next, we show assertion (a) for 1 < L � k2.
In that case, there is a corner solution for the equilibrium conditions described by
dPE
i = LPE

2i = 0 and LPE
1i = L for the treaty countries i ∈ C .

For the independent countries j ∈ N , we derive again LPE
1 j = 1 and LPE

2 j =
dPE
j = L − 1.

Thus, �PE = n(L − 1) and

uPE
i =

√
L − n

2 (L − 1) and uPE
j = L − n

2 (L − 1) = (
1 − n

2

)
L + n

2 .

To investigate the Pareto domination between the PE and the NE outcomes, we note
again that uPE

j > uNE
j as L > 1 and now uPE

i > uNE
i if and only if

√
L − n

2 (L − 1) > L − 1
2 (k + n)(L − 1),

if and only if

√
L > L − k

2

(
L − 1

)
,

if and only if

2
√
L > k − (k − 2)L.

Now, L > 1 and k � 2 imply that

2
√
L > 2 > k − (k − 2)L.

Hence, uPE
i > uNE

i , thus confirming the assertion of (a) in Proposition 3.2.
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