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Abstract Problem-solving software that is not-necessarily infallible is central to

AI. Such software whose correctness and incorrectness properties are deducible by

agents is an issue at the foundations of AI. The Comprehensibility Theorem, which

appeared in a journal for specialists in formal mathematical logic, might provide a

limitation concerning this issue and might be applicable to any agents, regardless of

whether the agents are artificial or natural. The present article, aimed at researchers

interested in the foundations of AI, addresses many questions related to that theo-

rem, including differences between it and results of Gödel and Turing that have

sometimes played key roles in Minds and Machines articles. This study also sug-

gests that—if one is willing to assume a thesis due to Donald Knuth—the Com-

prehensibility Theorem is the first mathematical theorem implying the impossibility

of any AI agent or natural agent—including a not-necessarily infallible human

agent—satisfying a rigorous and deductive interpretation of the self-comprehensi-

bility challenge. Some have pointed out the difficulty of self-comprehensibility,

even according to presumably a less rigorous interpretation. This includes Socrates,

who considered it to be among the most important of intellectual tasks. Self-

comprehensibility in some form might be essential for a kind of self-reflection

useful for self-improvement that might enable some agents to increase their success.

We use the methods of applied mathematics, rather than philosophy, although some

topics considered could be of interest to philosophers.
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Introduction

Problem-solving software that is not-necessarily infallible is central to AI. Such

software whose correctness and incorrectness properties are deducible by agents—

both artificial and natural agents, and where the agents themselves are not-

necessarily infallible—is an issue at the foundations of AI. A related theorem would

help to define the boundaries of AI research related to agents and software, whether

the software is written by humans or generated artificially. If such a theorem existed,

having a working knowledge of it could be helpful for AI researchers, just as it is

helpful for computer scientists to have a working knowledge of limitative results

such as NP-completeness and the unsolvability of the halting problem.

The Comprehensibility Theorem, published in a journal for specialists in formal

mathematical logic (Charlesworth 2006), appears to be such a theorem. The present

article examines the extent to which this impression withstands additional study,

addressing many questions about the theorem.

It is well-known that arguments attempting to apply Gödel-Turing like results—

by that phrase we mean attempts to apply variants of Gödel’s Theorem and/or the

unsolvability of the halting problem to the processing of software by agents—have

failed. For instance, this is made clear in an AI journal article (LaForte et al. 1998),

whose conclusions include the following, where we indicate in italics shortcomings

of all arguments that have attempted to apply Gödel-Turing like results:

• It is plausible that a generally-intelligent agent could be fallible, such as failing

to be sound or even consistent. Although AI researchers (see our section ‘‘How

Important is Eliminating Infallibility Assumptions About Intelligent Agents?’’)

agree with that conclusion, the attempts to apply Gödel-Turing like results fail

to be applicable to a possibly-fallible agent’s processing of software.

• The attempts to apply Gödel-Turing like results use fallacious reasoning that can

lead to incoherence similar to that of the liar paradox. The attempts to apply

Gödel-Turing like results provide no theorem, whose proof satisfies the current

standard criterion for rigor, relating the ability to deduce correctness-properties

of software to the ability to deduce an intelligence-related limitation of that

software.

• One fallacious property of such attempts to apply Gödel-Turing like results is

their self-referent application—explicitly within an argument itself—of the

intuitive concept ‘‘the method mathematicians use to correctly decide

problems’’, and thus such arguments rely crucially on the fact that the agents

considered are humans. Even if they were rigorous, the attempts to apply Gödel-

Turing like results would not provide a result, about the comprehensibility of

software, that is applicable to non-human agents.

This article studies in some depth the extent to which the Comprehensibility

Theorem overcomes the above three italicized shortcomings of previous treatments.

The standard way to avoid the kind of incoherence similar to that of the liar

paradox is via the use of a hierarchy, such as that obtained by using formal proofs as
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objects within an appropriate mathematical model. It is natural for such formal

proofs to be within systems that extend first-order Peano Arithmetic. The

Comprehensibility Theorem appeared in a journal aimed specifically for an

audience of specialists having deep expertise with such systems, and only brief

explanation accompanied the construction of the underlying mathematical model,

which one must understand to properly evaluate answers to questions about the

model and the theorem. It is thus likely that those AI researchers without deep

expertise in first-order Peano Arithmetic could encounter significant difficulty

gaining an adequate knowledge of the theorem, and even some with such expertise

might have difficulty. This article aims to meet the resulting need, before it

addresses previously unaddressed questions.

Since commentaries like (LaForte et al. 1998) already exist that adequately

discuss the details of, and cite references to, non-rigorous arguments attempting to

apply Gödel-Turing like results, the present article avoids doing so. As mentioned

by LaForte et al., it is well-known that such arguments rely on infallibility

assumptions about agents. This article shows that one can view the Comprehen-

sibility Theorem’s proof as related to a non-rigorous argument sketched in our

section ‘‘A Conjecture and a Nonrigorous ‘‘Proof’’’’ that avoids such infallibility

assumptions. [Analogously, the presentation of the Incompleteness Theorem (Gödel

1931) neither discusses details of nor cites references to the Richard paradox or the

liar paradox, and instead explains that the proof of that theorem is related to a non-

rigorous argument based on the phrase ‘‘this statement is not provable’’.]

The article is organized into sections as follows. ‘‘Brief Summary of the

Comprehensibility Theorem’’ briefly summarizes the Comprehensibility Theorem.

‘‘Significance of Halting Problems’’ provides insight into the significance of halting

problems, since the theorem relates to solving such problems. ‘‘A Treatment

Avoiding Infallibility Assumptions, But Lacking Rigor’’ presents a non-rigorous

argument providing intuitive motivation for the mathematical model. ‘‘The

Mathematical Model’’ explains the construction of that model and ‘‘How the

Comprehensibility Theorem Fits into the Model’’ looks at how the theorem fits into

the model. ‘‘Applying the Comprehensibility Theorem to Real-World Agents’’

examines the application of the theorem in the real-world. ‘‘Questions About the

Model and the Comprehensibility Theorem’’ addresses many questions about the

theorem. (The author thinks those are likely the questions of broadest interest; the

Electronic Supplement’s sections address additional questions, cited within this

article as ES1, ES2, etc.) ‘‘Conclusions’’ presents conclusions.

Each heading later in the article for the above sections appears in boldface. This

article also contains over two-dozen sections whose headings do not appear in

boldface. The Electronic Supplement contains an outline that includes the headings

of all sections in this article.

Brief Summary of the Comprehensibility Theorem

The theorem is unlike theorems of Gödel and Turing. Rather than being about

incompleteness or unsolvability, it is about the ability of an agent to make certain
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deductions. The gist of the theorem is as follows, where A is an agent and S is

software:

If A can correctly deduce correctness-related properties of S, then A can

correctly deduce S does not have A ’s capability for solving halting problems.

Roughly speaking, saying ‘‘A can correctly deduce correctness-related properties of

S’’ means A can yield certain proofs in a formal system F, concerning S’s ability to

solve halting problems, and saying ‘‘S does not have A’s capability for solving

halting problems’’ means there is a halting problem that A settles correctly and

deductively but S does not settle correctly. The formal system F is required to be

‘‘adequate’’. Questions related to halting problems as well as attempts at formal

proofs are coded as natural numbers, and an agent in this context is represented by a

function A from a set of natural numbers to the set of natural numbers.

Although the proof of the theorem in Charlesworth (2006) is entirely about the

ability to make deductions, that article uses the word ‘‘understand’’ in the statement

of the theorem. To achieve greater clarity the present article avoids using that word

in the theorem. (That word does appear in this article, related to quotes of Saunders

Mac Lane, Donald Knuth, and Douglas Hofstadter, in our sections ‘‘Hilbert’s

Thesis’’, ‘‘Are Deductions About Scientific Phenomena Related to Deductions

About Computer Programs?’’, and ‘‘Is Gödel’s Second Incompleteness Theorem

Mathematically Relevant to the Mind?’’.)

The above summary is vague. To avoid well-known pitfalls of paradoxical

reasoning, crucially needed are mathematical definitions of such terminology as

‘‘agent’’, ‘‘correctly deduce’’, and ‘‘adequate’’. The next two sections provide what

we hope is substantially more-helpful motivation for the definitions (and proof of

the theorem), than that given by Charlesworth (2006). Those definitions then appear

in ‘‘The Mathematical Model’’ section.

It is important to interpret technical results—such as about AI ‘‘belief’’ nets,

‘‘expert’’ systems, and ‘‘knowledge’’ bases investigated in other articles, and about

‘‘agent’’, ‘‘correctly deduce’’, ‘‘adequate’’, etc., in this article related to the

Comprehensibility Theorem—using their accompanying definitions and construc-

tions rather than other possible interpretations of the same words. It is also

important to distinguish between the concepts of truth and provability; see the end

of section ‘‘Gödel’s Second Incompleteness Theorem is a Halting Problem Result’’.

Significance of Halting Problems

As indicated above, the theorem is specifically related to solving halting problems.

How significant are halting problems? One can obtain insight by considering halting

problems in mathematics and in logic.

Some Results and Conjectures that are Halting Problems

Perhaps the two most highly publicized mathematical results of the last half of the

twentieth century were the proofs of the Four Color Theorem and Fermat’s Last
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Theorem. This section shows how a simple counterexample-seeking approach easily

enables one to see that these two theorems concern halting problems.

The Four Color Theorem asserts that each flat (‘‘planar’’) map is colorable using

four colors so adjacent countries have different colors; equivalently, each planar

graph is colorable using four colors so adjacent vertices have different colors. It is

straightforward to construct software that generates the planar graphs using

Kuratowski’s theorem (van Lint and Wilson 1992), tries all possible combinations

of a particular set of four colors on each so as to satisfy the stated constraint, and

halts if and only if it finds a graph that cannot be so colored. The Four Color

Theorem is equivalent to saying that the software just described fails to halt.

For Fermat’s Last Theorem, the search program seeks an example of four

positive integers a; b; c; and n, with n [ 2, such that an þ bn ¼ cn, and uses a

dovetailing approach in which the upper limit on the size of the four integers begins

at 3 and is incremented after exhaustive search at each previous value of that limit.

Such a program PF can be less than two-dozen lines, written in a high-level

programming language. Yet it took mathematicians over 350 years to show that

there are no such positive integers (equivalently, that PF fails to halt).

Someone limited to the demonstrated ability of Fermat, who in 1637 made his

assertion that there are no such integers, would assert that PF fails to halt, which is

correct, assuming the proof of Fermat’s Last Theorem by Andrew Wiles (1995) is

correct. But that does not show that Fermat, who published no proof of his assertion,

could ‘‘correctly deduce’’ his assertion, according to the customary meaning of that

phrase. Part of the mathematical model is motivated by the fact that it was his proof

that demonstrated Wiles made such a correct deduction.

One can use the same counterexample-seeking approach to see that some well-

known unsolved problems—such as the conjecture that there are no odd perfect

numbers and Goldbach’s conjecture—are also halting problems. The point here is to

gain insight into the significance of halting problems, rather than to suggest that

counterexample-seeking programs provide an effective way to settle such conjec-

tures. (See the end of section ‘‘Hilbert’s Thesis Implies Each Rigorous Math

Conjecture is a Halting Problem’’.)

It is not possible to use the simple counterexample-seeking approach of this

section to view all mathematical conjectures as halting problems. Consider, for

instance, the twin prime conjecture: there are infinitely many pairs of primes, such

as 3 and 5, that are successive odd integers. (The simple approach does not suffice

because the twin prime conjecture is not a P0
1 problem; see ES9.)

Gödel’s Second Incompleteness Theorem is a Halting Problem Result

This section further explains the importance of halting problems, by indicating how

one can view as a halting problem result Gödel’s Second Incompleteness Theorem,

which implies Gödel’s Incompleteness Theorem and is thus perhaps the most

significant theorem of logic. We begin with a brief review of Peano arithmetic,

which is used throughout the rest of the article.

