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Summary

Much of perception, learning and high-level cognition involves finding patterns in data. But

there are always infinitely many patterns compatible with any finite amount of data. How

does the cognitive system choose ‘sensible’ patterns? A long tradition in epistemology,

philosophy of science, and mathematical and computational  theories of learning argues that

patterns ‘should’ be chosen according to how simply they explain the data. This article

reviews research exploring the idea that simplicity does, indeed, drive a wide range of

cognitive processes. We outline mathematical theory, computational results, and empirical

data underpinning this viewpoint.

Key words: simplicity, Kolmogorov complexity, codes, learning, induction, Bayesian

inference

30-word summary:This article outlines the proposal that many aspects of cognition, from

perception, to language acquisition, to high-level cognition involve finding patterns that

provide the simplest explanation of available data.
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The cognitive system finds patterns in the data that it receives. Perception involves finding

patterns in the external world, from sensory input. Language acquisition involves finding

patterns in linguistic input, to determine the structure of the language. High-level cognition

involves finding patterns in information, to form categories, and to infer causal relations.

Simplicity and the problem of induction
A fundamental puzzle is what we term the problem of induction: infinitely many patterns are

compatible with any finite set of data (see Box 1). So, for example, an infinity of curves pass

through any finite set of points (Box 1a); an infinity of symbol sequences are compatible with

any subsequence of symbols (Box 1b); infinitely many grammars are compatible with any

finite set of observed sentences (Box 1c); and infinitely many perceptual organizations can fit

any specific visual input (Box 1d). What principle allows the cognitive system to solve the

problem of induction, and choose appropriately from these infinite sets of possibilities?

Any such principle must meet two criteria: (i) it must solve the problem of induction

successfully; (ii) it must explain empirical data in cognition. We argue that the best approach

to (i) is to choose patterns that provide the simplest explanation of the data; and that this

approach provides a powerful approach to (ii), in line with a long tradition of psychological

research.

The physicist and philosopher Mach[1] proposed the following radical idea: that the

cognitive system should (criterion i), and does (criterion ii), prefer patterns that provide

simple descriptions of the data. Here, a description must allow the data to be reconstructed;

and the simplicity of a description is measured by its length.

Mach’s proposal traces back to Ockham’s razor, that, in explanation, entities should not be

multiplied beyond necessity; and to Newton’s statement in the Principia that we “admit no

more causes of natural things than are both true and sufficient to explain the appearances.”

But to make Mach’s proposal precise requires a theory of description complexity, which

awaited further mathematical developments.

Quantifying simplicity
These mathematical developments came in two steps. First, Shannon’s information theory

justified log2(1/p) as a code length for items with probability p. This is helpful for providing

code lengths of highly repetitive data patterns, which can be assigned probabilities, such as

low level perceptual properties, phonemes, words and so on[2].  Second, the critical

generalization to algorithmic information theory by Kolmogorov, Solomonoff and Chaitin[3]

defined the complexity K(x) of any object, x, by the length of the shortest program for x in

any standard (universal) computer programming language. Surprisingly, it turns out that the
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choice of programming language does not matter, up to a constant additive factor; and

moreover, algorithmic information theory turns out to agree closely with standard information

theory, where the latter theory applies at all. Crucially, the algorithmic definition of simplicity

applies to individual objects, whereas Shannon’s definition depends on associating

probabilitieswith objects.

Intuitively, then, we can see the cognitive system’s goal as compressing data: coding it in

such a form that it can be recovered by some computable process (the mathematics allow that

compression may be ‘lossy’---i.e., information may be thrown away by the cognition system,

but we do not consider this here.) Choices between patterns are determined by the

compression they provide---compression thus provides a measure of the strength of evidence

for a pattern. This viewpoint forges potential connections between compression and pattern-

finding as computational projects. Note that the shortest code for data also provides its least

redundant representation; elimination of redundancy has been viewed as central to pattern

recognition both in human[4,5] and machine[6].

More crucially, formalizing simplicity provides a candidate solution to the problem of

induction, described above. The infinity of patterns, compatible with any set of data, are not

all equal: the cognitive system should prefer that pattern that gives the shortest code for the

data.

Regarding criterion (i) above, there are two beautiful and important mathematical

results[7] that justify this choice as a solution to the problem of induction. One result is that,

under quite general conditions, the shortest code for the data is also the most probable

(according to a Bayesian analysis, using the so-called “universal prior.”). A second result is

that the shortest code can be used for prediction, with a high probability of ‘convergence’ on

largely correct predictions. A third powerful line of justification for simplicity as an effective

method of induction is its widespread use in machine learning[8,9] and statistics[10].