The reader is warned that we shall use the adjective ‘‘formal’’ as logicians use

it, to mean ‘‘based solely on form’’. (In contrast, many technical articles use that
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adjective as just a synonym for ‘‘mathematical’’, when giving what they call ‘‘a

formal definition’’.) Peano arithmetic (PA) is a formal system that is first-order—

its formal language has computer-checkable syntax rules and permits just a single

variable type—whose axioms express relationships among logical symbols,

including ¼, as well as among the symbols 0, þ, s, �, and \. For instance,

an axiom of PA is 8xðxþ 0 ¼ xÞ. A formal proof in PA is a finite list of

sentences of PA each of which either is an axiom of PA or follows via a rule of

inference of PA from preceding sentences in the list. A formal theorem of PA is

a sentence that occurs as the last member of at least one formal proof in PA.

The (non ‘‘formal’’) standard interpretation, N , of PA is the interpretation of

the formal language in which each variable represents a non-negative integer, 0

represents zero, þ represents addition, s represents successor (s0 represents one,

ss0 represents two, etc.), � represents multiplication, \ represents less-than, and

the logical symbols also have their usual interpretations, for instance, : represents

negation. To illustrate this, when the axiom 8xðxþ 0 ¼ xÞ is interpreted via N
and then expressed in English, the result is the assertion that the sum of any non-

negative integer and zero is equal to the non-negative integer itself.

This article assumes all axioms of PA are true (according to N ) and all rules

of inference of PA preserve truth, and hence that PA is sound; that is, all the

formal theorems of PA are true. As explained in ‘‘How Can One Assume that a

System Used by an Agent is Sound Without Assuming Agent Infallibility?’’, this

widely-accepted soundness assumption is altogether different from assumptions

about the infallibility of agents. To say PA is consistent means there is no

sentence A in the language of PA such that both A and :A are formal theorems of

PA. It follows from the soundness of PA that PA is consistent.

The set of formal theorems of PA is computably enumerable. This follows from

a well-known dovetailing argument based on two facts: (1) there is an algorithm

to generate the axioms of PA and (2) for each rule of inference of PA there is an

algorithm to carry out the effect of that rule. Thus, there is a Turing machine S

that takes as input the code for any sentence A of PA and exhaustively seeks a

formal proof of A, halting if and only if it finds such a formal proof. Gödel proved

there is a sentence ConPA in PA whose meaning under N is that PA is consistent,

whose truth we assume as explained above. When applied to PA, Gödel’s Second

Incompleteness Theorem states that ConPA is not provable in PA. That is

equivalent to saying: S, when given as input the code for ConPA, fails to halt. It is

this sense in which one can view Gödel’s Second Theorem as a halting problem

result.

The preceding paragraph also provides an example that helps us emphasize the

difference between truth and the concept of provability in a formal system:

Assuming the consistency of PA, ConPA is true according to N but, by Gödel’s

Second Incompleteness Theorem, ConPA is not provable in PA. The Comprehen-

sibility Theorem is about the concept of provability.
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Hilbert’s Thesis

The current standard criterion for a proof to be considered mathematically

‘‘rigorous’’ is that it can be carried out in principle within the constraints of

Zermelo-Fraenkel set theory, abbreviated ZF. Many working mathematicians

extend this to include the Axiom of Choice, to get the system ZFC, whose

consistency is implied by the consistency of ZF, according to a theorem of Gödel.

(The distinction between ZF and ZFC is not important in this article.) In the words

of Saunders Mac Lane:

Proof in Mathematics is both a means to understand why some result holds

and a way to achieve precision. As to precision, we have now stated an

absolute standard of rigor: A Mathematical proof is rigorous when it is (or

could be) written out in the first-order predicate language Lð2Þ as a sequence

of inferences from the axioms ZFC, each inference made according to one of

the stated rules. (Mac Lane 1986 p. 377)

Hilbert’s Thesis is the assertion that each provable mathematical statement can

be expressed in the first-order language of set theory and has a formal proof in ZF

(or in ZFC); for example, see (Hodel 1995 p. 263), which also observes:

Isolating the axioms of Zermelo-Frankel set theory is a remarkable and

outstanding achievement. The formal system ZFC is a clear, precise answer to

this question: What logical axioms, rules of inference and nonlogical axioms

suffice to derive the theorems of modern mathematics?

The typical mathematician assumes Hilbert’s Thesis as a working hypothesis,

pursuing mathematical results while accepting the current standard criterion for

rigor as the requirement on all rigorous proofs, and also assumes as a working

hypothesis that ZF is consistent. The typical mathematician is not actually

concerned about the rigorous formal foundations of that discipline. But it is possible

for one to view the research of the typical mathematician as a process that proceeds

by adopting the working hypothesis that ZF is consistent and then seeks proofs of

conjectures, where the proofs are formalizable in principle within ZF. Of course, a

proof of a counterexample is itself a proof of a conjecture.

It is important here to mention that, although the proof of the Comprehensibility

Theorem itself is formalizable in principle in ZF, it does not assume that all proofs

must be formalizable in ZF. This article aims to be as broadly applicable and as

independent of points-of-view as feasible: We do not assert that assuming Hilbert’s

Thesis is the only reasonable approach, that the only reasonable formalization of a

problem must be within ZF, or even that all acceptable mathematics must be

formalizable in principle within a system whose formal theorems are computably

enumerable; see ES9.

Hilbert’s Thesis Implies Each Rigorous Math Conjecture is a Halting Problem

It is easy to see that the formal theorems of ZF, like those of PA, are computably

enumerable. Let SZF denote a Turing machine that takes as input the code for any
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sentence A of ZF and exhaustively seeks a proof of A in ZF, halting if and only if it

finds such a formal proof. The construction of SZF is like that of S in ‘‘Gödel’s

Second Incompleteness Theorem is a Halting Problem Result’’, except use the

axioms and rules of inference of ZF instead of those of PA.

To further indicate the importance of halting problems, this paragraph shows that

it follows from Hilbert’s Thesis that each rigorous mathematical conjecture is a

halting problem. Assume Hilbert’s Thesis. Let c be any conjecture in mathematics,

and let Ac be a sentence within ZF that expresses c. The conjecture c can be any

already-settled result, such as Fermat’s Last Theorem; the conjecture c can also be

any unsettled claim, such as the twin prime conjecture, the conjecture that P 6¼ NP,

and any probabilistic conjecture expressible in ZF made by a robot about a possible

consequence of that robot’s current assumptions, plans, and percepts. The problem

of proving c in ZF is equivalent to the halting problem: does SZF halt when given as

input the code for Ac? That is, a ‘‘rigorous’’ proof of the ‘‘yes’’ answer to the just-

stated halting problem is equivalent to a ‘‘rigorous’’ proof of c. (Also note that for

any particular c one can embed Ac within SZF to obtain a Turing machine Pc with a

blank input tape whose halting problem yes-no answer, if affirmative, is equivalent

to proving c.)

Continue to assume Hilbert’s Thesis through the current paragraph. It is possible

that neither Ac nor its negation can be proven within ZF; that is, that Ac is

‘‘undecidable’’ in ZF. Even that possibility itself is also equivalent to a halting

problem. To see this, consider the modification of SZF that halts if and only if it finds

a formal proof either of Ac or of :Ac. An example of such an undecidable sentence

in ZF—and hence an undecidable conjecture in rigorous mathematics—is the

Continuum Hypothesis CH, which asserts that for every infinite subset of the set of

real numbers there exists either a one-to-one correspondence between that subset

and the set of natural numbers or else there exists a one-to-one correspondence

between that subset and the set of real numbers.

Princeton professor John J. Burgess has written:

The mathematical community as a whole has … abandoned any attempts to

solve by mainstream methods a question mathematical logicians have inferred

to be undecidable. The work of the few who are exceptions to this

generalization bears all the signs of being the work of crackpots. (Burgess

1992)

The present author prefers avoiding the word ‘‘crackpots’’ to describe people, but

the above quote helps indicate the very strong acceptance of Hilbert’s Thesis. (As

mentioned at the end of the preceding section, the current article aims to be as

broadly applicable as possible, and does not assume Hilbert’s Thesis is the only

reasonable approach.)

Before leaving this discussion of Hilbert’s Thesis, we should point out that this

article does not confuse the formalization of a conjecture with the formalization of

the provability of a conjecture; see ES9.

We also point out that there are many important historical examples where an

effective framework into which to translate a mathematical problem is quite

different from that of the initial problem itself. For instance, algebraic geometry is
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used in the proof of Fermat’s Last Theorem by Wiles (1995), which solves a halting

problem, even in the non-formal sense of section ‘‘Some Results and Conjectures

That Are Halting Problems’’. Thus, investigating the software Pc directly need not

be an effective way to settle the conjecture c, and an exhaustive search for a proof in

ZF seems an unreasonable way to prove a result, even though the latter is

guaranteed to succeed any time such a proof exists, assuming one could carry out a

huge number of steps flawlessly (an assumption avoided in this article).

A Game Based on Solving Halting Problems

The most fundamental of concepts are those arising in a variety of contexts. That is the

case for halting problems. As just explained, Hilbert’s Thesis—assumed as a working

hypothesis by nearly all mathematicians—implies that each rigorous mathematical

conjecture is equivalent to a halting problem. Without using formal logic, ‘‘Some

Results and Conjectures That Are Halting Problems’’ explains how it is easy for one to

view as halting problems two highly publicized mathematical results of the latter half of

the twentieth century. Douglas Hofstadter (1982) asserts that ‘‘the ability to break out of

loops of all types seems the antithesis of the mechanical’’. Roboticist Hans Moravec

(1992) speculates on the usefulness of giving a robot a primitive consciousness-like

ability via a heuristic infinite loop detector: ‘‘If you have a maze-running robot, if it has

any way of discovering that it’s just repeating its actions, then you have some way of

getting out of that loop.’’ Moreover, solving halting problems can enhance the success

of commonly used operating systems and other practical software; a team coordinated

by Microsoft Research, Cambridge, has recently developed software that discovers

halting proofs for some practical operating system programs (Cook et al. 2006) and, in

the opposite direction, another team has recently developed software that discovers

non-halting proofs for some practical programs including a permissions-controller for

memory-protection in an operating system (Gupta et al. 2008). (See ES3 and ES4; the

proofs mentioned in the preceding sentence are not formal proofs, but see ‘‘Is it

Necessary to Expect an Agent to Give Formal Proofs?’’.)

Due to the fundamental nature of halting problems, it is reasonable when

constructing a mathematical model related to intelligence to consider a facet of

intelligence related to solving them. Intuitively speaking, if an agent possesses

general intelligence, then the agent should perform well in this facet of intelligence;

of course the converse need not hold. The mathematical model underlying the

Comprehensibility Theorem is motivated by focusing on the fundamental capabil-

ities of agents, rather than the relative speeds of agents.

The game in Fig. 1 conveys some intuitive ideas behind the model. Let us call the

game CHESS, an acronym for CHEcking the Stopping of Software, using all capital

letters to distinguish it from the board game of chess. The tie-breaker rule in the last

sentence of that figure can be used when one player does not respond after a long

period of time; a proof that that player will not make the correct decision is

conceivable, for instance, if that player is software that the other player can examine.

The CHESS game requires no infallibility assumption on the players: a player can

make an incorrect decision and a player can also give a proof attempt that is incorrect.

Whether a player has indeed won an instance of CHESS depends on the correctness of
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decisions and sometimes also on the correctness of a proof attempt by a player. Perfect

judgments about correctness may lie beyond human capabilities; the mathematical

model described in ‘‘The Mathematical Model’’ is independent of that issue.

This game is mentioned briefly—as the ‘‘halting problem game’’—in Charlesworth

(2006), but that article lacks the motivation for the proof of the Comprehensibility

Theorem provided by the non-rigorous argument in our next section.

A Treatment Avoiding Infallibility Assumptions, but Lacking Rigor

This section presents a nonrigorous argument related to a particular conjecture. We

then explain why the treatment in this section lacks rigor and does not yield any

theorem.

A Conjecture and a Nonrigorous ‘‘Proof’’

The purpose of this section is two-fold: to explain some intuitive ideas related to the

Comprehensibility Theorem, and to provide an opportunity for pointing out the need

for much greater rigor in this context. The section assumes that one of the two

players in the CHESS game of Fig. 1 is human in nature, but the mathematical

model presented after this section adopts a much more general viewpoint. The

phrase ‘‘actual human’’ appearing in the following conjecture emphasizes the lack

of an assumption that humans are infallible.

Conjecture: If the set A of all actual humans can correctly deduce correctness-

related properties of software S, then A can correctly deduce S does not have

A ’s capability in the CHESS game.

Saying a player A ‘‘can correctly deduce correctness-related properties’’ of

software S (whose output, if any, is an attempt to settle the halting problem for the

corresponding input), intuitively means that, given the source code for S:

1. For each specific input for S: A can correctly deduce whether or not S makes an

incorrect decision and A can provide a correct proof of that deduction.

Each of two players receives the text of a program P that contains no input statements. A player can be
software, robotic, human, or any other kind of agent. Each player tries to decide without external help whether
or not P halts when run, assuming unlimited time and computer memory are available. The possible responses
by the players are:

“Input halts” if the player has decided that P halts
“Input does not halt” if the player has decided that P does not halt
no response if the player has not decided whether or not P halts

A player is permitted to make at most one decision corresponding to the input P . One way a player can win
the game involving P is to make the correct decision and for the other player to make the incorrect decision.
The game has no time limits, but a player can also win by making the correct decision, justifying that decision
with a (correct) proof of its correctness, and also giving a (correct) proof that the other player will not make
the correct decision.

Fig. 1 Rules for the game of CHEcking the stopping of software
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2. For each specific input for S: if S produces output, then A can correctly deduce

that output and A can provide a correct proof of that deduction.

3. A can correctly deduce (and correctly justify its deduction) that for each input of

S that yields output, that output attempts to settle the halting problem for the

corresponding input.

Let us refer to this three-part assumption as the ‘‘correct deduction assumption’’.

By saying a player A can ‘‘correctly deduce that S does not have A’s capability in

the CHESS game’’ we intuitively mean that there exists an instance of the CHESS

game such that A can correctly deduce that S loses to A in that instance of the game.

The rest of this section presents a ‘‘proof’’ of the Conjecture that is a modification

of the proof of the unsolvability of the halting problem. For simplicity, we modify a

concise proof of that result based on the use of a pointer to a subprogram (Dorin and

Toal 1995). The Ada programming language is used here, since it provides a high-

level of support for pointers to subprograms, via its access reserved word.

Suppose A and S satisfy the hypothesis of the Conjecture. We show that S loses to

A in the instance of CHESS played with a particular computer program that we

construct.

We assume without loss of generality that, for any input program P, procedure S

either generates no output or prints exactly one of ‘‘Input halts’’ and ‘‘Input does not

halt’’ and:

prints ‘‘Input halts’’ and halts if S decides that P halts

prints ‘‘Input does not halt’’ and halts if S decides that P does not halt

no response if S cannot decide whether or not P halts

This does not imply that all—or even some particular small fraction—of S ’s

decisions about the halting of programs are correct, which sharply distinguishes the

approach of this game from the approach of standard Gödel-Turing arguments. We

assume without loss of generality that the final statement in S is return; that the first

of the above three actions results from executing Put(‘‘Input halts’’); return; the

second results from executing Put(‘‘Input does not halt’’); return; and the third

either results from executing a return statement without having generated output or

from S’s own failure to halt. Define a function Check with declarations

type AccessToProcedure is access procedure;

function Check (P: AccessToProcedure) return Boolean;

and so that Check(P’access) checks what happens when P is executed, according to

S, and:

returns True if S decides that P halts

returns False if S decides that P does not halt

does not halt if S cannot decide whether or not P halts
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To construct Check from S, first change a procedure into a function, and then

replace each occurrence of Put(‘‘Input halts’’); return; in S by return(True);

replace each occurrence of Put(‘‘Input does not halt’’); return; by return(False);

and replace each remaining return statement by the explicit infinite loop loop null;
end loop;

Now define the procedure CheckMate in Fig. 2. We complete the ‘‘proof’’ by

‘‘proving’’ the claim CheckMate is an instance of CHESS that S loses when playing

A.

We first consider the case in which S prints an incorrect output when presented

with CheckMate. In this case, the correct deduction assumption implies it is possible

for A to both correctly deduce that fact and to correctly deduce what S’s output is (as

well as to correctly prove those deductions). Knowing which of the two outputs is

incorrect enables A to deduce the other output is correct. The italicized claim in the

preceding paragraph thus follows in this case.

Thus we can focus in the rest of the ‘‘proof’’ on the case in which S either prints

the correct output or gives no response when presented with the data CheckMate.

Because of the way Check is constructed from S, Check(CheckMate’access)

either returns the correct boolean value or does not halt. Thus Check(Check-

Mate’access) does not return True, since that would imply that CheckMate halts and

also, due to the way CheckMate is defined, directly cause CheckMate not to halt. It

is also the case that Check(CheckMate’access) does not return False, since that

would imply that CheckMate does not halt and directly cause CheckMate to halt.

Thus Check(CheckMate’access) cannot halt, so the definition of CheckMate makes

it clear that CheckMate itself cannot halt and thus the correct decision in the

instance CheckMate of CHESS is ‘‘Input does not halt’’. Because of the way Check

is constructed from S, it is also clear that S would give no response in the instance

CheckMate of CHESS.

It is possible for the set A of humans to correctly deduce the facts in the preceding

paragraph (since we have just done so), so the italicized claim follows.

The Inherent Lack of Rigor in the Preceding ‘‘Proof’’

The end of the above ‘‘proof’’ depends on the participation of humans inside the

‘‘proof’’. We clarify this point by indicating the sense in which it is possible for A to

construct its proof attempt in the game.

There are three situations A could confront.

1. S prints ‘‘Input halts’’, given input CheckMate, and that is an incorrect

decision. By the correct deduction assumption, it is possible for A to write a

correct proof of that deduction. It is then possible for A to follow up that correct

proof with the decision ‘‘Input does not halt’’, which is correct.

2. S prints ‘‘Input does not halt’’, given input CheckMate, and that is an incorrect

decision. (Is similar to 1.)

3. S does not print incorrect output, given input CheckMate. By the correct

deduction assumption, it is possible for A to give a correct proof of exactly that
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fact. It is then possible for A to extend that proof with the next to last paragraph

of section ‘‘A Conjecture and a Nonrigorous ‘‘Proof’’’’, to obtain the required

proof mentioned in the tie-breaking rule of Fig. 1.

The ‘‘proof’’ of the Conjecture lacks rigor for these reasons:

• The Conjecture and its ‘‘proof’’ both depend crucially on the concept of

‘‘human’’, yet there is no known way to define that concept rigorously; that is, so

that in principle the definition can be given in ZF.

• The statement of the Conjecture and its ‘‘proof’’ both depend on an undefined

concept of a ‘‘correct proof’’.

• The final sentence of the ‘‘proof’’ makes an inherently nonrigorous use of self-

reference in depending on the participation of humans inside the ‘‘proof’’. That

is, the ‘‘proof’’ assumes and uses undefined capabilities of human reasoning.

The risk of using undefined capabilities of human reasoning within an argument

is easy to see. Here is a concise example of a fallacious ‘‘proof’’ in the context of

human deductions, based on the vague concept of ‘‘correctly prove’’ and the

nonrigorous use of self-reference in which humans participate inside the ‘‘proof’’.

Let S be the sentence ‘‘No human can correctly prove that this sentence is true’’, so

that the meaning of S is ‘‘No human can correctly prove that S is true’’.

Claim S is a true sentence and no human can correctly prove that S is true,

demonstrating a limitation to correct human deductions.

Proof: Because of the meaning of S, to prove the Claim it suffices to show that S is

true. But that is clear, since if S were false, then ‘‘Some human can correctly prove

that S is true’’ would hold, which would imply that S is true and that would result in

a contradiction. h

It is easy to see that this ‘‘proof’’ uses fallacious reasoning. If the ‘‘proof’’

supporting the Claim is correct, then the Claim is true and, in addition, some human

(namely the writer) correctly proves that S is true, from which it follows that the

Claim is false, a contradiction.

There are strong similarities between the ‘‘proof’’ of the Claim in the preceding

paragraph and the ‘‘proof’’ given in the preceding section. Attempts to apply

variants of Gödel’s Theorem and/or the unsolvability of the halting problem to an

procedure CheckMate is
begin

if Check(CheckMate’access) then
-- If S decides CheckMate halts, then CheckMate does not halt.
loop null; end loop;

end if;
-- If S decides CheckMate does not halt, then CheckMate halts.

end CheckMate;

Fig. 2 Program used in ‘‘proof’’ of Conjecture
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agent’s ability to deduce properties of software have failed similarly, due to the

logical fallacy in

the idea that it is actually meaningful to talk about ‘‘the method mathema-

ticians use to correctly decide problems’’. Like ‘‘truth’’, this phrase simply

cannot be given an exact meaning which mirrors in every way its informal use,

and assuming it can leads one directly into the kind of incoherence familiar

from the liar paradox (LaForte et al. 1998 pp. 276–277).

Obtaining a proof of a result like the Comprehensibility Theorem, regarding the

ability of agents to make certain deductions about software, requires constructing an

acceptable mathematical model. Even if the goal is to convey just the central ideas

to a broad audience, it is not possible to sketch the above intuitive idea behind such

a proof and leave it at that, since that intuitive idea relies on fallacious logic.

The Mathematical Model

As we have seen, the ‘‘proof’’ in ‘‘A Conjecture and a Nonrigorous ‘‘Proof’’’’ uses a

self-reference argument similar to an argument that produces paradoxical nonsense.

The purpose of that section is to provide intuitive motivation for the mathematical

model presented in this section. This section reviews Turing machines and explains

conventions used in this article. The section then presents a lemma that permits the

model to avoid strong infallibility assumptions on agents, and describes how that

lemma leads to a particular set of true formulas in Peano arithmetic, the formal

system reviewed in ‘‘Gödel’s Second Incompleteness Theorem is a Halting Problem

Result’’. The section then explains how that set of formulas is used in the definition

of ‘‘correctly deduce correctness-related properties’’ in a way that permits the proof

of the Comprehensibility Theorem to avoid the kind of dangerously non-rigorous

reasoning identified in ‘‘The Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’.

Turing Machines and Codes

A standard methodology for avoiding paradoxical nonsense in arguments that

involve self-reference is to provide fully mathematical definitions of all concepts,

and to use a hierarchy of languages. That is the methodology used within the

mathematical model. For instance, it is essential that the model require any ‘‘proof’’

given by a player in the CHESS game of Fig. 1 to be a mathematically-defined

(rather than intuitively-defined) object, namely a formal proof within a formal

axiomatic system. Also, since there is no known rigorous definition of ‘‘human’’, of

necessity the theorem is presented at a higher level of abstraction, so that the

theorem is applicable to agents of any kind.

The S mentioned in the statement of the Comprehensibility Theorem is a Turing

machine. That is appropriate since the Turing machine concept has a simple

mathematical definition, yet captures the input/output capability of partial recursive

functions of natural numbers. As a result, the Turing machine concept captures the

full input/output functional capability—for natural numbers, which as pointed out in
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our next paragraph is no fundamental restriction—of any current concept of

software. The domain, DðPÞ, of Turing machine P is the set of natural numbers n

such that P halts when executed using n as its input; that is, when the contents of the

initial tape for P is the unary code for n and the read head of P is over the leftmost

position in that unary code. Corresponding to each Turing machine P is a natural

number code #P, such that the description of P can be computationally determined

by decoding #P.