Simplicity as a cognitive principle
So simplicity appears to go some way towards meeting criterion (i): justifying why

patterns should be chosen according to simplicity. What about criterion (ii)? Does simplicity

explain empirical data in cognitive science? Table 1 describes a range of models of cognitive

phenomena, from low and high level visual perception, language processing, memory,

similarity judgements, and mental processes in explicit scientific inference. The breadth of

domains in which simplicity has proved to be a powerful organizing principle in cognitive

modelling is encouraging.

But how does the simplicity principle stand up to direct empirical testing? This question is

difficult to answer, for two reasons. (1) The representation problem: Although, in the
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asympotote, and assuming the brain has universal Turing machine power, Kolmogorov

complexity is language invariant, for many specific, non-asymptotic empirical predictions

from simplicity depend on assumptions about mental representation, which will affect what

regularities can be detected. But the mental representation of perceptual and linguistic stimuli

is highly contentious in cognitive science. (2) The search problem: The cognitive system may

prefer the simplest interpretation that it can find, but be unable to find a simple pattern of

interest. Thus, without creating a full-scale cognitive model, involving assumptions about

representation and perhaps also search, precise predictions from the simplicity viewpoint

cannot be obtained[11].

There are, however, a number of lines of evidence that appear consonant with the

simplicity viewpoint.

•  A vast range of phenomena in perceptual organization, including the Gestalt laws of

closure, good continuation, common fate, and so on, have been widely interpreted as

revealing a preference for simplicity. Box 2 discusses some complex cases. The main

theoretical alternative, the Bayesian approach to visual perception[12] is

mathematically closely related to the simplicity principle[13]

•  Items with simple descriptions are typically easier to detect in noise and easier to

detect[2,11].

•  The simplicity of a code for a stimulus quantifies the amount of structure uncovered

in that stimulus. The more structure people can find in a stimulus, the easier they find

it to process and remember[14] and the less random it appears[15].

•  The speed of learning for Boolean concepts (e.g., A or B or C; A and (B or C) etc) is

well predicted by the shortest code length for those concepts[16].

•  Similarity can be viewed as a function of the simplicity of the distortion required to

turn one representation into the other. This viewpoint makes empirical predictions

which are not captured by existing spatial or feature-based theories of similarity, but

which have been confirmed[17].

•  Shepard’s Universal Law of generalization[18], which implies that items have a

probability of confusion that is a negative exponential function of the distance

between them in an internal ‘space,’ can be derived from the assumption that the

psychological similarity between two objects is a function of the complexity of the

simplest transformation between them, and minimal additional assumptions[19].

•  The physiology of early vision, including receptive field shapes, and phenomena such

as lateral inhibition, seems adapted to maximize information compression in

vision[20]. On the other hand, both theoretical and empirical arguments suggest that,
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the brain also uses highly redundant ‘sparse’ neural codes for perceptual input[21,

22].

To summarize, since Mach, a range of theorists have proposed the sweeping idea that

much of cognition concerns compression[23], or the elimination of redundancy[24], and

the simplicity principle has been developed into a mathematically rigorous method for

finding patterns in data[3]; served as the foundation for a broad range of cognitive models;

and is consistent with a range of empirical data. We suggest that simplicity is worth

pursuing as a potentially important unifying principle across many areas of cognitive

science.
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Table 1: Pattern-finding by simplicity: A sample of research

Cognitive

process

Data Codes Computer

science/mathematical

approaches

Cognitive science

applications

Low-level

perception

Sensory

input/artificially

captured

images

Filters in early

vision
•  Image

compression[25]

Early vision as

compression[23,22]

High-level

perception

Sensory

input/output of

early perceptual

processing

Representations

of higher level

structure

•  Pattern theory[26] •  'principle of

economy[1]

•  perceptual

organization[27,14]

Language

acquisition

Linguistic input Representations

of language

structure

•  Text 

compression[28]

•  Phonological29]   

and morpholgical 

analysis[30] 

segmentation[31,

24] and grammar 

induction[32,33]

High-level

cognition

High-level

representations

of knowledge

similarity, causal

relations

•  Information

distance[34]

•  Gencompress[35]

•  Similarity as 

representational 

distortion[18]

•  Categorization by 

compression[36]