Numerical codes permit the use of formulas of PA whose free variables can be

bound to numerals for numbers, and which can thereby represent the formalizations

of halting-related problems; the numeral in PA for a number is the formal notation

for that number. Such codes also permit us to define an agent as simply a function

from natural numbers to natural numbers, which does not restrict applications of the

model, since any discretized input or output of a human, robot, or other system is a

finite string of bits and one can view each finite string of bits as representing a

natural number. This article—unlike (Charlesworth 2006)—eliminates nearly all

explicit notation for the codes of Turing machines and formulas, via the use of

simplified expository conventions explained in the next section. [It is possible to

give a solid proof of a general version of Gödel’s Theorem that entirely avoids

numerical coding. Of necessity, numerical coding plays a more prevalent role in the

mathematical model supporting the Comprehensibility Theorem.]

Conventions

In the halting-problem CHESS game of Fig. 1, each player is given the text of a

program P that contains no input statements. The mathematical model of this game

uses a Turing machine, rather than a program, for P. Also, rather than having a

blank input tape, the Turing machine P has an input tape containing a specific

pattern—denoted as hP;Halt?i—which can be computationally decoded to yield P

as well as an indication that the relevant problem is that of determining whether or

not P halts with input hP;Halt?i. The model supports presenting to an agent five

different kinds of halting-related problems to solve. Let us use the phrase ‘‘the

halting problem for P’’ to mean the problem of determining whether or not P halts

with input hP;Halt?i. There are many ways the coding of hP;Halt?i could have

been achieved, so the choice is relatively unimportant.1

As explained at the beginning of ‘‘Turing Machines and Codes’’, any correct

proof provided by a player in the CHESS game must be modeled as a formal proof.

In particular, the model requires such formal proofs to be given within a system F

that extends PA and satisfies additional properties described in an upcoming section

that defines the concept of an ‘‘adequate’’ formal system. Halting problems are

representable within PA, as now explained. It follows from standard techniques of

logic (Charlesworth 2006 Lemma 7.1) that there is a formula of PA—denoted by

HLT—with two free variables and these properties:

1 For specificity, one can choose to let hP;Halt?i denote the unary code for the number 2#P31, which is

the prime-power code for the ordered-pair ð#P;Halt?Þ, where Halt? denotes the constant 1. Additional

kinds of halting-related problems are supported similarly, using constants 2 through 5, instead of 1.
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1. S with input hP;Halt?i halts iff HLTðS;PÞ is true according to N
and

2. S with input hP;Halt?i halts iff HLTðS;PÞ is a formal theorem of PA,

where HLTðS;PÞ denotes the sentence of PA obtained by substituting the numerals

for the codes of Turing machines S and P into the slots in HLT where the free

occurrences of the two respective free variables occur. For simplicity, unlike

Charlesworth (2006) this article uses notation that suppresses explicit use of

numerical codes: notation such as Fð� � �P � � �Þ, where F represents a formula in a

formal system and P represents a Turing machine, will denote substituting the

numeral for the numerical code for P into the corresponding slots in formula F

where the free occurrences of the respective free variable occur.

For convenience, whenever this article refers to the meaning of a formula of PA,

we assume the use of the standard interpretation N of the language of PA (see

‘‘Gödel’s Second Incompleteness Theorem is a Halting Problem Result’’). Also, the

more concise notation HðPÞ is used for HLTðP;PÞ, and for any Turing machine P

the phrase ‘‘P halts’’ is used as an abbreviation for the phrase ‘‘P with input

hP;Halt?i halts’’. For instance, it follows from these conventions and (1) that the

meaning of the formula HðPÞ is that P halts, and the meaning of :HðPÞ is that P

does not halt, where : denotes negation.

Two requirements on a player that attempts to break a tie in an instance of the

CHESS game are that the player make the correct decision in that instance of the game

and that the player justify that particular decision with a proof of its correctness. To

avoid one kind of infallibility assumption on agents, the model binds that player’s

attempted proof with the decision made by that player. This binding of proof with

decision simplifies the model, by removing the otherwise possible situation—since

infallibility assumptions are to be avoided—that the player makes one decision and

yet that player’s attempted proof of correctness of that decision is actually an attempt

to prove something different, perhaps even the opposite decision!

Let A be a function from a subset of N to N. The function A models an agent for

answering halting problem related questions, in the following way. The value of A
at hP;Halt?i is a decision about hP;Halt?i iff AðhP;Halt?iÞ is a number that (a)

can be computationally decoded in one way to produce exactly one of HðPÞ and

:HðPÞ, for which let us say A with input hP;Halt?i decides that P halts
(respectively, does not halt) and (b) can be computationally decoded in another

way to produce a list of codes of formulas, in a situation where A gives an

attempted proof of the correctness of that decision; if such an attempted proof is

indeed a (correct) formal proof in F, then let us say that AðhP;Halt?iÞ is logically
correct in F. The model supports this two-fold computational decoding in a

straightforward way; the details are relatively unimportant.2 The function A is a

decision system iff for each Turing machine P:

2 In order to be a decision about hP;Halt?i, the model requires AðhP;Halt?iÞ to be the code of a list of

natural numbers of finite length (the length can be 1, such as when A does not attempt a proof) such that

the last member of that list is the code either of HðPÞ or of :HðPÞ, and A’s proof attempt is logically

correct in F iff AðhP;Halt?iÞ is the code of a formal proof of F. To avoid a circular definition of

‘‘adequate’’, the construction of the model does not use the part of this definition depending on the
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hP;Halt?i 2 DðAÞ implies ½AðhP;Halt?iÞ is a decision about hP;Halt?i�.

A Turing machine A is a TM decision system iff A is a decision system. [The

author believes there is no important mathematical difference whatsoever between

the proofs in Charlesworth (2006) and the proofs in this article, although the choice

of terminology is different here. Instead of defining ‘‘decision system’’, that article

defined ‘‘deductive system’’, in a way that would have the effect of requiring a

formal proof by a player regardless of how the player would win the CHESS game

introduced in this article. Also, for greater clarity, this article’s statement of theorem

and proof uses phrases involving ‘‘deduce’’ rather than phrases involving

‘‘understand’’.]

Rigorous Analogues for Both Check and CheckMate

A lemma guarantees a computational way to obtain from any TM decision system P

a Turing machine P0 such that, roughly speaking, the following holds. If P halts

when asked to determine whether or not P0 halts, then P’s decision about that halting

problem is incorrect; furthermore, if P goes into an infinite loop when asked to

determine whether or not P0 halts, then P0 itself does not halt. The relationship

between P and P0 is analogous to the relationship between Check and CheckMate in

the inherently-flawed ‘‘proof’’ of the Conjecture in ‘‘A Conjecture and a

Nonrigorous ‘‘Proof’’’’.

The definition of ‘‘decides’’ in our ‘‘Conventions’’ supports the following

statement of the lemma, which is simpler than that in 7.15 of Charlesworth (2006):

Lemma Let D ¼ f#PjP is a TM decision system}. There exists a Turing machine

G so that D � DðGÞ and for each TM decision system P, the number Gð#PÞ
encodes a TM decision system P0 such that:

(a) if P with input hP0;Halt?i decides that P0 halts, then P0 does not halt

(b) if P with input hP0;Halt?i decides that P0 does not halt, then P0 halts

(c) if hP0;Halt?i 62 DðPÞ, then P0 does not halt.

Like standard proofs of the unsolvability of the halting problem, the proof of the

lemma uses a diagonal argument. Unlike the lemma, standard proofs of the

unsolvability of the halting problem conclude with a contradiction having a form

such as: P0 halts iff P0 does not halt. Also, whereas such standard proofs assume that

100 % of the decisions about halting questions made by a particular Turing machine

P are correct, the proof of the lemma does not assume that even 1 % of P ’s

decisions about halting questions are correct. At first glance, P0 might seem

analogous to a Gödel sentence (a true sentence in a consistent formal axiomatic

Footnote 2 continued

particular system F until after a set of formulas T—that do not depend on F—is defined in ‘‘A Set of

Formulas Supporting a Technical Trick’’. Using a list of natural numbers as described in this footnote is

analogous to late binding within the implementation of dynamic functions in object-oriented languages

(Appel 1998 Sect. 14.2).
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system that is not provable in that system) in attempts to apply Gödel-like results to

the comprehensibility of software by an agent, but such an analogy overlooks the

above italicized point. Such attempts are based on investigating the consequence of

assuming that an agent reasons using (correct) formal proofs and that the agent’s

reasoning system itself is consistent. Thus, such attempts assume the agent’s

reasoning is infallible in a strong way, since they assume the agent is never

inconsistent. (See ES6.)

To see how the lemma avoids infallibility assumptions, notice that for each of

parts (a) and (b) there exists a highly-fallible Turing machine that satisfies the

hypothesis of that part; in fact, that makes infinitely many incorrect decisions about

halting questions. A simple such P for which the hypothesis of (a) holds is the

Turing machine that, for each Turing machine Q, takes input hQ;Halt?i and

produces as output the code for the list whose only member is the code for HðQÞ.
Changing H to :H in such an example yields a simple such P for which the

hypothesis of (b) holds. It is also easy to give an example for which the hypothesis

of (c) holds: just consider a Turing machine P that, for each Turing machine Q,

takes input hQ;Halt?i and fails to halt.

The rest of the article uses the prime notation on a TM decision system, and

applies the properties of that notation given by the lemma.

Arithmetization

As explained in our ‘‘Conventions’’, halting problems are formalizable in PA. Our

section ‘‘A Set of Formulas Supporting a Technical Trick’’ will explain how

additional aspects of the halting-problem CHESS game of Fig. 1 are also formalizable

in PA. Many AI researchers are more familiar with other technical mathematics than

with formal Peano Arithmetic. Thus, prior to explaining the model’s additional use of

formal logic shortly, we provide a well-known analogy. Ancient geometers might find

surprising the investigation of geometrical figures since the time of Descartes, due to

its use of algebraic expressions. The use of such analytic geometry is called the

‘‘arithmetization of geometry’’, because a key step of analytic geometry is translating

geometrical properties into real-number arithmetical properties.

A seminal innovation of Gödel was the analogous arithmetization of metamath-

ematics, in which properties relating to formal systems are translated into natural-

number properties that, in turn, are formalizable in systems such as PA. This

permitted Gödel to treat mathematically the idea expressed by the assertion ‘‘this

statement is not provable’’, using methodology avoiding the non-rigorous reasoning

that results from examining the truth of the assertion ‘‘this statement is false’’. That

enabled Gödel to prove his Incompleteness Theorem in an acceptable mathematical

way.

Similarly, this article’s approach—unlike that of Charlesworth (2006)—explains

how the dangerously non-rigorous treatment of the halting-problem CHESS game

in ‘‘A Treatment Avoiding Infallibility Assumptions, But Lacking Rigor’’ can be

replaced by a mathematically acceptable treatment. The next section continues to

introduce notation about formulas in PA that represent concepts in the CHESS
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game. A helpful perspective is to view this as analogous to the way algebraic

expressions are used elsewhere to represent concepts in geometry.

Our exposition will not require readers to master the next section’s details;

whenever we use the notation of that section—such as in our section ‘‘Definition of

‘‘Correctly Deduce’’’’—we accompany its use with a corresponding intuitive

explanation. To have replaced all mention of the notation in the next section with

sketchy exposition would have resulted in a vague and thus inadequate explanation

of the model.

A Set of Formulas Supporting a Technical Trick

A technical trick enables the proof of the Comprehensibility Theorem in

Charlesworth (2006) to avoid the non-rigorous reasoning we sketched in our

section ‘‘The Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’. The trick uses a set

T of true formulas, which we explain shortly. Upcoming sections show how T
supports mathematical definitions of an ‘‘adequate’’ formal system, and of a

‘‘correctly deduce’’ concept like that mentioned in the statement of the nonrigorous

Conjecture in our section ‘‘A Conjecture and a Nonrigorous ‘‘Proof’’’’.

Recalling the game in that Conjecture, the names D, B, and R can suggest

‘‘decision system’’, ‘‘break-tie’’, and ‘‘result’’, respectively. The notation C can

suggest the ‘‘partial correctness’’ terminology used in formal verification, which

means ‘‘not producing incorrect output’’. There are four formulas of PA denoted as

just mentioned such that these properties hold (Charlesworth 2006 Lemma 8.1):

• For each Turing machine P, the formula DðPÞ is true iff P is a TM decision

system. (Recall from our ‘‘Conventions’’ that notation such as DðPÞ suppresses

the explicit use of codes in this article.)

• For each TM decision system P and each Turing machine Q, the formula

BðP;QÞ is true iff the following holds: If P with input hQ;Halt?i halts, then what

P decides about the halting problem for Q is false. (Recall that ‘‘decides’’ is

defined mathematically in our ‘‘Conventions’’.)

• For all Turing machines P and Q and for each formula A in PA, the formula

RðP;Q;AÞ is true iff the following holds: If P with input hQ;Halt?i halts, then

the output is the code of a list of natural numbers whose last member is the code

for A.

• For all Turing machines P and Q and each formula A in PA, if HðP;QÞ ^
RðP;Q;AÞ is true, then RðP;Q;AÞ is a formal theorem of PA. Here ^ denotes the

logical ‘‘and’’ operation.

• For each TM decision system P and each Turing machine Q, the formula

CðP;QÞ is true iff the following holds: If P with input hQ;Halt?i halts, then

what P decides about the halting problem for Q is true.

Formulas D, B, R, and C concern truth according to N , yet the proof of the above in

Charlesworth (2006) avoids conflict with Tarski’s theorem on the undefinability of

truth. That theorem, whose proof is a rigorous reformulation of the liar paradox,
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implies that truth (in full generality) according to N cannot be defined within the

language of PA.

The lemma in ‘‘Rigorous Analogues for Both Check and CheckMate’’ then

implies that, for each Turing machine P, each of the following five formulas of PA

is true:

DðPÞ ! ½:CðP;P0Þ ! HLTðP;P0Þ� ð1Þ

DðPÞ ! BðP;P0Þ ð2Þ

DðPÞ ! ½CðP;P0Þ ! :HðP0Þ� ð3Þ

DðPÞ ! ½:CðP;P0Þ ! ½RðP;P0;:HðP0ÞÞ ! HðP0Þ�� ð4Þ

DðPÞ ! ½:CðP;P0Þ ! ½RðP;P0;HðP0ÞÞ ! :HðP0Þ��: ð5Þ

For instance, the truth of (3) follows from (b) of the lemma together with the

meaning of formula (3), which by expository convention is according to N , and

thus is: If a TM decision system P’s halting with input hP0;Halt?i would imply that

what P decides about the halting problem for P0 is true, then it follows that P0 does

not halt.

The notation T denotes the infinite set of true formulas (1) through (5), where P

ranges over all Turing machines. Formulas of T are written using nested

implications to support a particular role of modus ponens mentioned in ‘‘How the

Comprehensibility Theorem Fits into the Model’’, which is the trick that enables the

proof of the Comprehensibility Theorem to avoid the kind of dangerously non-

rigorous reasoning identified in our section ‘‘The Inherent Lack of Rigor in the

Preceding ‘‘Proof’’’’.

Definition of ‘‘Adequate’’ Formal System

The theorem requires an agent to give its problem-solving proof attempts within an

‘‘adequate’’ formal system F. In order for F to be adequate, the model requires that

T be a subset of the axioms of F, and also that F satisfy the straightforward

requirements in the rest of this paragraph. It must be an extension of PA; that means

that each formula (respectively, axiom, rule of inference) of PA is a formula

(respectively, axiom, rule of inference) of F. Each sentence of PA that is a formal

theorem in F must be true. Finally, each formula A of F must have a Gödel code #A

so that the function that maps A to #A and its inverse are computable, and when A is

also in the language of PA, the code for A must be the same as PA’s code for A.

Adequate formal systems can differ sharply from one another. The simplest is

obtained by adding the formulas of T to the axioms of PA; its set of theorems is

computably enumerable, because the lemma in ‘‘Rigorous Analogues for Both

Check and CheckMate’’ guarantees an algorithm that takes any Turing machine P as

input and constructs the formulas of T corresponding to P. Since the formulas of T
are true, our assumption that PA is sound implies the truth of each sentence of PA

that is a formal theorem of that system. One example of an adequate system whose
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set of theorems is not computably enumerable results from adding all true formulas

of PA to the set of axioms of PA. Another example whose set of theorems is not

computably enumerable results from extending PA in the natural way by adding the

symbol 2 and letting the axioms be those of Zermelo-Fraenkel set theory (ZF)

together with all true formulas of PA; the requirement about the truth of each

sentence of PA that is a formal theorem of this system goes beyond the assumptions

needed to prove the Comprehensibility Theorem.

In principle, one can state the Comprehensibility Theorem and carry out its proof

within ZF, thereby satisfying the current standard criterion for rigor, without the

need for assuming the consistency of ZF or the need for defining within ZF the

details of each specific F that satisfies the requirements for being adequate.

Definition of ‘‘Correctly Deduce’’

The nonrigorous definition of ‘‘correctly deduce’’ in our section ‘‘A Conjecture and

a Nonrigorous ‘‘Proof’’’’ has three parts. The model provides not only a

mathematical way to restate those three parts, it supports a fourth part that enables

the proof of the theorem to avoid the kind of dangerously non-rigorous reasoning

identified in our section ‘‘The Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’.

Let A be a function from natural numbers to natural numbers, so that A models

an agent. Let F be adequate. Let S be a TM decision system; thus S has the property:

for each halting problem input of S for which S produces output, that output

attempts to settle the halting problem for the corresponding input. The definition of

‘‘A can correctly deduce correctness-related properties of S’’ has four parts,

where A gives its correct proofs within F:

• Part (1). For the halting problem related to any software P: A can correctly

deduce whether or not S makes an incorrect decision and A can provide a correct

proof to support that deduction.

More precisely, AðhS;P;Correct?iÞ yields a formal proof in F either of CðS;PÞ
or of :CðS;PÞ. Saying A with a certain input ‘‘yields a formal proof’’ of some

formula A means that A’s output is the code for a list of codes of formulas such

that that list is a formal proof whose last formula is A. Here hS;P;Correct?i
denotes Turing machine input that can be computationally decoded3 to yield S

and P together with an indication that the relevant problem is partial correctness,

mentioned in ‘‘A Set of Formulas Supporting a Technical Trick’’.

• Part (2). For the halting problem related to any software P: if S produces output

for that problem, then A can correctly deduce that output and A can provide a

correct proof to support that deduction (if such a correct proof is possible in F).

More precisely, if there is a formal proof in F either of RðS;P;HðPÞÞ or of

RðS;P;:HðPÞÞ, then AðhS;P;Result?iÞ yields such a formal proof.

3 As explained in footnote 1, one can choose to use prime-power coding, so that hS;P;Correct?i denotes

2#S3#P52. That last exponent is 2 since Correct? represents the constant 2. Similarly, one can code the

three other halting-related problems, mentioned shortly, by letting Result? represent 3, Decision?
represent 4, and BreakTie? represent 5.
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• Part (3). A can correctly deduce (and correctly prove its deduction) that for each

halting problem input of S for which S produces output, that output attempts to

settle the halting problem for the corresponding input.

More precisely, AðhS;Decision?iÞ yields a formal proof in F of DðSÞ. (Recall

that DðSÞ is indeed true, since S is a TM decision system.)

• Part (4). For each P, the agent A can also obtain additional correct deductions

about S and P requiring no more than three additional applications of modus

ponens.

More precisely, for each P, consider the set containing the axioms in T and the

(at most three) formal theorems related to S and P resulting from Parts (1)

through (3). Whenever it is possible to obtain a formal theorem about S and/or P

from that set using at most three additional applications of modus ponens, A can

yield a proof of that formal theorem. By a formal theorem ‘‘about S and/or P’’ is

meant a formal theorem HðPÞ or :HðPÞ or a formal theorem that results from

substituting S and P, in that order, into B, :B, HLT , or :HLT .

Part (4) requires, for each P, that A can generate a few algorithmically-

obtainable (see ‘‘Rigorous Analogues for Both Check and CheckMate’’) members of

T and that A can at least obtain results related to S that a system using relatively

modest mechanical deductions could deduce.

It is the role that T plays in Part (4) that permits the proof of the

Comprehensibility Theorem to avoid the fallacious kind of self-reference identified

in our section ‘‘The Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’. Also, when

an agent A satisfying the above definition makes a deduction, the axioms in T are

there to help. Thus A need not derive—from the axioms of PA—the formulas of F

contained in T , which are true according to N regardless of the specific S. This is

analogous to the fact that A need not derive—from more primitive axioms than

those of PA—the first-order induction formulas, which are axioms of PA and which

are true according to N . The fact that the members of T fail to be axioms of PA

merely reflects the needs of the usual applications of PA.

How the Comprehensibility Theorem Fits into the Model

Here is the mathematical statement of the theorem.

Comprehensibility Theorem: Let A any agent, S any TM decision system, and

F any adequate formal system within which all formal proofs are to be given.

If A can correctly deduce correctness-related properties of S, then A can

correctly deduce S does not have A ’s capability for solving halting problems.

The theorem’s statement uses the preceding mathematical definitions plus the

phrase ‘‘A can correctly deduce that S does not have A’s capability for solving

halting problems’’. That phrase is roughly defined to mean there is an instance of the

CHESS game for which A can make (and prove the correctness of) a correct
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decision and also can give a correct proof that S cannot make a correct decision.

More precisely, that phrase is defined mathematically to mean there exists a Turing

machine P such that AðhP;Halt?iÞ yields a formal proof of the true one of HðPÞ and

:HðPÞ, and in addition, such that AðhS;P;BreakTie?iÞ yields a formal proof of

BðS;PÞ.
We can now sketch the theorem’s proof that appears in Charlesworth (2006) as

follows: Let A and S satisfy its hypothesis, and take P in the definition of ‘‘can

correctly deduce correctness-related properties’’ to be S0. Applying the relationship

between T and Part (1) through Part (3), one can use Part (4) to prove that three

applications of modus ponens enable A to generate the formal proofs needed to

satisfy the theorem’s conclusion.

The Comprehensibility Theorem is an implication relating two kinds of

deducing: roughly, if an agent A deduces some correctness-related properties of

S, then A also deduces an intelligence-related limitation of S. The theorem requires

correctness of A as that relates just to the specific S. All other formal proof attempts

by A can be incorrect, and there can be infinitely many such attempts. But A’s

deductions about S must be correct regardless of how many inputs to S affect the

output of S, and for some S there are infinitely many such inputs. [ES10 explains

how the correctness requirement on A could be greatly reduced.]

Applying the Comprehensibility Theorem to Real-World Agents

This section examines the application of the Comprehensibility Theorem to real-

world agents, without requiring that such agents satisfy computability or infallibility

properties. The description in this section is unconventionally precise. Our later

section ‘‘Is it Necessary to Expect an Agent to Give Formal Proofs?’’ employs the

kind of less-precise terminology commonly used in real-world situations.

Turing’s Assumption About Real-World Agents

Like any other real-world application of mathematics, such as applying a theorem

about differential equations to the flight of a rocket, the application strategy we

describe cannot be fully mathematical, since no one has ever given a fully

mathematical definition of any real-world object. Similarly, in explaining how the

kind of abstract mathematical machine Alan Turing defined captures essential

aspects of the real-world concept of computation, he made the following non-

mathematical assumption, where by ‘‘computing’’ he meant computing by real-

world (in particular, human) agents:

Computing is normally done by writing certain symbols on paper. We may

suppose this paper is divided into squares like a child’s arithmetic book. In

elementary arithmetic the two-dimensional character of the paper is

sometimes used. But such a use is always avoidable, and I think that it will

be agreed that the two-dimensional character of paper is no essential of

computation. I assume then that the computation is carried out on one-

The Comprehensibility Theorem 461

123



dimensional paper, i.e., on a tape divided into squares. I shall also suppose that

the number of symbols which may be printed is finite. (Turing 1936)

For convenience, we adopt Turing’s assumption that there exists such a one-

dimensional paper tape in the real-world. Without loss of generality we further

assume there are just two kinds of symbols that may be printed on the paper. To the

extent that space on the paper tape permits, the unary code for a natural number can

be printed on the paper, with multiple such codes separated by single blank squares.