Scientific

inference

Scientific data Theoretical

knowledge
•  Machine

induction

systems[9]

•  Foundations of

Statistics[10]

•  Ockham, Newton

•  Mach's principle of 

economy[1]

•  Formal measures of

simplicity[37,38]
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Table 1: Many pattern-finding problems have been successfully approached by

mathematicians and computer scientists using a simplicity principle. In many of these

areas, the simplicity principle has also been used as a starting point for modelling

cognition.
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Box 1: Finding patterns and the problem of induction

There are always infinitely many patterns compatible with any finite body of data. This raises

the critical question of how the cognitive system makes appropriate choices from among this

infinite range of options. The general problem is illustrated in 1a, where there are clearly any

number of continuous functions that can be made to pass through a set of data points. The

same issue arises for discrete data. The alternating black/white squares on the left hand of 1b

illustrate a sequence of binary data. But, as the right hand of 1b indicates, the overall pattern

of which this data is a part could continue in any way. The ‘middle’ continuation is more

1a. The abstract problem
of induction: the
continuous case.

1b.  The abstract problem
of induction: the discrete
case.

x
x

x x x x

1c. Grammar Learning

S  NP, VP
VP  V NP
NP  Det N
Det  the, a…
N  cat, mat, fish…

S  WS
S  W, { }
W  the, sat, fish, a,…

S  the cat sat on the mat
S  a fish likes singing

1. 2. 3.

the cat sat on the mat
a fish likes singing

1d. Perception: Figural
Completion

i
ii

iii
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cognitively natural. But why? And are cognitively natural continuations reliable in

prediction? 1c extends the point to grammar induction from a tiny ‘corpus’ of language  data.

Grammar 1 provides a linguistically reasonable analysis; Grammar 2 can produce any word

sequence whatever and is clearly wildly overgeneral; Grammar 3 produces just the sentences

in the corpus and nothing more. Human learners favour reasonable analyses; but why?

Finally, 1d illustrates the limitless possible hypotheses for elaborating partial perceptual

input---only ii. is seriously entertained, though i. and iii. are also compatible with the data.

These illustrations are quite abstract; but, importantly, the same issue arises even if the input

is arbitrarily rich: although some specific patterns will be eliminated but such enrichment, an

infinite number of incompatible patterns will always remain.
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 Box 2: Empirical data

Box 2: Various qualitative aspects of the resolution of perceptual ambiguity can be

understood in terms of simplicity. In each of 2a-c, the left hand side schematically represents

a visual input, and the right hand figure represents possible interpretations. 2a illustrates that

preferred perceptual organizations typically have a relatively good (although not necessarily

perfect) fit with the data---here a somewhat irregular triangle interpretation is favoured over a

very irregular square interpretation. Patterns with good data fit provide short codes for the

data, given the pattern, and are preferred by the simplicity principle. 2b illustrates the

complementary preference for simple patterns: the 2D straight line projected image is thus

preferred to a highly irregular curve in the plane, even though, viewed from one specific

angle, this can project a perfect 2D line. 2c reveals the importance of the precision, in visual

coding. The figure illustrates a preference for interpreting a small ellipse as that ellipse in the

plane perpendicular to the viewer, rather than a larger, but geometrically similar, ellipse at a

2a. 2b.

2c. 2d.

vs.
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highly skewed angle (another possible interpretation is a circle, at a moderately skewed

angle). Thus, data fit, and, apparently, complexity of pattern appears identical here. How can

the simplicity principle distinguish the two elliptical interpretations. The answer is that the

projection is much more stable for the perpendicular ellipse; for the highly skewed ellipse the

angle of orientation must be specified more precisely, costing additional code length, to

obtain an equally good fit with the data. Finally, 2d illustrates that simpler interpretations are

taken to have causal significance. The right hand 2D figure is perceived as a projection of a

wire cube, the left hand figure is perceived as an irregular 2d figure. Crucially, the joints of

the wire cube are perceived as rigid---whereas the joints of the irregular 3D figure appear

potentially flexible. The joints of the cube are perceived as rigid, presumably because

otherwise this ‘simple’ arrangement would be merely a remarkable coincidence (analogously,

a sequence of 100 heads from a coin would be interpreted as indicating that the coin is

biased). Thus causal structure may be inferred on the basis of simplicity.

Qualitative demonstrations of this kind have also been supplemented by formal

psychology theories which seek to explain the interpretations of perceptual figures as

minimizing code length [a], [b].
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