Also, without loss of generality, we may further assume that one of the squares of

the paper is designated as the origin, so that (to the extent that space on the paper

tape permits) the list of input numbers appears in order left-to-right as a FIFO queue

to the right of that square, and the list of output numbers appears in order right-to-

left as a FIFO queue to the left of that square.

Notice that here we are not using such conventions as they are routinely used

when employing abstract mathematical Turing machines to prove theorems in the

theory of computation. Instead, here we are pointing out that a particular generally-

accepted assumption of Turing (which we adopt for convenience) justifies the

existence in the real-world of a physical system that receives a given natural

number from a FIFO input queue and permits the recording of a corresponding

official output so there is a FIFO output queue.

In our subsequent description of the use of the two queues, we do not assume that

the one-dimensional real-world paper tape described by Turing is infinite in extent.

There will be no problem with our subsequent description, for instance, if there are

single numbers too large to appear as inputs, and there will be no problem if there is

inadequate space for some or all of the output.

Applying Turing’s Assumption to the Comprehensibility Theorem

Let A denote a single agent, in the real-world sense of ‘‘agent’’; that is, let A be a

real-world system that consists of one or more robots, supercomputers, humans,

humans with surgically-implanted silicon memory chips, and so forth.

Here is how A is modeled as a function AA. The set A receives from the input

queue a natural number n, where n is a code for a halting problem. For simplicity,

this paragraph assumes this is the first input equal to n received by A. Until A

subsequently produces two official outputs in the required form that correspond to n

(additional details are given later in this paragraph), the set A is not permitted to

receive any additional input. After receiving n, the set A can attempt to decode n to

obtain the statement of the problem to solve; it is not necessary to assume A

accomplishes such decodings flawlessly. When—if ever – A is ready to indicate a

result, it produces two official outputs: the value of n immediately followed by the

value of A’s attempted code for an attempted formal proof to settle the particular

problem.

The value of AAðnÞ—if it exists—is the official natural number output—if there

is such an output—produced by A that immediately follows the first output of n

produced by A, after the first input equal to n received by A. Because of the

requirements related to ‘‘first’’, even if A ‘‘changes its mind’’ (whatever that might
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mean) and produces—after its first input equal to n—numerous official outputs

paired with n at different times, AA as just defined is a mathematical function. This

application strategy defines a function AA from a (possibly empty) subset of the

natural numbers to the natural numbers without requiring the computability or

infallibility of A, and one can apply the theorem to AA. (For other possible

application strategies, see ES1.)

The description in this section places a priority on clarity, through the use of a

highly restrictive rule that prohibits A from receiving any input during the time

interval between when it first receives the input n and when it subsequently

produces its two official outputs corresponding to n. This rule prevents A from

‘‘solving’’ the problem related to n by simply using the content of an additional

input during the time it is trying to solve the given problem. Of course, such an act

would not be compatible with the intuitive meaning of ‘‘correctly deduce’’. To

notice the kind of difficulty avoided here, observe that the natural number code for a

formal proof that solves the problem related to n could appear as a number used

within a particular Turing machine related to another problem that is coded in an

additional natural number input.

A Closer Look at the Preceding Description

We now examine more closely what it means for some of the assumptions

mentioned above to be satisfied in real-world situations. First note that the definition

of a mathematical agent used in the theorem is an abstract function, so it is only

necessary to show how to obtain a mathematical function—rather than a computable

function—from a real-world situation.

Note that there is no effect on the value AAðnÞ if, between receiving its first input

of n and producing the two official corresponding outputs in the required form, the

set A produces other official outputs related to other work accomplished by A, as

long as no such additional output affects directly or indirectly—such as by causing

the interleaving of digits of two official outputs—either the first official output of A

equal to n itself or the official output that immediately follows the first official

output of A equal to n.

Also note that the Comprehensibility Theorem, like any theorem, can be written

in the form (p implies q). Each application of such a theorem can be written as:

h implies (�p implies �qÞ,
and as:

(h and �p) implies �q,

where hypothesis h is the conjunction of some necessarily non-mathematical

assumptions about the real-world situation, and where �p and �q are the interpretations

of p and q in the real-world situation. To apply the Comprehensibility Theorem, one

states within h the real-world assumptions specific to the constituents of A and the

functioning of the input and output queues. One obtains �p and �q by replacing agent

A in each of p and q by AA. The effect is to rephrase statements about values of A
as statements about A and the input and output queues.
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Next note that in any situation for which (h and �p) is true, the conclusion �q is also

true, regardless of whether any entity is aware that (h and �p) is in fact true. The

nebulous concept of ‘‘awareness’’ is factored out of the Comprehensibility Theorem.

This is, of course, the case for customary applications of mathematics. One can

apply a theorem about differential equations to the astronomy of an unobservable

region of the universe: the (h and �p) in such an application can be true, and

consequently the �q can be true, regardless of whether any entity is aware of the truth

value of (h and �p).

We now examine more closely the restrictive rule that prohibits A from receiving

any input during the time interval between when it first receives the input n and

when it subsequently produces its two official outputs corresponding to n. Although

some real-world situations might permit this rule to be enforced in a computable

way, that is not actually required. Outputs that violate the restrictive rule simply fail

to be official outputs, and this is the case regardless of whether any entity is aware

whether or not any particular output is official. As an example, here is a paraphrase

of the application of Part (1) of the definition of ‘‘correctly deduce’’ to a specific A,

S, and P: if, upon receiving its first input of hS;P;Correct?i and before receiving

any further inputs the real-world agent A produces the output hS;P;Correct?i and its

first such output is immediately followed by an output that is the code for the

particular kind of list of codes specified in Part (1), then in performing that action

AðhS;P;Correct?iÞ ‘‘yields a formal proof in F either of CðS;PÞ or of :CðS;PÞ’’.
One can apply the theorem to A, regardless of the real-world systems constituting

A. If A fails to satisfy the �p for a theorem, that theorem holds by default for A. (Some

practical agents that satisfy the hypothesis of the theorem are considered in ES3.)

But one must interpret the theorem with care. For example, let H [ C consist of a

specific set of humans and a specific computer, where C could assist in the—not

necessarily infallible—decoding and encoding, it could facilitate developing formal

proofs from nonformal proofs, and it could check cases that arise within a proof, like

the extensive computerized case-checking in the first proof of the Four Color

Theorem (Appel and Haken 1976), which solves a halting problem as pointed out in

‘‘Some Results and Conjectures That Are Halting Problems’’. If AH[C is used in the

hypothesis of the theorem, it (and not AH) must be used in the conclusion of that

application as well. The Comprehensibility Theorem gives: ‘‘if AH[C can correctly

deduce correctness-related properties of S, then AH[C can correctly deduce that S

does not have AH[C’s capability for solving halting problems’’.

Questions About the Model and the Comprehensibility Theorem

Since they are quite different from standard uses of formal logic, the model and

theorem raise many questions. The preceding part of this article is essential to

facilitate this section and the Electronic Supplement, which address over twenty

such questions. To the best of the author’s knowledge, all sections address

previously-unaddressed questions, except for sections ‘‘How Important is Elimi-

nating Infallibility Assumptions About Intelligent Agents?’’, ‘‘Where Does the

Mathematical Model Avoid Infallibility Assumptions About Agents?’’, ‘‘How Can
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One Assume that a System Used by an Agent is Sound Without Assuming Agent

Infallibility?’’, ‘‘Is An Agent that Makes Mistakes Necessarily Trivial?’’, and ES3

(of the Electronic Supplement), whose questions were addressed in Charlesworth

(2006). Some new explanations appear in each section. Occasionally a discussion

here briefly repeats something elsewhere in this section, to facilitate skipping to

questions of most interest to the individual reader.

How Important is Eliminating Infallibility Assumptions About Intelligent

Agents?

The use of algorithms known to be fallible pervades Artificial Intelligence, often

because of the intractibility of many problems that arises from either the

unsolvability of the halting problem or NP-completeness. One measure of the

pervasiveness of such algorithms is that the index of Russell & Norvig’s AI

textbook lists a dozen places in the book where the word ‘‘heuristic’’ plays an

important (i.e., boldface) role. Also, the Philosophical Foundations chapter of that

book states:

... if anything, humans are known to be inconsistent. This is certainly true for

everyday reasoning, but it is also true for careful mathematical thought. A

famous example is the four-color map problem. Alfred Kempe published a

proof in 1879 that was widely accepted and contributed to his election as a

Fellow of the Royal Society. In 1890, however, Percy Heawood pointed out a

flaw and the theorem remained unproved until 1977 (Russell and Norvig

(2010), p. 1023).

Alan Turing went so far as to assert ‘‘if a machine is expected to be infallible, it

cannot also be intelligent’’ (Turing 1986 p. 124, quote dated 1947). More recently,

Marvin Minsky (Minsky (1995)) has asserted ‘‘There’s no reason to assume ... that

either human minds or computing machines need to be perfectly and flawlessly

logical’’.

Regardless of whether one thinks a highly intelligent, infallible agent can or

cannot exist, it is advantageous—when possible—for a theorem to be independent

of that issue, since such a theorem is a more general result. The Comprehensibility

Theorem achieves that kind of independence.

Before leaving the above question, we should point out that the assertions of

Turing and Minsky above were made in the context of their strong criticism of some

arguments whose goal was to show that software-based human-level AI is

impossible. That goal is not the purpose, and is not achieved by, the Comprehen-

sibility Theorem.

Where Does the Mathematical Model Avoid Infallibility Assumptions About

Agents?

[This part is indebted to Charlesworth (2006) to a much greater extent than the other

parts of section ‘‘Questions About the Model and the Comprehensibility Theorem’’

and the Electronic Supplement.] The model defines an agent’s ‘‘decision’’ about a
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halting problem without requiring the correctness of that decision; that is, without

requiring the truth (according to N ) of the formula that indicates that decision. The

model does not require that a proof attempt by an agent must be logically correct.

The model does not assume that an agent infallibly knows when it has given a

correct decision or made a logically correct proof attempt. The model’s definition of

‘‘correctly deduce’’ and the proof of the Comprehensibility Theorem are based on

the lemma in ‘‘Rigorous Analogues for Both Check and CheckMate’’, which does

not assume that even 1 % of a Turing machine’s decisions about halting questions

are correct. The model’s definition of ‘‘S has A’s capability for solving halting

problems’’ could be satisfied even if S makes incorrect decisions about infinitely

many halting problems. The fact that a real-world agent’s only response that counts

is its first official response (see section ‘‘Applying the Comprehensibility Theorem

to Real-World Agents’’ and ES1) permits a real-world agent to make blatantly

contradictory decisions about the halting of a specific Turing machine, as is also the

case for other questions given to the agent. Our section ‘‘Applying the Compre-

hensibility Theorem to Real-World Agents’’ also explains that the model does not

assume an agent decodes an input number flawlessly; there is an algorithm for the

decoding, but the model does not assume the agent carries out that algorithm

flawlessly.

The lack of infallibility assumptions on agents is discussed near the end of ES3 in

the context of sketching a particular real-world application of the theorem.

How Can One Assume that a System Used by an Agent is Sound Without

Assuming Agent Infallibility?

The importance of avoiding infallibility assumptions is reviewed in our section

‘‘How Important is Eliminating Infallibility Assumptions About Intelligent

Agents?’’.

The model assumes that Peano arithmetic, PA, is sound under the standard

interpretation N of the symbols of PA, an assumption widely-accepted among

mathematicians and computer scientists. (The relevant definition of sound is in our

section ‘‘Gödel’s Second Incompleteness Theorem is a Halting Problem Result’’.)

Moreover, the Comprehensibility Theorem requires an agent to provide its

deductions using an ‘‘adequate’’ formal system F, and one required property of

such a system is that each sentence of PA that is a formal theorem in F must be true

under the interpretation N .

This requirement on F does not imply the infallibility of an agent. That is because

the model distinguishes between F and the agent. Even if F has perfect properties,

an agent A that uses F can fall far short of being infallible. (Two examples of

fallible agents are in our section ‘‘Rigorous Analogues for Both Check and

CheckMate’’ and an additional example is discussed near the end of ES3.) That is

analogous to saying the rules of the usual board game of chess have infallibility

properties—such as implying that after each legal move no square contains two

pieces—yet also saying a player of chess can be fallible and try to violate those

rules, with such an attempt simply being called ‘‘illegal’’ (i.e., incorrect).
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How Does the Comprehensibility Theorem Differ from Gödel’s Theorem

and the Unsolvability of the Halting Problem?

Gödel’s Incompleteness Theorem is about the incompleteness of any sufficiently-

powerful, consistent, formal axiomatic system whose axioms are computably

enumerable and whose rules of inference are computably applied. Turing’s

unsolvability of the halting problem is about a limitation that any Turing machine

has for solving all instances of the halting problem infallibly.

Rather than being about incompleteness or unsolvability, the Comprehensibility

Theorem is about an agent’s ability to make deductions about software. It identifies

a relationship between an agent’s ability to deduce a correctness property of

software and that agent’s ability to deduce an intelligence-related limitation of that

same software.

Also, the results of Gödel and Turing apply only to certain kinds of infallible

systems, whereas the Comprehensibility Theorem can be applied to systems (i.e., to

agents) that are far from infallible. (See ‘‘Where Does the Mathematical Model

Avoid Infallibility Assumptions About Agents?’’.) The halting problem limitation is

a limitation on a Turing machine that is assumed to be infallible. Concerning

Gödel’s Incompleteness Theorem, there is typically extreme brittleness associated

with the concept of the consistency of a formal system. A standard formal system

extending PA is consistent only if there is not even a single sentence A in the system

such that both A and its negation :A are formal theorems. Moreover, such a system

is trivial in a typical formal system if that system is inconsistent, since in a typical

system if A and :A are formal theorems, then A _ B is a formal theorem where B is

any sentence (regardless of whether the sentence is false) of PA and _ is the logical

‘‘or’’ operator, and it then follows from the theoremhood of :A that B is a formal

theorem.

Also, the Comprehensibility Theorem can be applied to much broader kinds of

systems than can Gödel’s and Turing’s results. An agent need only be a function

from natural numbers to natural numbers, rather than having to satisfy more-

restrictive properties. (See ‘‘Applying the Comprehensibility Theorem to Real-

World Agents’’.) There are uncountably-many functions from natural numbers to

natural numbers, far more than the countably-many such functions defined by

Turing machines. Likewise, Gödel’s Theorem is about formal axiomatic systems

whose axioms and rules of inference are computable. The Comprehensibility

Theorem can be applied to human agents, without assuming anything about either

the computability or the infallibility of humans.

One important property shared by the Comprehensibility Theorem and those

results of Gödel and Turing is that each is a mathematical theorem satisfying the

current criterion for rigor: each is provable in principle in Zermelo-Frankel Set

Theory, rather than merely being the result of a non-rigorous argument. That is

unusually important because the proof of each uses some form of self-reference.

Non-rigorous reasoning using self-reference can easily produce self-contradictory

results. (See ‘‘The Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’.)
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Is An Agent that Makes Mistakes Necessarily Trivial?

This question arises because any standard formal system extending PA that is

inconsistent is trivial, since such a system permits the deduction of each sentence of

PA, regardless of whether the sentence is true or false (see ‘‘How Does the

Comprehensibility Theorem Differ from Gödel’s Theorem and the Unsolvability of

the Halting Problem?’’). But the way the mathematical model underlying the

theorem distinguishes between the agent A and the formal system F implies that the

answer to the above question is ‘‘no’’. Any natural-number valued function defined

on a subset of the natural numbers is an agent; an agent need have no other property.

In particular, in order for ‘‘A can correctly deduce correctness-related properties of

S’’ to hold, A need only satisfy the requirements specifically related to S in the

definition of that concept; there are no restrictions on the values (if any) of the

function A for other inputs. Thus, if such an A makes an incorrect decision (that

counts in the sense of section ‘‘Where Does the Mathematical Model Avoid

Infallibility Assumptions About Agents?’’)—including making opposite decisions

about two Turing machines that differ in an utterly insignificant way so that A’s

decisions would be inconsistent in the intuitive sense—that does not imply that any

of A’s additional decisions about other Turing machines must be incorrect.

Are Deductions About Scientific Phenomena Related to Deductions About

Computer Programs?

The definitions of ‘‘correctly deduce’’ used in the Comprehensibility Theorem relate

to the ability an agent might have of deducing properties of a computer program.

The notion of scientific deductions seems much broader than deducing properties of

computer programs.

However, scientific deductions related to a natural phenomenon typically involve

a reductionist process that attempts to analyze the phenomenon into primitive basic

principles, explaining the phenomenon via a systematic, algorithmic procedure

based on the resulting primitive principles. One can explain that reductionist process

as an application of a viewpoint expressed by Donald Knuth—when that viewpoint

is taken literally. Knuth asserts that we don’t fully understand something until we

teach it to a computer, by writing an algorithm to do it. In Knuth’s words:

A person well-trained in computer science knows how to deal with algorithms:

how to construct them, manipulate them, understand them, analyze them. This

knowledge is preparation for much more than writing good computer

programs; it is a general-purpose mental tool that will be a definite aid to

the understanding of other subjects, whether they be chemistry, linguistics, or

music, etc. The reason for this may be understood in the following way: It has

often been said that a person does not really understand something until after

teaching it to someone else. Actually a person does not really understand

something until after teaching it to a computer, i.e. expressing it as an

algorithm ... An attempt to formalize things as algorithms leads to a much
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deeper understanding than if we simply try to comprehend things in the

traditional way. (Knuth 1996 pp. 9–10), based largely on Knuth (1973).

In the passage indicated by the ellipsis (...) in that quotation, Knuth cites the

following comment of George Forsythe: ‘‘The automatic computer really forces that

precision of thinking which is alleged to be a product of any study of mathematics’’

Forsythe (1959), emphasis in original.

We would add that the computer forces such precise and thorough thinking, not

just because of the rigorous language used in computer programs, but because of a

bare computer’s lack of background, common sense knowledge. We refer to the

following assertion as Knuth’s Thesis: Fully understanding a phenomenon in the

physical universe requires, among other things, being able to make deductions

about a computer program that exists and accurately simulates that phenomenon. If

one is willing to assume Knuth’s Thesis, the answer to the question in this section’s

title is ‘‘yes’’.

Knuth’s Thesis might be similar to an assertion by Richard Feynman that has

been interpreted in terms of derivations; i.e., in terms of deductions. According to

Lynch and Granger (2008): ‘‘Computational science has as its goal to understand

phenomena sufficiently well to reconstruct them ... the same principle was adhered

to by the well-known physicist Richard Feynman, on his blackboard at the time of

his death in 1988 was this statement: ‘What I cannot create, I do not understand’. ’’

[Emphasis added.] Quora (www.quora.com) asked readers to resolve the apparent

contradiction between that Feynman assertion and the fact that he was a theoretical

physicist. More than two years later the highest-ranked explanation was: ‘‘When

Feynman said ‘create’, he ... meant that, starting with a blank piece of paper and the

knowledge already in his mind, he could’’ take a ‘‘theoretical result and re-derive

it’’. (Written by Mark Eichenlaub, December 4, 2011; no response disagreed with

that response, which received 637 of the 701 signed-by-name, net up-votes for all

contributed responses by June 16, 2014.)

This article does not take a position for or against Knuth’s Thesis. When we

consider what Knuth’s Thesis implies, that hypothesis is made explicit.

Is Gödel’s Second Incompleteness Theorem Mathematically Relevant

to the Mind?

In addition to requiring the strong infallibility assumption of consistency, Gödel’s

Second Incompleteness Theorem—which is stronger than his Incompleteness

Theorem—is not mathematically relevant to the mind, according to specialists on

that theorem. In Gödel, Escher, Bach, Douglas Hofstadter points out that the

assertion ‘‘we cannot understand our own minds/brains’’—which is a central theme

of Hofstadter’s book—cannot be obtained as an application of that theorem and is

merely a ‘‘metaphorical analogue to Gödel’s Theorem’’ Hofstadter (1979), p. 697.

The accuracy of Hofstadter’s observation is praised in a book pointing out many

misuses of Gödel’s Theorem, whose author Torkel Franzén applauds this specific

passage of Hofstadter for ‘‘the virtue of making it explicit that the role of the
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incompleteness theorem [to obtain an assertion about the human mind/brain] is a

matter of inspiration rather than implication’’ (Franzén 2005 p. 124).

Is There Only a Restriction on an Agent’s Deductive Self-comprehensibility?

The Comprehensibility Theorem can be paraphrased as saying that if an agent can

correctly deduce correctness-related properties of software S, then that agent can

correctly deduce that S does not have that agent’s capability for solving halting

problems.

The Comprehensibility Theorem appears to be the first mathematical theorem

(see ‘‘Is Gödel’s Second Incompleteness Theorem Mathematically Relevant to the

Mind?’’) implying the impossibility of any AI agent or natural agent (including a

not-necessarily infallible and not-necessarily computable human agent) satisfying a

rigorous and deductive interpretation of the Delphic challenge ‘‘know thyself’’, if

one assumes Knuth’s Thesis concerning what is necessary for fully understanding

any natural phenomenon (see the section ‘‘Are Deductions About Scientific

Phenomena Related to Deductions About Computer Programs?’’). Even according

to presumably a less rigorous interpretation of that self-comprehensibility challenge,

Socrates—according to Plato—admitted not being able to satisfy the challenge, yet

considered that challenge to be among the most important of intellectual tasks; see

Plato’s Phaedrus 230 (Hamilton and Cairns 1961 p. 478). Likewise, America’s first

widely-known scientist—Benjamin Franklin—considered that challenge ‘‘extre-

mely hard’’ to satisfy; see passage 521 of Franklin (1914).

The answer to the above question appears to be ‘‘yes’’, if one is limited to the

Comprehensibility Theorem. Similarly, if one is limited to the discovery of Gödel’s

Incompleteness Theorem in 1931, then the only known restriction on a formal

logical system would be a restriction on the provability of a formal statement that

merely expresses a property of that logical system itself. As a result, for many years

after 1931 perhaps the vast majority of research mathematicians saw no relevance of

the Incompleteness Theorem to the mathematical conjectures they sought to settle

via proofs or counterexamples. In the decades since 1931, however, restrictions on

the provability of numerous mainstream mathematical—as distinct from logically

self-referent—conjectures within PA or ZF or ZFC have been discovered. Here are

two examples. Goldstein’s Theorem, which is provable in ZFC and relates to

expressing natural numbers using exponents and bases for exponents (distinct from

the use of such notations within formal systems), is expressible in PA but not

provable within PA; Kirby and Paris (1982). The Continuum Hypothesis, which is

related to the possible existence of a set whose cardinality is strictly between that of

the set of natural numbers and that of the set of real numbers (see ‘‘Hilbert’s Thesis

Implies Each Rigorous Math Conjecture is a Halting Problem’’), is expressible in ZF

but neither provable nor disprovable in either ZF or ZFC; Gödel (1939), Cohen

(1963). The proofs of such results can be altogether different from Gödel’s proof of

the Incompleteness Theorem. For instance, Cohen’s proof used his invention of the

entirely new methodology related to ZF known as ‘‘forcing’’.

Historical note: Sect. 3 of Gödel (1931) showed that the kind of unprovable

formal statement identified in that article is equivalent to a statement about the
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existence of solutions to polynomial equations over the integers; also see (Wang

1987 p. 279). The resulting statement about polynomials (merely) expresses a

property of the logical system in question, since it is equivalent to the kind of

unprovable formal statement identified in that article, which itself has that property.

If one is willing to assume Knuth’s Thesis, one can say the following. The

impossibility of deductive self-comprehensibility by an artificial or natural agent is a

result in applied mathematics; that is, it is an application of a mathematical theorem,

rather than a philosophical assertion. Moreover, it is independent of the controver-

sial issue of whether an accurate computer simulation of that agent is possible: if

such a simulation is not possible, then the impossibility of deductive self-

comprehensibility follows from Knuth’s Thesis directly; otherwise, the impossibil-

ity of deductive self-comprehensibility follows from an application of the

Comprehensibility Theorem. Furthermore, since the agent mentioned in the

Comprehensibility Theorem is not-necessarily infallible, the impossibility of

deductive self-comprehensibility by the agent is independent of the controversial

issue of whether one can view that agent as infallible.

Before leaving the question addressed in this section, we suggest that self-

comprehensibility in some form might be essential for a kind of self-reflection useful

for self-improvement that enables some agents, such as some human agents, to

increase their success. That may be the reason Socrates ranked self-comprehensibility

‘‘among the most important of intellectual tasks’’.

Is it Necessary to Expect an Agent to Give Formal Proofs?

It was essential to use formal proofs as objects within the model, since one must use

self-reference within proofs with extreme care as explained in our section ‘‘The

Inherent Lack of Rigor in the Preceding ‘‘Proof’’’’. Now that there is a proof of the

Comprehensibility Theorem satisfying the current standard criterion for rigor, one

can carefully apply it non-formally without risking paradoxical results.

The description of applying the theorem given in our section ‘‘Applying the

Comprehensibility Theorem to Real-World Agents’’ attempts to be precise. We now

employ less-precise terminology customarily used by computer scientists, placing

such terminology inside double quotes. One can apply the theorem to real-world

situations in which the ‘‘proofs’’ of programmers or of any agents are not actually

presented within a formal axiomatic system as long as it is possible—in principle—

to do so, and in which the texts of programs are typically not in terms of Turing

machines and the texts of programs and ‘‘proofs’’ are typically not represented by

numerical codes. Recent practical software systems that discover proofs of

termination and non-termination are discussed in ES3; those proofs are not within

a formal system, but one can consider them as the kind of ‘‘proofs’’ mentioned in

this paragraph. As another kind of example, consider any AI agent that produces

non-formal deductions—via a potentially unending search through any search

space—where the agent also produces the path to any solution that it finds; one can

view such a path as a ‘‘proof’’ of the corresponding deduction. Furthermore, one can

relax restrictions of section ‘‘Applying the Comprehensibility Theorem to Real-

World Agents’’ to permit a real-world agent to receive any input at any time, as long
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as an input does not provide ‘‘a hint or complete solution’’ to a halting problem that

agent is currently trying to solve.

Eliminating formal proofs in applications of the Comprehensibility Theorem

does not undermine the use of formal proofs in our section ‘‘Hilbert’s Thesis

Implies Each Rigorous Math Conjecture is a Halting Problem’’ in showing that

Hilbert’s Thesis implies broad importance to halting problems, since one can

translate a non-formal conjecture into a formal conjecture and obtain related

software, such that answering the halting problem for that software is equivalent to

answering the non-formal conjecture. Also, a recent article suggests the increasing

and long-term importance of formal proofs in both mainstream mathematics and

formal verification of software Harrison (2008).

Is the Comprehensibility Theorem Relevant to the Foundations of AI?

The opening paragraph of this article asserts that problem-solving software that is

not-necessarily infallible is central to AI, an assertion that seems reasonable in view

of much of the content of an AI textbook like Russell and Norvig (2010). The

opening paragraph continues by asserting that such software whose correctness and

incorrectness properties are deducible by agents—both artificial and natural agents,

and where the agents themselves are not-necessarily infallible—is an issue at the

foundations of AI. That additional assertion also appears to be reasonable, perhaps

too obvious an assertion to have been made prior to this article. What, then, is the

relevance of the Comprehensibility Theorem to the phrases in those assertions?

Based on Hilbert’s Thesis (accepted in practice by nearly all mathematicians),

section ‘‘Hilbert’s Thesis Implies Each Rigorous Math Conjecture is a Halting

Problem’’ explains that a model of intelligent ‘‘problem-solving’’ has broad scope

throughout AI, if it—like the model underlying the theorem—is focused on solving

halting problems; this broad nature of halting problems is apparently overlooked in

previous AI journal articles. Sections ‘‘Definition of ‘‘Correctly Deduce’’’’, ‘‘Where

Does the Mathematical Model Avoid Infallibility Assumptions About Agents?’’,

‘‘How Can One Assume that a System Used by an Agent is Sound Without

Assuming Agent Infallibility?’’, and ‘‘Is An Agent that Makes Mistakes Necessarily

Trivial?’’ explain that both the software and the agents mentioned in the theorem are

‘‘not-necessarily infallible’’. Sections ‘‘A Set of Formulas Supporting A Technical

Trick’’ and ‘‘Definition of ‘‘Correctly Deduce’’’’ explain how the statement of the

theorem is relevant to ‘‘correctness and incorrectness properties’’ of software. The

sections ‘‘Applying the Comprehensibility Theorem to Real-World Agents’’ and ‘‘Is

it Necessary to Expect an Agent to Give Formal Proofs?’’ explain how one can

apply the theorem to agents of any kind, hence to ‘‘both artificial and natural

agents’’. Also, ES3 and ES4 discuss the long-term applicability of the Comprehen-

sibility Theorem to practical AI systems. A summary of ways the theorem is

applicable to the foundations of AI will be given in our ‘‘Conclusions’’.

The preceding paragraph presents reasons for a ‘‘yes’’ answer to the question

addressed in this section. The Comprehensibility Theorem’s impact on the

foundations of AI could become more evident in the long-term, assuming

mathematicians and software engineers increasingly use formal theorem-provers
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as predicted in Harrison (2008), p.1399. But that assumption is not essential here,

since section ‘‘Is it Necessary to Expect an Agent to Give Formal Proofs?’’ explains

that in applying (as distinct from proving) the Comprehensibility Theorem it is not

essential to require an agent to give formal proofs.

What Additional Questions are Addressed in the Electronic Supplement?

Those questions are:

ES1: Must real-world applications emphasize the first official response?

ES2: Is truth of the members of T an infallibility assumption about agents?

ES3: Are there examples for which ‘‘correctly deduce’’ is satisfied?

ES4: What is the relevance of system software to the foundations of AI?

ES5: What about the interchangeability of Turing machines and axiomatic

systems?

ES6: Should the mathematical model be so focused on software?

ES7: How relevant are reflection principles?

ES8: How is an agent supposed to have access to the members of T and the

theorems of F?

ES9: What about the difference between the formalization of provability of a

mathematical conjecture and the formalization of the conjecture?

ES10: Can the correctness requirements on agents be reduced?

ES11: Is the definition of ‘‘correctly deduce’’ unrealistically strong?

Conclusions

The Comprehensibility Theorem is based on natural-number valued functions,

Turing machines, formal systems, and halting problems, which provide a convenient

level of abstraction. Yet one can see a connection between the model and practical,

not-necessarily infallible, problem-solving systems, as discussed in ‘‘Where Does

the Mathematical Model Avoid Infallibility Assumptions About Agents?’’ and ‘‘Is it

Necessary to Expect an Agent to Give Formal Proofs?’’, and in (Electronic

Supplement) ES3 and ES4. Like the definition of the limit concept and the definite

integral concept in Calculus, the mathematical definitions used to support the

Comprehensibility Theorem are technical and somewhat complicated, yet arise

naturally from a simple context; see ‘‘A Game Based on Solving Halting Problems’’.

The Introduction mentions three long-standing shortcomings of earlier treat-

ments: their assumptions about the infallibility of agents, use of inherently

fallacious reasoning, and non-applicability to artificial agents. This article supports

the conclusion that the Comprehensibility Theorem overcomes those shortcomings;

see ‘‘Where Does the Mathematical Model Avoid Infallibility Assumptions About

Agents?’’, The Mathematical Model, and ‘‘Applying the Comprehensibility

Theorem to Real-World Agents’’, respectively.
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The article also considers the following ways in which the Comprehensibility

Theorem is applicable to the foundations of AI:

• Based on Hilbert’s Thesis (accepted in practice by nearly all mathematicians), a

model of intelligent ‘‘problem-solving’’ has broad scope throughout AI, if it—

like the model supporting the Comprehensibility Theorem—is focused on

solving halting problems; see ‘‘Hilbert’s Thesis Implies Each Rigorous Math

Conjecture is a Halting Problem’’.

• One can apply the ‘‘if ... then’’ of the theorem to any agent and to any piece of

software that makes decisions about halting problems. The agent can be

computational (symbolic, connectionist, Bayesian, or based on evolutionary

computing or any other computational techniques) or non-computational. The

agent can be artificial or natural or a combination of both. The software can be

programmed by humans or generated automatically. There are reasonable

reasons to view the hypothesis of the theorem as being satisfied by an example in

ES3 based on recent practical research by others.

• As explained in our section ‘‘Is it Necessary to Expect an Agent to Give Formal

Proofs?’’, since the theorem has a mathematical proof (that uses formal proofs as

objects to avoid well-known paradoxical reasoning), one can apply the theorem

in real-world applications without requiring the applications to involve formal

proofs.

The just-given summary suggests ways in which the Comprehensibility Theorem

is a general result. However the Comprehensibility Theorem also appears to be

limited in scope, being only a restriction on an agent’s deductive self-comprehen-

sibility, as pointed out in our section ‘‘Is There Only a Restriction on an Agent’s

Deductive Self-comprehensibility?’’. That section mentions that Gödel’s Theorem

in 1931 appeared to have a similar kind of limited scope, but the kind of

incompleteness result revealed by Gödel’s Theorem stimulated the subsequent

discovery of restrictions on the provability of numerous mainstream mathematical

conjectures. Our section ‘‘Is There Only a Restriction on an Agent’s Deductive Self-

comprehensibility?’’ also suggests that self-comprehensibility in some form might

be essential for a kind of self-reflection useful for self-improvement that enables

some agents, such as some human agents, to increase their success at problem

solving.

In addition, our section ‘‘Is There Only a Restriction on an Agent’s Deductive

Self-comprehensibility?’’ observes that, if one is willing to assume a thesis due to

Donald Knuth, the Comprehensibility Theorem appears to be the first mathematical

theorem implying the impossibility of any AI agent or natural agent—including a

not-necessarily infallible human agent—satisfying a rigorous and deductive

interpretation of the self-comprehensibility challenge. Some have pointed out the

difficulty of self-comprehensibility, even according to presumably a less rigorous

interpretation. This includes Socrates, who considered that challenge to be among

the most important of intellectual tasks. Moreover, the impossibility just mentioned
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is a result in applied mathematics, in the sense that it is an application of a

mathematical theorem.
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Artificial Intelligence, 104, 265–286.

The Comprehensibility Theorem 475

123



Lynch, G., & Granger, R. (2008). Big brain: The origins and future of human intelligence. New York:

Macmillan.

Mac Lane, S. (1986.). Mathematics: Form and function. New York: Springer.

Minsky, M. (1995). Reply to Penrose’s ‘‘Consciousness involves noncomputable ingredients’’. In J.

Brockman (Ed.), The third culture (pp. 256–257). New York: Simon and Schuster.

Moravec, H. (1992). Minds with mobility [an interview]. Discover, 13(11), 104–106.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). Englewood

Cliffs, NJ: Prentice-Hall.

Turing, A. M. (1936). On computable numbers with an application to the Entscheidungsproblem.

Proceedings of the London Mathematical Society, 42, Ser. 2, 230–265 (a correction 43 (1937),

544–546).

Turing, A. M. (1986). Lecture to the London Mathematical Society on 20 February 1947. In A.

M. Turing’s ACE report of 1946 and other papers (pp. 106–124). Cambridge, MA: MIT Press.

van Lint, J. H., & Wilson, R. M. (1992). A course in combinatorics. New York: Cambridge University

Press.

Wang, H. (1987). Reflections on Kurt Gödel. Cambridge, MA: MIT Press.
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